CN109239147A - 一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法 - Google Patents

一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法 Download PDF

Info

Publication number
CN109239147A
CN109239147A CN201811009072.7A CN201811009072A CN109239147A CN 109239147 A CN109239147 A CN 109239147A CN 201811009072 A CN201811009072 A CN 201811009072A CN 109239147 A CN109239147 A CN 109239147A
Authority
CN
China
Prior art keywords
phenanthroline
modification
copolymerization
electrode
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811009072.7A
Other languages
English (en)
Other versions
CN109239147B (zh
Inventor
蒋华麟
李雪芹
陈萍华
牛平平
李桂芳
陈皆曾
戴玉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN201811009072.7A priority Critical patent/CN109239147B/zh
Publication of CN109239147A publication Critical patent/CN109239147A/zh
Application granted granted Critical
Publication of CN109239147B publication Critical patent/CN109239147B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本发明公开了一种修饰电极材料邻菲啰啉共聚改性g‑C3N4的制备方法,其特征在于:将邻菲啰啉衍生物与亚铁盐配成乙醇溶液,与尿素的乙醇溶液混合,充分搅拌后,蒸干溶剂乙醇,然后煅烧得到产品。利用所制备的邻菲啰啉共聚改性g‑C3N4修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,对不同浓度的4‑NP溶液进行电化学检测。该方法材料制备简单,条件温和,成本低廉;对4‑NP的电流响应快、灵敏度高、检测限低、实用性强。该材料及方法具有很好的应用前景。

Description

一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法
技术领域
本发明涉及一种对4-NP具有低检测限,优良选择性的检测方法,属于环境污染物检测技术领域,具体为一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法。
背景技术
对硝基苯酚(4-NP)是一种广泛应用的化工产品,常用作农药、医药、染料等精细化学品的中间体。用于制造非那西丁、扑热息痛、农药1605、显影剂米妥尔、硫化草绿GN、硫化还原黑CL、硫化还原黑CLB、硫化还原蓝RNX、硫化红棕B3R。也用作皮革防霉剂以及酸值指示剂。随着使用量的增加,每年都有大量的对硝基苯酚泄漏进入环境。4-NP具有有很强的毒性。可经皮肤吸收,引起过敏。其对中枢神经末梢有刺激作用和抑制作用,还可导致高铁血色素症和呼吸困难。联合国、国际海事组织和美国环保署都将其认定为有毒污染物。地面水最高容许浓度为0.02mg/L。4-NP对环境的危害不容忽视。因4-NP微溶于水,在水体中的溶解度通常较低,而且低浓度下无色无味,被4-NP污染的水体通常难以被直接发现。所以,针对4-NP的检测技术受到广泛关注。
基于以上技术背景,本技术发明了一种修饰电极材料——邻菲啰啉共聚改性g-C3N4的制备方法,并将其应用于4-NP的有效检测。该方法的优点是:1.材料制备简单,成本低廉;2.对4-NP的电流响应快、灵敏度高、检测限低;3.对江水、自来水等实际水体中的4-NP检测性能优异,具有很强的实用性能。该材料及方法具有很好的应用前景,相关方法未见报道。
发明内容
本发明的目的在于提供一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法及其电化学检测4-NP的方法。
本发明采用如下手段:一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法,
1、一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法,其特征在于:
(1)将邻菲啰啉衍生物与亚铁盐溶于10mL乙醇形成溶液A;
(2)将10g尿素溶于20mL去离子水形成溶液B;
(3)将溶液A和溶液B混合,在室温下搅拌12小时;
(4)将由(3)所得混和液用80℃水浴加热至溶剂乙醇完全挥发干;
(5)将由(4)所得固体80℃真空干燥,然后充分研磨,最后用马弗炉煅烧,即得产品邻菲啰啉共聚改性g-C3N4
(6)将邻菲啰啉共聚改性g-C3N4用去离子水配制成悬浊液,滴涂至预先清洗干净的玻碳电极上;邻菲啰啉共聚改性g-C3N4的浓度为1mg/mL;
(7)利用所制备的邻菲啰啉共聚改性g-C3N4修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,以0.2M的磷酸二氢钠缓冲液(PH=7.4)作为支持电解质溶液,在不同浓度的4-NP溶液中,进行微分脉冲伏安法(DPV)扫描。
进一步地,上述(1)的邻菲啰啉衍生物为5,6位氨基或羰基衍生物,包括邻菲啰啉-5,6-二酮和邻菲啰啉-5,6-二胺;
进一步地,上述(1)邻菲啰啉衍生物与亚铁盐中亚铁的摩尔比为3:1。所述亚铁为硫酸亚铁、氯化亚铁等常见亚铁盐及其带结晶水的化合物;
进一步地,上述(5)马弗炉煅烧条件为:以2.5℃/min的升温速率从室温加热到550℃,然后保温2h。
本发明的优点是:该方法材料制备简单,成本低廉;对4-NP的电流响应快、灵敏度高、检测限低、实际应用性能强。该材料及方法具有很好的应用前景。
附图说明
图1为本发明实施例1产品的XRD谱图。
图2为本发明实施例1产品的SEM图。
图3为本发明实施例1产品对不同浓度4-NP的微分脉冲伏安法(DPV)扫描图。
图4为本发明实施例1产品对不同浓度4-NP的微分脉冲伏安法(DPV)扫描所得峰电流与4-NP浓度关系图。
具体实施方式
在本发明方法中,g-碳三氮四与g-C3N4是指同一种物质。
实施例1
称取0.09mmol的邻菲啰啉-5,6-二酮和0.03mmol的FeSO4·7H2O溶解于20mL无水乙醇中形成溶液A,然后再将10g的尿素溶于20mL去离子水中形成溶液B,随后将这两种溶液混合到一起并在室温下磁力搅拌12h并将该溶液放在80℃的水浴锅中,蒸发其中含有的无水乙醇,然后将其放入80℃的真空干燥箱中烘干得到固体并倒入研钵中研磨成粉末。最后再将研磨后的物质倒入坩埚中,在马弗炉中以2.5℃/min的升温速率从室温加热到550℃,然后保温2h。即得到产品邻菲啰啉共聚改性g-C3N4
将邻菲啰啉共聚改性g-C3N4用去离子水配成1mg/ml的悬浊液,滴涂至已清洗干净的玻碳电极上,以所制备的硫铟化银修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,以0.2M的磷酸二氢钠缓冲液(PH=7.4)作为支持电解质溶液,在不同浓度的4-NP溶液中,进行微分脉冲伏安法(DPV)扫描,扫描结果如图4所示。
实施例2
称取0.06mmol的邻菲啰啉-5,6-二酮和0.02mmol的FeSO4·7H2O溶解于20mL无水乙醇中形成溶液A,然后再将10g的尿素溶于20mL去离子水中形成溶液B,随后将这两种溶液混合到一起并在室温下磁力搅拌12h并将该溶液放在80℃的水浴锅中,蒸发其中含有的无水乙醇,然后将其放入80℃的真空干燥箱中烘干得到固体并倒入研钵中研磨成粉末。最后再将研磨后的物质倒入坩埚中,在马弗炉中以2.5℃/min的升温速率从室温加热到550℃,然后保温2h。即得到产品邻菲啰啉共聚改性g-C3N4
将邻菲啰啉共聚改性g-C3N4用去离子水配成1mg/ml的悬浊液,滴涂至已清洗干净的玻碳电极上,以所制备的硫铟化银修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,以0.2M的磷酸二氢钠缓冲液(PH=7.4)作为支持电解质溶液,在不同浓度的4-NP溶液中,进行微分脉冲伏安法(DPV)扫描。
实施例3
称取0.09mmol的邻菲啰啉-5,6-二胺和0.03mmol的FeSO4·7H2O溶解于20mL无水乙醇中形成溶液A,然后再将10g的尿素溶于20mL去离子水中形成溶液B,随后将这两种溶液混合到一起并在室温下磁力搅拌12h并将该溶液放在80℃的水浴锅中,蒸发其中含有的无水乙醇,然后将其放入80℃的真空干燥箱中烘干得到固体并倒入研钵中研磨成粉末。最后再将研磨后的物质倒入坩埚中,在马弗炉中以2.5℃/min的升温速率从室温加热到550℃,然后保温2h。即得到产品邻菲啰啉共聚改性g-C3N4
将邻菲啰啉共聚改性g-C3N4用去离子水配成1mg/ml的悬浊液,滴涂至已清洗干净的玻碳电极上,以所制备的硫铟化银修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,以0.2M的磷酸二氢钠缓冲液(PH=7.4)作为支持电解质溶液,在不同浓度的4-NP溶液中,进行微分脉冲伏安法(DPV)扫描。
实施例4
称取0.06mmol的邻菲啰啉-5,6-二胺和0.02mmol的FeSO4·7H2O溶解于20mL无水乙醇中形成溶液A,然后再将10g的尿素溶于20mL去离子水中形成溶液B,随后将这两种溶液混合到一起并在室温下磁力搅拌12h并将该溶液放在80℃的水浴锅中,蒸发其中含有的无水乙醇,然后将其放入80℃的真空干燥箱中烘干得到固体并倒入研钵中研磨成粉末。最后再将研磨后的物质倒入坩埚中,在马弗炉中以2.5℃/min的升温速率从室温加热到550℃,然后保温2h。即得到产品邻菲啰啉共聚改性g-C3N4
将邻菲啰啉共聚改性g-C3N4用去离子水配成1mg/ml的悬浊液,滴涂至已清洗干净的玻碳电极上,以所制备的硫铟化银修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,以0.2M的磷酸二氢钠缓冲液(PH=7.4)作为支持电解质溶液,在不同浓度的4-NP溶液中,进行微分脉冲伏安法(DPV)扫描。

Claims (5)

1.一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法,其特征在于:
(1)将邻菲啰啉衍生物与亚铁盐溶于10mL乙醇形成溶液A;
(2)将10g尿素溶于20mL去离子水形成溶液B;
(3)将溶液A和溶液B混合,在室温下搅拌12小时;
(4)将由(3)所得混和液用80℃水浴加热至溶剂乙醇完全挥发干;
(5)将由(4)所得固体80℃真空干燥,然后充分研磨,最后用马弗炉煅烧,即得产品邻菲啰啉共聚改性g-C3N4
(6)将邻菲啰啉共聚改性g-C3N4用去离子水配制成悬浊液,滴涂至预先清洗干净的玻碳电极上;邻菲啰啉共聚改性g-C3N4的浓度为1mg/mL;
(7)利用所制备的邻菲啰啉共聚改性g-C3N4修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极,以0.2M的磷酸二氢钠缓冲液(pH=7.4)作为支持电解质溶液,在不同浓度的4-NP溶液中,进行微分脉冲伏安法(DPV)扫描。
2.根据权利要求1所述的一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法,其特征在于,步骤(1)的邻菲啰啉衍生物为5,6位氨基或羰基衍生物,包括邻菲啰啉-5,6-二酮和邻菲啰啉-5,6-二胺。
3.根据权利要求1所述的一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法,其特征在于,步骤(1)邻菲啰啉衍生物与亚铁盐中亚铁的摩尔比为3:1。
4.根据权利要求1所述的一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法,其特征在于,所述亚铁盐为硫酸亚铁、氯化亚铁等常见亚铁盐及其带结晶水的化合物。
5.根据权利要求1所述的一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法,其特征在于,所述(5)马弗炉煅烧条件为:以2.5℃/min的升温速率从室温加热到550℃,然后保温2h。
CN201811009072.7A 2018-08-31 2018-08-31 一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法 Active CN109239147B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811009072.7A CN109239147B (zh) 2018-08-31 2018-08-31 一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811009072.7A CN109239147B (zh) 2018-08-31 2018-08-31 一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法

Publications (2)

Publication Number Publication Date
CN109239147A true CN109239147A (zh) 2019-01-18
CN109239147B CN109239147B (zh) 2020-01-03

Family

ID=65068937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811009072.7A Active CN109239147B (zh) 2018-08-31 2018-08-31 一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法

Country Status (1)

Country Link
CN (1) CN109239147B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101585856A (zh) * 2008-05-23 2009-11-25 安徽大学 具有单级或多级孔道结构的纳米孔洞金属-有机骨架材料及其制备
US20150285756A1 (en) * 2014-04-02 2015-10-08 King Fahd University Of Petroleum And Minerals Pencil graphite electrode modified with porous copper for nitrophenol electrochemical detection
CN107014882A (zh) * 2017-03-07 2017-08-04 常州大学 一种多孔碳‑氧化铜复合材料的制备及其在食品中苏丹红ⅰ含量测定中的应用
CN107597166A (zh) * 2017-09-29 2018-01-19 南昌航空大学 一种碳点/硫化镉量子点/氮化碳催化剂及其制备方法
CN107643331A (zh) * 2017-09-06 2018-01-30 山西大学 一种电极表面修饰材料及其制备方法和应用
US20180094290A1 (en) * 2008-09-15 2018-04-05 Abbott Diabetes Care Inc. Cationic Polymer Based Wired Enzyme Formulations for Use in Analyte Sensors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101585856A (zh) * 2008-05-23 2009-11-25 安徽大学 具有单级或多级孔道结构的纳米孔洞金属-有机骨架材料及其制备
US20180094290A1 (en) * 2008-09-15 2018-04-05 Abbott Diabetes Care Inc. Cationic Polymer Based Wired Enzyme Formulations for Use in Analyte Sensors
US20150285756A1 (en) * 2014-04-02 2015-10-08 King Fahd University Of Petroleum And Minerals Pencil graphite electrode modified with porous copper for nitrophenol electrochemical detection
CN107014882A (zh) * 2017-03-07 2017-08-04 常州大学 一种多孔碳‑氧化铜复合材料的制备及其在食品中苏丹红ⅰ含量测定中的应用
CN107643331A (zh) * 2017-09-06 2018-01-30 山西大学 一种电极表面修饰材料及其制备方法和应用
CN107597166A (zh) * 2017-09-29 2018-01-19 南昌航空大学 一种碳点/硫化镉量子点/氮化碳催化剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIAN-YANG HU 等: "Improvement of phenol photodegradation efficiency by a combined g-C3N4/Fe(III)/persulfate system", 《CHEMOSPHERE》 *
YONG FENG 等: "Facile synthesis of highly reactive and stable Fe-doped g-C3N4 composites for peroxymonosulfate activation: A novel nonradical oxidation process", 《JOURNAL OF HAZARDOUS MATERIALS》 *
李小芳 等: "邻菲啰啉和水杨酸构筑铜配合物的电化学行为及与DNA的相互作用", 《发光学报》 *
王来春 等: "N-GQDs/g-C3N4的合成及光催化分解水产氢性能研究", 《南昌航空大学学报:自然科学版》 *

Also Published As

Publication number Publication date
CN109239147B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
Jiang et al. Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode
Lu et al. Determination of the total iron by chitosan-modified glassy carbon electrode
Karmakar et al. Aqueous phase sensing of cyanide ions using a hydrolytically stable metal–organic framework
Devi et al. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity
Zhou et al. Polarographic and voltammetric behaviour of ofloxacin and its analytical application
Li et al. Biocatalysis-induced formation of BiOBr/Bi2S3 semiconductor heterostructures: A highly efficient strategy for establishing sensitive photoelectrochemical sensing system for organophosphorus pesticide detection
Leelavathy et al. Synthesis and characterization of a new series of unsymmetrical macrocyclic binuclear vanadyl (IV) complexes: Electrochemical, antimicrobial, DNA binding and cleavage studies
Gonzalez et al. Determination of nickel by anodic adsorptive stripping voltammetry with a cation exchanger-modified carbon paste electrode
Su et al. High-sensitivity pesticide detection via silicon nanowires-supported acetylcholinesterase-based electrochemical sensors
Wu et al. A novel non-enzyme amperometric platform based on poly (3-methylthiophene)/nitrogen doped graphene modified electrode for determination of trace amounts of pesticide phoxim
Harisha et al. Electrochemical oxidation of haematoxylin at poly (alanine) modified carbon paste electrode: A cyclic voltammetric study
Yuan et al. Sensitive pseudobienzyme electrocatalytic DNA biosensor for mercury (II) ion by using the autonomously assembled hemin/G-quadruplex DNAzyme nanowires for signal amplification
Wang et al. A solvent-tuning fluorescence sensor for In (III) and Al (III) ions and its bioimaging application
Jin et al. Tracking bacterial infection of macrophages using a novel red-emission pH sensor
Lehmann et al. Hydride generation using a metallic atomizer after microwave-assisted extraction for inorganic arsenic speciation in biological samples
Liu et al. A hydrogen peroxide sensor based on silver nanoparticles biosynthesized by Bacillus subtilis
CN113598165A (zh) 一种磷酸锆载银锌复合抗菌剂
CN101825601A (zh) 一种高性能普鲁士蓝修饰电极的制备方法
Yarahmadi et al. Electrochemical Determination of Sunitinib in Biological Samples Using Polyacrylonitrile Nanofibers/Nickel-Zinc-Ferrite Nanocomposite/Carbon Paste Electrode
CN103769217B (zh) 一种负载型磁性催化剂
CN109239147A (zh) 一种修饰电极材料邻菲啰啉共聚改性g-碳三氮四的制备方法
Wei et al. Polishing-activated nano α-Al2O3: Adsorption and electrochemical behavior toward organophosphate pesticides
CN109701496A (zh) 氧化石墨烯复合材料、其制备方法及应用
Zhang et al. Spectroscopic and voltammetric study on the binding of aluminium (III) to DNA
Siebner-Freibach et al. Thermo-FTIR spectroscopic study of the siderophore ferrioxamine B: spectral analysis and stereochemical implications of iron chelation, pH, and temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant