CN109239026A - 一种含酰胺基团荧光探针对Hg2+的荧光检测及使用方法 - Google Patents

一种含酰胺基团荧光探针对Hg2+的荧光检测及使用方法 Download PDF

Info

Publication number
CN109239026A
CN109239026A CN201810061512.7A CN201810061512A CN109239026A CN 109239026 A CN109239026 A CN 109239026A CN 201810061512 A CN201810061512 A CN 201810061512A CN 109239026 A CN109239026 A CN 109239026A
Authority
CN
China
Prior art keywords
fluorescence
fluorescence probe
phosphinylidyne
detection
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810061512.7A
Other languages
English (en)
Other versions
CN109239026B (zh
Inventor
王丽艳
武江雷
杨佳
马文辉
赵冰
向韦佳
杨超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qiqihar University
Original Assignee
Qiqihar University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qiqihar University filed Critical Qiqihar University
Priority to CN201810061512.7A priority Critical patent/CN109239026B/zh
Publication of CN109239026A publication Critical patent/CN109239026A/zh
Application granted granted Critical
Publication of CN109239026B publication Critical patent/CN109239026B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种含酰胺基团的Hg2+荧光探针及使用方法。本发明是要解决现有的识别汞离子的荧光探针主体合成繁琐、水溶解性差、适用pH范围窄、选择性不高,易受其他阳离子(Au3+,Fe2+,Fe3+和Cu2+)干扰的问题。我们发现本发明的探针在HEPES水溶液中能够与Hg2+形成稳定的络合物,使主体探针荧光淬灭。在实验条件下,常见的金属离子对Hg2+检测没有明显的干扰。对Hg2+检测的适用pH值为2.0~11.8,响应时间为14 min,Hg2+的检出限能够达到0.65 nM。本发明的含酰胺基团的荧光探针可在水溶液中荧光检测Hg2+,绿色环保,具有极高的应用价值。

Description

一种含酰胺基团荧光探针对Hg2+的荧光检测及使用方法
技术领域
本发明涉及一种Hg2+荧光探针及其使用方法。
背景技术
由于化石燃料燃烧,固体废物焚烧,化学工业和金属冶炼,汞在空气、水和土壤中广泛存在。正如我们所知道的那样,汞是最危险和最有毒的重金属之一,因为它与酶和蛋白质中硫醇基团的亲和力高,破坏细胞的功能,从而会导致大量的健康问题,如认知障碍,脑和神经损伤。人类在不同的环境下接触不同形式的汞,其中无机汞和甲基汞毒性最大。汞的无机盐腐蚀皮肤、眼睛和胃肠道,如果摄取可能会诱发肾毒性。因此,对汞离子的检测有非常重要的意义。
近年来,越来越多科研工作者设计研究识别汞离子的荧光探针。例如MuraliKrishna Pola等人在Dyes and Pigments 上公开的文章《A fully-aqueous red-fluorescent probe for selective optical sensing of Hg2+ and its application inliving cells》中通过5步反应合成出一种识别Hg2+的荧光探针;Kumaresh Ghosh等人在NewJournal of Chemistry上公开的文章《Piperazine-based simple structure forselective sensing of Hg2+ and glutathione and construction of logic circuitmimicking INHIBIT gate》在四氢呋喃和水的混合溶液中实现对Hg2+的识别;Jiao Yuan-Hong等人在Chinese Journal of Inorganic Chemistry上公开的文章《A Benzothiazole-Derived Fluorescent Probe for Detecting Hg(II) in Live Cells》实现在中性pH条件下对Hg2+的识别检测;Rosario Martinez等人在Tetrahedron上公开的文章《A new bis(pyrenyl)azadiene-based probe for the colorimetric and fluorescent sensing ofCu(II) and Hg(II)》中主体化合物除了可以识别汞离子外,还对二价铜离子具有识别性能。
根据目前文献报道的对于汞离子荧光探针的研究,主要存在以下四个缺陷:
1.识别汞离子的荧光探针主体合成繁琐;
2.探针主体在水溶液中溶解性差,只能实现在有机溶剂中检测汞离子;
3.识别汞离子探针的适用pH范围窄;
4.探针对汞离子的识别选择性不高,易受其他阳离子(Au3+,Fe2+,Fe3+和Cu2+)的干扰。
发明内容
本发明是要解决现有的识别汞离子的荧光探针主体合成繁琐、水溶性差、适用pH范围窄、选择性不高,易受其他阳离子(Au3+,Fe2+,Fe3+和Cu2+)干扰的问题,从而提供了一种含酰胺基团的荧光探针对Hg2+的荧光检测及使用方法。
本发明的含酰胺基团的Hg2+荧光探针,其结构式为:
本发明提供了一种在水相体系中,pH值为2.0~11.8的范围内,具有高选择性、抗干扰性、响应灵敏的含酰胺基团的Hg2+荧光探针。该探针能高选择性识别Hg2+,不受Al3+,Zn2+,Ag+, Ca2+,Mg2+,Fe3+,Pb2+,Na+,Ba2+,Ni2+,K+,Cu2+,Cr3+,Cd2+和Co2+其他金属离子的干扰,响应时间为14min时,淬灭幅度最大,并且在60min内,荧光强度保持稳定。检出限为0.65nM。综上所述,本发明的技术效果是非常明显的,并提供了一种绿色环保,检测操作简单快捷、高选择性荧光检测Hg2+的方法。
附图说明
图1是实施例1的含酰胺基团的Hg2+荧光探针对不同阳离子的紫外吸收光谱图;
图2是实施例2的含酰胺基团的Hg2+荧光探针对不同阳离子的荧光发射光谱图;
图3是实施例3的含酰胺基团的Hg2+荧光探针在不同的Hg2+浓度时的荧光光谱变化图;
图4是实施例4的其他常见金属离子与Hg2+竞争时,含酰胺基团的Hg2+荧光探针的荧光变化图;
图5是实施例5制备的含酰胺基团的Hg2+荧光探针在不同的pH条件下的荧光发射强度图;
图6是实施例6制备的含酰胺基团的Hg2+荧光探针和Hg2+在不同络合时间时的荧光发射强度图。
具体实施方式
实施例1
考察含酰胺基团的Hg2+荧光探针对16种金属阳离子Al3+, Zn2+, Ag+, Ca2+, Mg2+, Fe3 +, Hg2+, Pb2+, Na+, Ba2+, Ni2+, K+, Cu2+, Cr3+, Cd2+, Co2+溶液的选择性识别,选用的溶剂为pH=7.4的HEPES 缓冲溶液。向1.0×10–5 mol/L的荧光探针主体加入4.0 equiv. 的上述金属离子,如图1所述,只有4.0 equiv. Hg2+能引起紫外吸收峰从248 nm红移到280 nm,红移32 nm,其他阳离子并没有产生红移现象。
实施例2
用荧光光谱考察含酰胺基团的Hg2+荧光探针对Hg2+的单一选择性。选用的溶剂为pH=7.4的HEPES 缓冲溶液,并在激发波长248 nm,激发狭缝宽度为4 nm的情况下,测定浓度为1.0×10–5 mol/L的荧光探针主体的荧光强度。再向荧光探针主体中分别加入浓度为4.0equiv. 的Al3+, Zn2+, Ag+, Ca2+, Mg2+, Fe3+, Hg2+, Pb2+, Na+, Ba2+, Ni2+, K+, Cu2+,Cr3+, Cd2+, Co2+溶液,分别测定荧光发射光谱,如图2所示。从图2中可以看出,荧光探针主体的荧光发射波长为387 nm,荧光强度232 a.u.,加入阳离子后,只有4.0 equiv. Hg2+能使荧光探针主体的荧光强度发生显著淬灭,淬灭幅度为86%,并红移13 nm,其他金属阳离子对荧光探针主体的荧光强度影响不大。因此,可以初步判断,该荧光探针主体对Hg2+具有单一选择识别特性。
实施例3
考察Hg2+的浓度对Hg2+荧光探针荧光强度的影响,选用的溶剂为pH=7.4的HEPES 缓冲溶液,配制荧光探针主体溶液,在荧光探针主体溶液中加入不同浓度(0~10.0 equiv.)的Hg2+,并对其进行荧光发射光谱测试。如图3所示,随着Hg2+浓度的增加,荧光强度逐渐减小,并逐渐发生红移现象。当加入Hg2+的浓度达4.0 equiv.时,淬灭至最小值,30 a.u.左右。再继续增加Hg2+的浓度时,荧光强度基本不再改变。上述结果表明该荧光探针主体对Hg2+具有较高的敏感性。
实施例4
为进一步验证该含酰胺基团的Hg2+荧光探针对Hg2+具有选择识别特性。选用的溶剂为pH=7.4的HEPES 缓冲溶液,配制浓度为1.0×10–5 mol/L的荧光探针主体溶液,在主体溶液中分别加入10.0 equiv. 的Al3+, Zn2+, Ag+, Ca2+, Mg2+, Fe3+, Pb2+, Na+, Ba2+, Ni2+, K+, Cu2+, Cr3+, Cd2+, Co2+金属离子溶液。充分混匀后静置5min,再分别加入4.0 equiv. 的Hg2+溶液,摇匀。在激发波长248 nm,激发狭缝宽度为4 nm的情况下,对其进行荧光发射光谱测试。如图4所示,主体溶液中加入4.0 equiv. 上述15种阳离子的荧光强度与主体溶液的荧光强度接近。当上述15种阳离子与Hg2+共存,且浓度是Hg2+浓度的2.5倍时,荧光探针主体与Hg2+识别的荧光强度并不受影响,体系仍有明显的荧光淬灭响应。表明该荧光探针主体对Hg2+的检测具有优异的抗干扰性能,可作为一种检测Hg2+的荧光淬灭型探针。其中:纵坐标表示荧光强度,横坐标表示金属离子种类,(0)空白, (1) Al3+, (2) Zn2+, (3) Ag+, (4)Ca2+, (5) Mg2+, (6) Fe3+, (7) Pb2+, (8) Na+, (9) Ba2+, (10) Ni2+, (11) K+, (12)Cu2+, (13) Cr3+, (14) Cd2+, (15) Co2+
实施例5
在不同的溶液pH(2.0~11.8)值下,考察了pH值对该荧光探针主体识别Hg2+荧光发射光谱的变化情况。如图5所示,可知pH范围在2.0~11.8时,Hg2+与荧光探针主体形成稳定配合物。在pH2.0~10.1时,识别效果最好。这一研究结果表明该荧光探针主体与Hg2+的荧光识别可以在pH值为2.0~11.8实现。
实施例6
此外,荧光探针主体对Hg2+识别的荧光响应时间快。在pH值为7.4的条件下,向浓度为1.0×10–5 mol/L的主体溶液中加入4.0 equiv. 的Hg2+溶液,混合均匀。1 min后测定其荧光发射光谱,并且持续测定60 min内,荧光强度的变化,测试结果如图6所示。从图6可以看出,在测定时间内,荧光探针主体具有稳定的荧光强度,这说明荧光探针主体在水溶液中具有稳定的荧光发射。1 min时测定荧光探针主体与Hg2+的荧光,荧光强度已经开始发生淬灭。14 min时,荧光强度淬灭完全,并在60 min内保持稳定。这一研究结果表明该荧光探针主体对Hg2+的响应时间短,对荧光探针主体在实际应用中具有重要的意义。
实施例7
选用的溶剂为pH=7.4的HEPES 缓冲溶液,配制荧光探针主体溶液,在荧光探针主体溶液中加入不同浓度(0~10.0 equiv.)的Hg2+,并对其进行荧光发射光谱测试。随着Hg2+浓度的增加,荧光探针主体的荧光强度逐渐降低,Hg2+浓度在0-2.0 μM时,荧光强度对Hg2+呈线性关系,线性方程为Y=220.0807 - 58.5430X (线性相关系数:R2=0.9982);对空白样进行20次平行测定,按3σ/K(σ为空白标准偏差,K为回归方程的斜率),计算检出限为0.65 nM。这个结果表明本专利中含酰胺基团的Hg2+荧光探针可以高度灵敏定性检测Hg2+

Claims (1)

1.一种含酰胺基团的荧光探针对Hg2+的荧光检测及使用方法,其特征在于:本发明的荧光探针可以实现在水溶液中荧光检测Hg2+,与Hg2+形成稳定的络合物,并且不受其他金属离子Al3+, Zn2+, Ag+, Ca2+, Mg2+, Fe3+, Pb2+, Na+, Ba2+, Ni2+, K+, Cu2+, Cr3+, Cd2+, Co2+的干扰;该方法在pH值为2.0~11.8范围内的水溶液中进行,响应时间14 min,检出限为0.65nM。
CN201810061512.7A 2018-01-23 2018-01-23 一种含酰胺基团荧光探针对Hg2+的荧光检测及使用方法 Active CN109239026B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810061512.7A CN109239026B (zh) 2018-01-23 2018-01-23 一种含酰胺基团荧光探针对Hg2+的荧光检测及使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810061512.7A CN109239026B (zh) 2018-01-23 2018-01-23 一种含酰胺基团荧光探针对Hg2+的荧光检测及使用方法

Publications (2)

Publication Number Publication Date
CN109239026A true CN109239026A (zh) 2019-01-18
CN109239026B CN109239026B (zh) 2021-04-06

Family

ID=65084035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810061512.7A Active CN109239026B (zh) 2018-01-23 2018-01-23 一种含酰胺基团荧光探针对Hg2+的荧光检测及使用方法

Country Status (1)

Country Link
CN (1) CN109239026B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004206A (zh) * 2021-03-11 2021-06-22 齐齐哈尔大学 一种萘衍生物类荧光探针及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100019906A (ko) * 2008-08-11 2010-02-19 재단법인서울대학교산학협력재단 로다민계 형광물질을 이용한 턴―온 형 수은(ⅱ)이온 검출방법
CN101914102A (zh) * 2010-07-16 2010-12-15 中国科学院烟台海岸带研究所 一种罗丹明b衍生物l及其制备和应用
CN103254893A (zh) * 2013-06-09 2013-08-21 东华大学 一种检测汞离子的对称双罗丹明b荧光探针及其制备方法
CN103254891A (zh) * 2013-05-06 2013-08-21 华东师范大学 汞离子荧光传感器及其合成方法和应用
CN103408563A (zh) * 2013-07-05 2013-11-27 安徽建筑大学 一种汞离子针对性检测的新型荧光探针及其制备方法及其用途
CN104193706A (zh) * 2014-04-30 2014-12-10 西北师范大学 一种基于1,5-二氨基萘双边西弗碱及制备和作为受体分子在检测汞离子中的应用
CN104804724A (zh) * 2014-01-28 2015-07-29 中国科学院大连化学物理研究所 一种比率型变型受体汞离子荧光探针、其制备方法及应用
CN106117230A (zh) * 2016-06-29 2016-11-16 河南师范大学 取代罗丹明b酰胺基硫脲类荧光探针化合物及其制备方法和应用
CN106632064A (zh) * 2016-11-21 2017-05-10 齐齐哈尔大学 可逆双羟基菲并咪唑Hg2+荧光探针合成与使用方法
CN107417681A (zh) * 2017-06-15 2017-12-01 安徽大学 一种含有香豆素‑噻二唑基席夫碱荧光探针化合物及其制备方法和用途

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100019906A (ko) * 2008-08-11 2010-02-19 재단법인서울대학교산학협력재단 로다민계 형광물질을 이용한 턴―온 형 수은(ⅱ)이온 검출방법
CN101914102A (zh) * 2010-07-16 2010-12-15 中国科学院烟台海岸带研究所 一种罗丹明b衍生物l及其制备和应用
CN103254891A (zh) * 2013-05-06 2013-08-21 华东师范大学 汞离子荧光传感器及其合成方法和应用
CN103254893A (zh) * 2013-06-09 2013-08-21 东华大学 一种检测汞离子的对称双罗丹明b荧光探针及其制备方法
CN103408563A (zh) * 2013-07-05 2013-11-27 安徽建筑大学 一种汞离子针对性检测的新型荧光探针及其制备方法及其用途
CN104804724A (zh) * 2014-01-28 2015-07-29 中国科学院大连化学物理研究所 一种比率型变型受体汞离子荧光探针、其制备方法及应用
CN104193706A (zh) * 2014-04-30 2014-12-10 西北师范大学 一种基于1,5-二氨基萘双边西弗碱及制备和作为受体分子在检测汞离子中的应用
CN106117230A (zh) * 2016-06-29 2016-11-16 河南师范大学 取代罗丹明b酰胺基硫脲类荧光探针化合物及其制备方法和应用
CN106632064A (zh) * 2016-11-21 2017-05-10 齐齐哈尔大学 可逆双羟基菲并咪唑Hg2+荧光探针合成与使用方法
CN107417681A (zh) * 2017-06-15 2017-12-01 安徽大学 一种含有香豆素‑噻二唑基席夫碱荧光探针化合物及其制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUMARESH GHOSH: "Design and synthesis of an ortho-phenylenediamine-based open cleft: a selective fluorescent chemosensor for dihydrogen phosphate", 《TETRAHEDRON LETTERS》 *
马文辉: "香豆素负载SBA-15材料及其对Hg2+的荧光识别和吸附", 《化学研究与应用》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004206A (zh) * 2021-03-11 2021-06-22 齐齐哈尔大学 一种萘衍生物类荧光探针及其制备方法和应用
CN113004206B (zh) * 2021-03-11 2022-06-17 齐齐哈尔大学 一种萘衍生物类荧光探针及其制备方法和应用

Also Published As

Publication number Publication date
CN109239026B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
Feng et al. Dual-functional colorimetric fluorescent probe for sequential Cu2+ and S2− detection in bio-imaging
Feng et al. A fluorometric paper-based sensor array for the discrimination of heavy-metal ions
Divya et al. A Zn2+-specific fluorescent molecular probe for the selective detection of endogenous cyanide in biorelevant samples
Baglan et al. Selective and sensitive turn-on fluorescent sensing of arsenite based on cysteine fused tetraphenylethene with AIE characteristics in aqueous media
Tian et al. A novel turn-on Schiff-base fluorescent sensor for aluminum (III) ions in living cells
Li et al. A dual chemosensor for Cu 2+ and Hg 2+ based on a rhodamine-terminated water-soluble polymer in 100% aqueous solution
Xu et al. Copper nanoclusters-based fluorescent sensor array to identify metal ions and dissolved organic matter
Niu et al. A highly selective and sensitive fluorescent sensor for the rapid detection of Hg2+ based on phenylamine-oligothiophene derivative
Turel et al. Detection of nanomolar concentrations of copper (II) with a Tb-quinoline-2-one probe using luminescence quenching or luminescence decay time
Tümay et al. A hybrid nanosensor based on novel fluorescent iron oxide nanoparticles for highly selective determination of Hg 2+ ions in environmental samples
CN103411942A (zh) 一种检测Cu2+及细胞成像的荧光探针方法
Bhalla et al. Hg 2+ induced hydrolysis of pentaquinone based Schiff base: a new chemodosimeter for Hg 2+ ions in mixed aqueous media
Solra et al. Optical pico-biosensing of lead using plasmonic gold nanoparticles and a cationic peptide-based aptasensor
Wan et al. A new multifunctional Schiff base as a fluorescence sensor for Fe2+ and F− ions, and a colorimetric sensor for Fe3+
Wenfeng et al. A self-assembled triphenylamine-based fluorescent chemosensor for selective detection of Fe 3+ and Cu 2+ ions in aqueous solution
Peng et al. Coumarin–hemicyanine conjugates as novel reaction-based sensors for cyanide detection: convenient synthesis and ICT mechanism
Rani et al. Pyrene–antipyrine based highly selective and sensitive turn-on fluorescent sensor for Th (IV)
Cheng et al. Highly sensitive and selective detection of perfluorooctane sulfonate based on the Janus Green B resonance light scattering method
Kala et al. A carbazole based “Turn on” fluorescent sensor for selective detection of Hg 2+ in an aqueous medium
Kaur et al. A counterion displacement assay with a Biginelli product: a ratiometric sensor for Hg 2+ and the resultant complex as a sensor for Cl−
Hormozi-Nezhad et al. Quick speciation of iron (II) and iron (III) in natural samples using a selective fluorescent carbon dot-based probe
Ding et al. One-pot synthesis of dual-emitting BSA–Pt–Au bimetallic nanoclusters for fluorescence ratiometric detection of mercury ions and cysteine
Chen et al. A Schiff-based AIE fluorescent probe for Zn2+ detection and its application as “fluorescence paper-based indicator”
Rajasekar et al. Recent advances in Fluorescent-based cation sensors for biomedical applications
Loo et al. Spectrophotometric determination of mercury with iodide and rhodamine B

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant