CN109239026A - 一种含酰胺基团荧光探针对Hg2+的荧光检测及使用方法 - Google Patents
一种含酰胺基团荧光探针对Hg2+的荧光检测及使用方法 Download PDFInfo
- Publication number
- CN109239026A CN109239026A CN201810061512.7A CN201810061512A CN109239026A CN 109239026 A CN109239026 A CN 109239026A CN 201810061512 A CN201810061512 A CN 201810061512A CN 109239026 A CN109239026 A CN 109239026A
- Authority
- CN
- China
- Prior art keywords
- fluorescence
- fluorescence probe
- phosphinylidyne
- detection
- probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N21/643—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
本发明公开了一种含酰胺基团的Hg2+荧光探针及使用方法。本发明是要解决现有的识别汞离子的荧光探针主体合成繁琐、水溶解性差、适用pH范围窄、选择性不高,易受其他阳离子(Au3+,Fe2+,Fe3+和Cu2+)干扰的问题。我们发现本发明的探针在HEPES水溶液中能够与Hg2+形成稳定的络合物,使主体探针荧光淬灭。在实验条件下,常见的金属离子对Hg2+检测没有明显的干扰。对Hg2+检测的适用pH值为2.0~11.8,响应时间为14 min,Hg2+的检出限能够达到0.65 nM。本发明的含酰胺基团的荧光探针可在水溶液中荧光检测Hg2+,绿色环保,具有极高的应用价值。
Description
技术领域
本发明涉及一种Hg2+荧光探针及其使用方法。
背景技术
由于化石燃料燃烧,固体废物焚烧,化学工业和金属冶炼,汞在空气、水和土壤中广泛存在。正如我们所知道的那样,汞是最危险和最有毒的重金属之一,因为它与酶和蛋白质中硫醇基团的亲和力高,破坏细胞的功能,从而会导致大量的健康问题,如认知障碍,脑和神经损伤。人类在不同的环境下接触不同形式的汞,其中无机汞和甲基汞毒性最大。汞的无机盐腐蚀皮肤、眼睛和胃肠道,如果摄取可能会诱发肾毒性。因此,对汞离子的检测有非常重要的意义。
近年来,越来越多科研工作者设计研究识别汞离子的荧光探针。例如MuraliKrishna Pola等人在Dyes and Pigments 上公开的文章《A fully-aqueous red-fluorescent probe for selective optical sensing of Hg2+ and its application inliving cells》中通过5步反应合成出一种识别Hg2+的荧光探针;Kumaresh Ghosh等人在NewJournal of Chemistry上公开的文章《Piperazine-based simple structure forselective sensing of Hg2+ and glutathione and construction of logic circuitmimicking INHIBIT gate》在四氢呋喃和水的混合溶液中实现对Hg2+的识别;Jiao Yuan-Hong等人在Chinese Journal of Inorganic Chemistry上公开的文章《A Benzothiazole-Derived Fluorescent Probe for Detecting Hg(II) in Live Cells》实现在中性pH条件下对Hg2+的识别检测;Rosario Martinez等人在Tetrahedron上公开的文章《A new bis(pyrenyl)azadiene-based probe for the colorimetric and fluorescent sensing ofCu(II) and Hg(II)》中主体化合物除了可以识别汞离子外,还对二价铜离子具有识别性能。
根据目前文献报道的对于汞离子荧光探针的研究,主要存在以下四个缺陷:
1.识别汞离子的荧光探针主体合成繁琐;
2.探针主体在水溶液中溶解性差,只能实现在有机溶剂中检测汞离子;
3.识别汞离子探针的适用pH范围窄;
4.探针对汞离子的识别选择性不高,易受其他阳离子(Au3+,Fe2+,Fe3+和Cu2+)的干扰。
发明内容
本发明是要解决现有的识别汞离子的荧光探针主体合成繁琐、水溶性差、适用pH范围窄、选择性不高,易受其他阳离子(Au3+,Fe2+,Fe3+和Cu2+)干扰的问题,从而提供了一种含酰胺基团的荧光探针对Hg2+的荧光检测及使用方法。
本发明的含酰胺基团的Hg2+荧光探针,其结构式为:
本发明提供了一种在水相体系中,pH值为2.0~11.8的范围内,具有高选择性、抗干扰性、响应灵敏的含酰胺基团的Hg2+荧光探针。该探针能高选择性识别Hg2+,不受Al3+,Zn2+,Ag+, Ca2+,Mg2+,Fe3+,Pb2+,Na+,Ba2+,Ni2+,K+,Cu2+,Cr3+,Cd2+和Co2+其他金属离子的干扰,响应时间为14min时,淬灭幅度最大,并且在60min内,荧光强度保持稳定。检出限为0.65nM。综上所述,本发明的技术效果是非常明显的,并提供了一种绿色环保,检测操作简单快捷、高选择性荧光检测Hg2+的方法。
附图说明
图1是实施例1的含酰胺基团的Hg2+荧光探针对不同阳离子的紫外吸收光谱图;
图2是实施例2的含酰胺基团的Hg2+荧光探针对不同阳离子的荧光发射光谱图;
图3是实施例3的含酰胺基团的Hg2+荧光探针在不同的Hg2+浓度时的荧光光谱变化图;
图4是实施例4的其他常见金属离子与Hg2+竞争时,含酰胺基团的Hg2+荧光探针的荧光变化图;
图5是实施例5制备的含酰胺基团的Hg2+荧光探针在不同的pH条件下的荧光发射强度图;
图6是实施例6制备的含酰胺基团的Hg2+荧光探针和Hg2+在不同络合时间时的荧光发射强度图。
具体实施方式
实施例1
考察含酰胺基团的Hg2+荧光探针对16种金属阳离子Al3+, Zn2+, Ag+, Ca2+, Mg2+, Fe3 +, Hg2+, Pb2+, Na+, Ba2+, Ni2+, K+, Cu2+, Cr3+, Cd2+, Co2+溶液的选择性识别,选用的溶剂为pH=7.4的HEPES 缓冲溶液。向1.0×10–5 mol/L的荧光探针主体加入4.0 equiv. 的上述金属离子,如图1所述,只有4.0 equiv. Hg2+能引起紫外吸收峰从248 nm红移到280 nm,红移32 nm,其他阳离子并没有产生红移现象。
实施例2
用荧光光谱考察含酰胺基团的Hg2+荧光探针对Hg2+的单一选择性。选用的溶剂为pH=7.4的HEPES 缓冲溶液,并在激发波长248 nm,激发狭缝宽度为4 nm的情况下,测定浓度为1.0×10–5 mol/L的荧光探针主体的荧光强度。再向荧光探针主体中分别加入浓度为4.0equiv. 的Al3+, Zn2+, Ag+, Ca2+, Mg2+, Fe3+, Hg2+, Pb2+, Na+, Ba2+, Ni2+, K+, Cu2+,Cr3+, Cd2+, Co2+溶液,分别测定荧光发射光谱,如图2所示。从图2中可以看出,荧光探针主体的荧光发射波长为387 nm,荧光强度232 a.u.,加入阳离子后,只有4.0 equiv. Hg2+能使荧光探针主体的荧光强度发生显著淬灭,淬灭幅度为86%,并红移13 nm,其他金属阳离子对荧光探针主体的荧光强度影响不大。因此,可以初步判断,该荧光探针主体对Hg2+具有单一选择识别特性。
实施例3
考察Hg2+的浓度对Hg2+荧光探针荧光强度的影响,选用的溶剂为pH=7.4的HEPES 缓冲溶液,配制荧光探针主体溶液,在荧光探针主体溶液中加入不同浓度(0~10.0 equiv.)的Hg2+,并对其进行荧光发射光谱测试。如图3所示,随着Hg2+浓度的增加,荧光强度逐渐减小,并逐渐发生红移现象。当加入Hg2+的浓度达4.0 equiv.时,淬灭至最小值,30 a.u.左右。再继续增加Hg2+的浓度时,荧光强度基本不再改变。上述结果表明该荧光探针主体对Hg2+具有较高的敏感性。
实施例4
为进一步验证该含酰胺基团的Hg2+荧光探针对Hg2+具有选择识别特性。选用的溶剂为pH=7.4的HEPES 缓冲溶液,配制浓度为1.0×10–5 mol/L的荧光探针主体溶液,在主体溶液中分别加入10.0 equiv. 的Al3+, Zn2+, Ag+, Ca2+, Mg2+, Fe3+, Pb2+, Na+, Ba2+, Ni2+, K+, Cu2+, Cr3+, Cd2+, Co2+金属离子溶液。充分混匀后静置5min,再分别加入4.0 equiv. 的Hg2+溶液,摇匀。在激发波长248 nm,激发狭缝宽度为4 nm的情况下,对其进行荧光发射光谱测试。如图4所示,主体溶液中加入4.0 equiv. 上述15种阳离子的荧光强度与主体溶液的荧光强度接近。当上述15种阳离子与Hg2+共存,且浓度是Hg2+浓度的2.5倍时,荧光探针主体与Hg2+识别的荧光强度并不受影响,体系仍有明显的荧光淬灭响应。表明该荧光探针主体对Hg2+的检测具有优异的抗干扰性能,可作为一种检测Hg2+的荧光淬灭型探针。其中:纵坐标表示荧光强度,横坐标表示金属离子种类,(0)空白, (1) Al3+, (2) Zn2+, (3) Ag+, (4)Ca2+, (5) Mg2+, (6) Fe3+, (7) Pb2+, (8) Na+, (9) Ba2+, (10) Ni2+, (11) K+, (12)Cu2+, (13) Cr3+, (14) Cd2+, (15) Co2+。
实施例5
在不同的溶液pH(2.0~11.8)值下,考察了pH值对该荧光探针主体识别Hg2+荧光发射光谱的变化情况。如图5所示,可知pH范围在2.0~11.8时,Hg2+与荧光探针主体形成稳定配合物。在pH2.0~10.1时,识别效果最好。这一研究结果表明该荧光探针主体与Hg2+的荧光识别可以在pH值为2.0~11.8实现。
实施例6
此外,荧光探针主体对Hg2+识别的荧光响应时间快。在pH值为7.4的条件下,向浓度为1.0×10–5 mol/L的主体溶液中加入4.0 equiv. 的Hg2+溶液,混合均匀。1 min后测定其荧光发射光谱,并且持续测定60 min内,荧光强度的变化,测试结果如图6所示。从图6可以看出,在测定时间内,荧光探针主体具有稳定的荧光强度,这说明荧光探针主体在水溶液中具有稳定的荧光发射。1 min时测定荧光探针主体与Hg2+的荧光,荧光强度已经开始发生淬灭。14 min时,荧光强度淬灭完全,并在60 min内保持稳定。这一研究结果表明该荧光探针主体对Hg2+的响应时间短,对荧光探针主体在实际应用中具有重要的意义。
实施例7
选用的溶剂为pH=7.4的HEPES 缓冲溶液,配制荧光探针主体溶液,在荧光探针主体溶液中加入不同浓度(0~10.0 equiv.)的Hg2+,并对其进行荧光发射光谱测试。随着Hg2+浓度的增加,荧光探针主体的荧光强度逐渐降低,Hg2+浓度在0-2.0 μM时,荧光强度对Hg2+呈线性关系,线性方程为Y=220.0807 - 58.5430X (线性相关系数:R2=0.9982);对空白样进行20次平行测定,按3σ/K(σ为空白标准偏差,K为回归方程的斜率),计算检出限为0.65 nM。这个结果表明本专利中含酰胺基团的Hg2+荧光探针可以高度灵敏定性检测Hg2+。
Claims (1)
1.一种含酰胺基团的荧光探针对Hg2+的荧光检测及使用方法,其特征在于:本发明的荧光探针可以实现在水溶液中荧光检测Hg2+,与Hg2+形成稳定的络合物,并且不受其他金属离子Al3+, Zn2+, Ag+, Ca2+, Mg2+, Fe3+, Pb2+, Na+, Ba2+, Ni2+, K+, Cu2+, Cr3+, Cd2+, Co2+的干扰;该方法在pH值为2.0~11.8范围内的水溶液中进行,响应时间14 min,检出限为0.65nM。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810061512.7A CN109239026B (zh) | 2018-01-23 | 2018-01-23 | 一种含酰胺基团荧光探针对Hg2+的荧光检测及使用方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810061512.7A CN109239026B (zh) | 2018-01-23 | 2018-01-23 | 一种含酰胺基团荧光探针对Hg2+的荧光检测及使用方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109239026A true CN109239026A (zh) | 2019-01-18 |
CN109239026B CN109239026B (zh) | 2021-04-06 |
Family
ID=65084035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810061512.7A Active CN109239026B (zh) | 2018-01-23 | 2018-01-23 | 一种含酰胺基团荧光探针对Hg2+的荧光检测及使用方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109239026B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113004206A (zh) * | 2021-03-11 | 2021-06-22 | 齐齐哈尔大学 | 一种萘衍生物类荧光探针及其制备方法和应用 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100019906A (ko) * | 2008-08-11 | 2010-02-19 | 재단법인서울대학교산학협력재단 | 로다민계 형광물질을 이용한 턴―온 형 수은(ⅱ)이온 검출방법 |
CN101914102A (zh) * | 2010-07-16 | 2010-12-15 | 中国科学院烟台海岸带研究所 | 一种罗丹明b衍生物l及其制备和应用 |
CN103254893A (zh) * | 2013-06-09 | 2013-08-21 | 东华大学 | 一种检测汞离子的对称双罗丹明b荧光探针及其制备方法 |
CN103254891A (zh) * | 2013-05-06 | 2013-08-21 | 华东师范大学 | 汞离子荧光传感器及其合成方法和应用 |
CN103408563A (zh) * | 2013-07-05 | 2013-11-27 | 安徽建筑大学 | 一种汞离子针对性检测的新型荧光探针及其制备方法及其用途 |
CN104193706A (zh) * | 2014-04-30 | 2014-12-10 | 西北师范大学 | 一种基于1,5-二氨基萘双边西弗碱及制备和作为受体分子在检测汞离子中的应用 |
CN104804724A (zh) * | 2014-01-28 | 2015-07-29 | 中国科学院大连化学物理研究所 | 一种比率型变型受体汞离子荧光探针、其制备方法及应用 |
CN106117230A (zh) * | 2016-06-29 | 2016-11-16 | 河南师范大学 | 取代罗丹明b酰胺基硫脲类荧光探针化合物及其制备方法和应用 |
CN106632064A (zh) * | 2016-11-21 | 2017-05-10 | 齐齐哈尔大学 | 可逆双羟基菲并咪唑Hg2+荧光探针合成与使用方法 |
CN107417681A (zh) * | 2017-06-15 | 2017-12-01 | 安徽大学 | 一种含有香豆素‑噻二唑基席夫碱荧光探针化合物及其制备方法和用途 |
-
2018
- 2018-01-23 CN CN201810061512.7A patent/CN109239026B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100019906A (ko) * | 2008-08-11 | 2010-02-19 | 재단법인서울대학교산학협력재단 | 로다민계 형광물질을 이용한 턴―온 형 수은(ⅱ)이온 검출방법 |
CN101914102A (zh) * | 2010-07-16 | 2010-12-15 | 中国科学院烟台海岸带研究所 | 一种罗丹明b衍生物l及其制备和应用 |
CN103254891A (zh) * | 2013-05-06 | 2013-08-21 | 华东师范大学 | 汞离子荧光传感器及其合成方法和应用 |
CN103254893A (zh) * | 2013-06-09 | 2013-08-21 | 东华大学 | 一种检测汞离子的对称双罗丹明b荧光探针及其制备方法 |
CN103408563A (zh) * | 2013-07-05 | 2013-11-27 | 安徽建筑大学 | 一种汞离子针对性检测的新型荧光探针及其制备方法及其用途 |
CN104804724A (zh) * | 2014-01-28 | 2015-07-29 | 中国科学院大连化学物理研究所 | 一种比率型变型受体汞离子荧光探针、其制备方法及应用 |
CN104193706A (zh) * | 2014-04-30 | 2014-12-10 | 西北师范大学 | 一种基于1,5-二氨基萘双边西弗碱及制备和作为受体分子在检测汞离子中的应用 |
CN106117230A (zh) * | 2016-06-29 | 2016-11-16 | 河南师范大学 | 取代罗丹明b酰胺基硫脲类荧光探针化合物及其制备方法和应用 |
CN106632064A (zh) * | 2016-11-21 | 2017-05-10 | 齐齐哈尔大学 | 可逆双羟基菲并咪唑Hg2+荧光探针合成与使用方法 |
CN107417681A (zh) * | 2017-06-15 | 2017-12-01 | 安徽大学 | 一种含有香豆素‑噻二唑基席夫碱荧光探针化合物及其制备方法和用途 |
Non-Patent Citations (2)
Title |
---|
KUMARESH GHOSH: "Design and synthesis of an ortho-phenylenediamine-based open cleft: a selective fluorescent chemosensor for dihydrogen phosphate", 《TETRAHEDRON LETTERS》 * |
马文辉: "香豆素负载SBA-15材料及其对Hg2+的荧光识别和吸附", 《化学研究与应用》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113004206A (zh) * | 2021-03-11 | 2021-06-22 | 齐齐哈尔大学 | 一种萘衍生物类荧光探针及其制备方法和应用 |
CN113004206B (zh) * | 2021-03-11 | 2022-06-17 | 齐齐哈尔大学 | 一种萘衍生物类荧光探针及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN109239026B (zh) | 2021-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Feng et al. | Dual-functional colorimetric fluorescent probe for sequential Cu2+ and S2− detection in bio-imaging | |
Feng et al. | A fluorometric paper-based sensor array for the discrimination of heavy-metal ions | |
Divya et al. | A Zn2+-specific fluorescent molecular probe for the selective detection of endogenous cyanide in biorelevant samples | |
Baglan et al. | Selective and sensitive turn-on fluorescent sensing of arsenite based on cysteine fused tetraphenylethene with AIE characteristics in aqueous media | |
Tian et al. | A novel turn-on Schiff-base fluorescent sensor for aluminum (III) ions in living cells | |
Li et al. | A dual chemosensor for Cu 2+ and Hg 2+ based on a rhodamine-terminated water-soluble polymer in 100% aqueous solution | |
Xu et al. | Copper nanoclusters-based fluorescent sensor array to identify metal ions and dissolved organic matter | |
Niu et al. | A highly selective and sensitive fluorescent sensor for the rapid detection of Hg2+ based on phenylamine-oligothiophene derivative | |
Turel et al. | Detection of nanomolar concentrations of copper (II) with a Tb-quinoline-2-one probe using luminescence quenching or luminescence decay time | |
Tümay et al. | A hybrid nanosensor based on novel fluorescent iron oxide nanoparticles for highly selective determination of Hg 2+ ions in environmental samples | |
CN103411942A (zh) | 一种检测Cu2+及细胞成像的荧光探针方法 | |
Bhalla et al. | Hg 2+ induced hydrolysis of pentaquinone based Schiff base: a new chemodosimeter for Hg 2+ ions in mixed aqueous media | |
Solra et al. | Optical pico-biosensing of lead using plasmonic gold nanoparticles and a cationic peptide-based aptasensor | |
Wan et al. | A new multifunctional Schiff base as a fluorescence sensor for Fe2+ and F− ions, and a colorimetric sensor for Fe3+ | |
Wenfeng et al. | A self-assembled triphenylamine-based fluorescent chemosensor for selective detection of Fe 3+ and Cu 2+ ions in aqueous solution | |
Peng et al. | Coumarin–hemicyanine conjugates as novel reaction-based sensors for cyanide detection: convenient synthesis and ICT mechanism | |
Rani et al. | Pyrene–antipyrine based highly selective and sensitive turn-on fluorescent sensor for Th (IV) | |
Cheng et al. | Highly sensitive and selective detection of perfluorooctane sulfonate based on the Janus Green B resonance light scattering method | |
Kala et al. | A carbazole based “Turn on” fluorescent sensor for selective detection of Hg 2+ in an aqueous medium | |
Kaur et al. | A counterion displacement assay with a Biginelli product: a ratiometric sensor for Hg 2+ and the resultant complex as a sensor for Cl− | |
Hormozi-Nezhad et al. | Quick speciation of iron (II) and iron (III) in natural samples using a selective fluorescent carbon dot-based probe | |
Ding et al. | One-pot synthesis of dual-emitting BSA–Pt–Au bimetallic nanoclusters for fluorescence ratiometric detection of mercury ions and cysteine | |
Chen et al. | A Schiff-based AIE fluorescent probe for Zn2+ detection and its application as “fluorescence paper-based indicator” | |
Rajasekar et al. | Recent advances in Fluorescent-based cation sensors for biomedical applications | |
Loo et al. | Spectrophotometric determination of mercury with iodide and rhodamine B |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |