CN109239147B - 一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法 - Google Patents

一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法 Download PDF

Info

Publication number
CN109239147B
CN109239147B CN201811009072.7A CN201811009072A CN109239147B CN 109239147 B CN109239147 B CN 109239147B CN 201811009072 A CN201811009072 A CN 201811009072A CN 109239147 B CN109239147 B CN 109239147B
Authority
CN
China
Prior art keywords
phenanthroline
modified
electrode
solution
copolymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811009072.7A
Other languages
English (en)
Other versions
CN109239147A (zh
Inventor
蒋华麟
李雪芹
陈萍华
牛平平
李桂芳
陈皆曾
戴玉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN201811009072.7A priority Critical patent/CN109239147B/zh
Publication of CN109239147A publication Critical patent/CN109239147A/zh
Application granted granted Critical
Publication of CN109239147B publication Critical patent/CN109239147B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本发明公开了一种修饰电极材料邻菲啰啉共聚改性g‑C3N4的制备方法,其特征在于:将邻菲啰啉衍生物与亚铁盐配成乙醇溶液,与尿素的乙醇溶液混合,充分搅拌后,蒸干溶剂乙醇,然后煅烧得到产品。利用所制备的邻菲啰啉共聚改性g‑C3N4修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,对不同浓度的4‑NP溶液进行电化学检测。该方法材料制备简单,条件温和,成本低廉;对4‑NP的电流响应快、灵敏度高、检测限低、实用性强。该材料及方法具有很好的应用前景。

Description

一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法
技术领域
本发明涉及一种对4-NP具有低检测限,优良选择性的检测方法,属于环境污染物检测技术领域,具体为一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法。
背景技术
对硝基苯酚(4-NP)是一种广泛应用的化工产品,常用作农药、医药、染料等精细化学品的中间体。用于制造非那西丁、扑热息痛、农药1605、显影剂米妥尔、硫化草绿GN、硫化还原黑CL、硫化还原黑CLB、硫化还原蓝RNX、硫化红棕B3R。也用作皮革防霉剂以及酸值指示剂。随着使用量的增加,每年都有大量的对硝基苯酚泄漏进入环境。4-NP具有有很强的毒性。可经皮肤吸收,引起过敏。其对中枢神经末梢有刺激作用和抑制作用,还可导致高铁血色素症和呼吸困难。联合国、国际海事组织和美国环保署都将其认定为有毒污染物。地面水最高容许浓度为0.02mg/L。4-NP对环境的危害不容忽视。因4-NP微溶于水,在水体中的溶解度通常较低,而且低浓度下无色无味,被4-NP污染的水体通常难以被直接发现。所以,针对4-NP的检测技术受到广泛关注。
基于以上技术背景,本技术发明了一种修饰电极材料——邻菲啰啉共聚改性g-C3N4的制备方法,并将其应用于4-NP的有效检测。该方法的优点是:1.材料制备简单,成本低廉;2.对4-NP的电流响应快、灵敏度高、检测限低;3.对江水、自来水等实际水体中的4-NP检测性能优异,具有很强的实用性能。该材料及方法具有很好的应用前景,相关方法未见报道。
发明内容
本发明的目的在于提供一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法及其电化学检测4-NP的方法。
本发明采用如下手段:一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法,
1、一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法,其特征在于:
(1)将邻菲啰啉衍生物与亚铁盐溶于10mL乙醇形成溶液A;
(2)将10g尿素溶于20mL去离子水形成溶液B;
(3)将溶液A和溶液B混合,在室温下搅拌12小时;
(4)将由(3)所得混和液用80℃水浴加热至溶剂乙醇完全挥发干;
(5)将由(4)所得固体80℃真空干燥,然后充分研磨,最后用马弗炉煅烧,即得产品邻菲啰啉共聚改性g-C3N4
(6)将邻菲啰啉共聚改性g-C3N4用去离子水配制成悬浊液,滴涂至预先清洗干净的玻碳电极上;邻菲啰啉共聚改性g-C3N4的浓度为1mg/mL;
(7)利用所制备的邻菲啰啉共聚改性g-C3N4修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,以0.2M的磷酸二氢钠缓冲液(PH=7.4)作为支持电解质溶液,在不同浓度的4-NP溶液中,进行微分脉冲伏安法(DPV)扫描。
进一步地,上述(1)的邻菲啰啉衍生物为5,6位氨基或羰基衍生物,包括邻菲啰啉-5,6-二酮和邻菲啰啉-5,6-二胺;
进一步地,上述(1)邻菲啰啉衍生物与亚铁盐中亚铁的摩尔比为3:1。所述亚铁为硫酸亚铁、氯化亚铁等常见亚铁盐及其带结晶水的化合物;
进一步地,上述(5)马弗炉煅烧条件为:以2.5℃/min的升温速率从室温加热到550℃,然后保温2h。
本发明的优点是:该方法材料制备简单,成本低廉;对4-NP的电流响应快、灵敏度高、检测限低、实际应用性能强。该材料及方法具有很好的应用前景。
附图说明
图1为本发明实施例1产品的XRD谱图。
图2为本发明实施例1产品的SEM图。
图3为本发明实施例1产品对不同浓度4-NP的微分脉冲伏安法(DPV)扫描图。
图4为本发明实施例1产品对不同浓度4-NP的微分脉冲伏安法(DPV)扫描所得峰电流与4-NP浓度关系图。
具体实施方式
在本发明方法中,g-碳三氮四与g-C3N4是指同一种物质。
实施例1
称取0.09mmol的邻菲啰啉-5,6-二酮和0.03mmol的FeSO4·7H2O溶解于20mL无水乙醇中形成溶液A,然后再将10g的尿素溶于20mL去离子水中形成溶液B,随后将这两种溶液混合到一起并在室温下磁力搅拌12h并将该溶液放在80℃的水浴锅中,蒸发其中含有的无水乙醇,然后将其放入80℃的真空干燥箱中烘干得到固体并倒入研钵中研磨成粉末。最后再将研磨后的物质倒入坩埚中,在马弗炉中以2.5℃/min的升温速率从室温加热到550℃,然后保温2h。即得到产品邻菲啰啉共聚改性g-C3N4
将邻菲啰啉共聚改性g-C3N4用去离子水配成1mg/ml的悬浊液,滴涂至已清洗干净的玻碳电极上,以所制备的硫铟化银修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,以0.2M的磷酸二氢钠缓冲液(PH=7.4)作为支持电解质溶液,在不同浓度的4-NP溶液中,进行微分脉冲伏安法(DPV)扫描,扫描结果如图4所示。
实施例2
称取0.06mmol的邻菲啰啉-5,6-二酮和0.02mmol的FeSO4·7H2O溶解于20mL无水乙醇中形成溶液A,然后再将10g的尿素溶于20mL去离子水中形成溶液B,随后将这两种溶液混合到一起并在室温下磁力搅拌12h并将该溶液放在80℃的水浴锅中,蒸发其中含有的无水乙醇,然后将其放入80℃的真空干燥箱中烘干得到固体并倒入研钵中研磨成粉末。最后再将研磨后的物质倒入坩埚中,在马弗炉中以2.5℃/min的升温速率从室温加热到550℃,然后保温2h。即得到产品邻菲啰啉共聚改性g-C3N4
将邻菲啰啉共聚改性g-C3N4用去离子水配成1mg/ml的悬浊液,滴涂至已清洗干净的玻碳电极上,以所制备的硫铟化银修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,以0.2M的磷酸二氢钠缓冲液(PH=7.4)作为支持电解质溶液,在不同浓度的4-NP溶液中,进行微分脉冲伏安法(DPV)扫描。
实施例3
称取0.09mmol的邻菲啰啉-5,6-二胺和0.03mmol的FeSO4·7H2O溶解于20mL无水乙醇中形成溶液A,然后再将10g的尿素溶于20mL去离子水中形成溶液B,随后将这两种溶液混合到一起并在室温下磁力搅拌12h并将该溶液放在80℃的水浴锅中,蒸发其中含有的无水乙醇,然后将其放入80℃的真空干燥箱中烘干得到固体并倒入研钵中研磨成粉末。最后再将研磨后的物质倒入坩埚中,在马弗炉中以2.5℃/min的升温速率从室温加热到550℃,然后保温2h。即得到产品邻菲啰啉共聚改性g-C3N4
将邻菲啰啉共聚改性g-C3N4用去离子水配成1mg/ml的悬浊液,滴涂至已清洗干净的玻碳电极上,以所制备的硫铟化银修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,以0.2M的磷酸二氢钠缓冲液(PH=7.4)作为支持电解质溶液,在不同浓度的4-NP溶液中,进行微分脉冲伏安法(DPV)扫描。
实施例4
称取0.06mmol的邻菲啰啉-5,6-二胺和0.02mmol的FeSO4·7H2O溶解于20mL无水乙醇中形成溶液A,然后再将10g的尿素溶于20mL去离子水中形成溶液B,随后将这两种溶液混合到一起并在室温下磁力搅拌12h并将该溶液放在80℃的水浴锅中,蒸发其中含有的无水乙醇,然后将其放入80℃的真空干燥箱中烘干得到固体并倒入研钵中研磨成粉末。最后再将研磨后的物质倒入坩埚中,在马弗炉中以2.5℃/min的升温速率从室温加热到550℃,然后保温2h。即得到产品邻菲啰啉共聚改性g-C3N4
将邻菲啰啉共聚改性g-C3N4用去离子水配成1mg/ml的悬浊液,滴涂至已清洗干净的玻碳电极上,以所制备的硫铟化银修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,以0.2M的磷酸二氢钠缓冲液(PH=7.4)作为支持电解质溶液,在不同浓度的4-NP溶液中,进行微分脉冲伏安法(DPV)扫描。

Claims (4)

1.一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法,其特征在于:
(1)将邻菲啰啉衍生物与亚铁盐溶于10mL乙醇形成溶液A, 所述邻菲啰啉衍生物为5,6位氨基或羰基衍生物,包括邻菲啰啉-5,6-二酮和邻菲啰啉-5,6-二胺;
(2)将10g尿素溶于20mL去离子水形成溶液B;
(3)将溶液A和溶液B混合,在室温下搅拌12小时;
(4)将由(3)所得混和液用80℃水浴加热至溶剂乙醇完全挥发干;
(5)将由(4)所得固体80℃真空干燥,然后充分研磨,最后用马弗炉煅烧,即得产品邻菲啰啉共聚改性g-C3N4
(6)将邻菲啰啉共聚改性g-C3N4用去离子水配制成悬浊液,滴涂至预先清洗干净的玻碳电极上;邻菲啰啉共聚改性g-C3N4的浓度为1mg/mL;
(7)利用所制备的邻菲啰啉共聚改性g-C3N4修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,以0.2M pH=7.4的磷酸二氢钠缓冲液作为支持电解质溶液,在不同浓度的4-NP溶液中,进行微分脉冲伏安法(DPV)扫描。
2.根据权利要求1所述的一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法,其特征在于,步骤(1)邻菲啰啉衍生物与亚铁盐中亚铁的摩尔比为3:1。
3.根据权利要求1所述的一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法,其特征在于,所述亚铁盐为硫酸亚铁、氯化亚铁及其带结晶水的化合物。
4.根据权利要求1所述的一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法,其特征在于,所述(5)马弗炉煅烧条件为:以2.5℃/min的升温速率从室温加热到550℃,然后保温2h。
CN201811009072.7A 2018-08-31 2018-08-31 一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法 Active CN109239147B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811009072.7A CN109239147B (zh) 2018-08-31 2018-08-31 一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811009072.7A CN109239147B (zh) 2018-08-31 2018-08-31 一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法

Publications (2)

Publication Number Publication Date
CN109239147A CN109239147A (zh) 2019-01-18
CN109239147B true CN109239147B (zh) 2020-01-03

Family

ID=65068937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811009072.7A Active CN109239147B (zh) 2018-08-31 2018-08-31 一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法

Country Status (1)

Country Link
CN (1) CN109239147B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101585856A (zh) * 2008-05-23 2009-11-25 安徽大学 具有单级或多级孔道结构的纳米孔洞金属-有机骨架材料及其制备
CN107014882A (zh) * 2017-03-07 2017-08-04 常州大学 一种多孔碳‑氧化铜复合材料的制备及其在食品中苏丹红ⅰ含量测定中的应用
CN107597166A (zh) * 2017-09-29 2018-01-19 南昌航空大学 一种碳点/硫化镉量子点/氮化碳催化剂及其制备方法
CN107643331A (zh) * 2017-09-06 2018-01-30 山西大学 一种电极表面修饰材料及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8636884B2 (en) * 2008-09-15 2014-01-28 Abbott Diabetes Care Inc. Cationic polymer based wired enzyme formulations for use in analyte sensors
US20150285756A1 (en) * 2014-04-02 2015-10-08 King Fahd University Of Petroleum And Minerals Pencil graphite electrode modified with porous copper for nitrophenol electrochemical detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101585856A (zh) * 2008-05-23 2009-11-25 安徽大学 具有单级或多级孔道结构的纳米孔洞金属-有机骨架材料及其制备
CN107014882A (zh) * 2017-03-07 2017-08-04 常州大学 一种多孔碳‑氧化铜复合材料的制备及其在食品中苏丹红ⅰ含量测定中的应用
CN107643331A (zh) * 2017-09-06 2018-01-30 山西大学 一种电极表面修饰材料及其制备方法和应用
CN107597166A (zh) * 2017-09-29 2018-01-19 南昌航空大学 一种碳点/硫化镉量子点/氮化碳催化剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Facile synthesis of highly reactive and stable Fe-doped g-C3N4 composites for peroxymonosulfate activation: A novel nonradical oxidation process;Yong Feng 等;《Journal of Hazardous Materials》;20180425;第354卷;第63-71页 *
Improvement of phenol photodegradation efficiency by a combined g-C3N4/Fe(III)/persulfate system;Jian-Yang Hu 等;《Chemosphere》;20160121;第148卷;第34-40页 *
N-GQDs/g-C3N4的合成及光催化分解水产氢性能研究;王来春 等;《南昌航空大学学报:自然科学版》;20170331;第31卷(第1期);第28-35页 *
邻菲啰啉和水杨酸构筑铜配合物的电化学行为及与DNA的相互作用;李小芳 等;《发光学报》;20160630;第37卷(第6期);第744-750页 *

Also Published As

Publication number Publication date
CN109239147A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
Tajik et al. Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite
Lu et al. Determination of the total iron by chitosan-modified glassy carbon electrode
Jiang et al. Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode
Karmakar et al. Aqueous phase sensing of cyanide ions using a hydrolytically stable metal–organic framework
Gonzalez et al. Determination of nickel by anodic adsorptive stripping voltammetry with a cation exchanger-modified carbon paste electrode
Gu et al. Dual-signal anodic stripping voltammetric determination of trace arsenic (III) at a glassy carbon electrode modified with internal-electrolysis deposited gold nanoparticles
Liu et al. A Study of Nafion‐Coated Bismuth‐Film Electrode for the Determination of Zinc, Lead, and Cadmium in Blood Samples
Wang et al. A bismuth modified hybrid binder carbon paste electrode for electrochemical stripping detection of trace heavy metals in soil
CN106986432A (zh) 重金属捕捉剂
Korolczuk et al. Determination of folic acid by adsorptive stripping voltammetry at a lead film electrode
Fan et al. Highly sensitive electrochemical determination of cadmium (II) in environmental water based on the electrodeposited bismuth nanoparticles
CN113598165A (zh) 一种磷酸锆载银锌复合抗菌剂
CN105588831A (zh) 一种应用淡水发光细菌检测稀土尾矿库周边地下水污染急性毒性的方法
CN109239147B (zh) 一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法
Abdallah et al. Polarographic performance of some azo derivatives derived from 2-amino-4-hydroxy pyridine and its inhibitory effect on C-steel corrosion in hydrochloric acid
Si et al. Fast electrochemical determination of imidacloprid at an activated glassy carbon electrode
Mashhadizadeh et al. A novel modified carbon paste electrode for potentiometric determination of mercury (II) ion
Singh et al. Fabrication of novel coated graphite electrodes for the selective nano-level determination of Cd2+ ions in biological and environmental samples
Ertek et al. Flow injection amperometric detection of sulfide using a prussian blue modified glassy carbon electrode
Zhang et al. Determination of trace chromium by square-wave adsorptive cathodic stripping voltammetry at an improved bismuth film electrode
Gupta et al. Comparative evaluation of Dy (III) selective poly (vinyl) chloride based membrane electrodes of macrocyclic tetraimine Schiff's bases
Gholivand et al. Adsorptive stripping voltammetric determination of ultra trace of zinc and lead with carbidopa as complexing agent in food and water samples
CN104849271B (zh) 一种基于花菁的探针用于检测痕量二价铜离子的方法
Safavi et al. Determination of copper by adsorptive stripping voltammetry of its complex with adenine
Choi et al. Electrochemical determination of adsorption isotherm of mordant red 19 on mercury and its analytical application for the indirect determination of uranium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant