CN109232671A - 一种三元稀土掺杂的多酸衍生物及其制备方法和作为荧光发光材料的应用 - Google Patents

一种三元稀土掺杂的多酸衍生物及其制备方法和作为荧光发光材料的应用 Download PDF

Info

Publication number
CN109232671A
CN109232671A CN201811120906.1A CN201811120906A CN109232671A CN 109232671 A CN109232671 A CN 109232671A CN 201811120906 A CN201811120906 A CN 201811120906A CN 109232671 A CN109232671 A CN 109232671A
Authority
CN
China
Prior art keywords
polyacid
ternary
doping
target product
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811120906.1A
Other languages
English (en)
Other versions
CN109232671B (zh
Inventor
马鹏涛
武贺臣
孙琳
王敬平
牛景杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN201811120906.1A priority Critical patent/CN109232671B/zh
Publication of CN109232671A publication Critical patent/CN109232671A/zh
Application granted granted Critical
Publication of CN109232671B publication Critical patent/CN109232671B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • C07F19/005Metal compounds according to more than one of main groups C07F1/00 - C07F17/00 without metal-C linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/183Metal complexes of the refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta or W
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明属于多酸基稀土材料技术领域,提供了一种Eu/Tb/Tm三元稀土掺杂的多酸衍生物,该多酸衍生物分子式为[N(CH3)4]3K2[EuxTbyTm1‒x‒y(C7H5O2)(H2O)2(α‑PW11O39)]·11H2O (0.02≤x≤0.05,0.40≤y≤0.45)。本发明通过将EuCl3·6H2O、TbCl3·6H2O、TmCl3·6H2O、苯甲酸和多酸前驱体K14[P2W19O69(H2O)]·24H2O溶于蒸馏水中,调节pH至4.5‑4.8,室温下搅拌20-30min,然后在60±5℃条件下加热1.0-1.5h,再趁热加入四甲基氯化铵并搅拌反应20-30min,反应结束后冷却、过滤,滤液静置析出无色块状晶体,即为三元稀土掺杂的多酸衍生物。在该稀土衍生物中,多酸钨簇片段和苯甲酸配体都能够敏化稀土离子发光,Eu3+离子具有红光发射性能,Tb3+离子具有绿光发射性能,Tm3+离子具有绿光发射性能,三原色按照一定比例能够调谐出白光发射。

Description

一种三元稀土掺杂的多酸衍生物及其制备方法和作为荧光发 光材料的应用
技术领域
本发明属于多酸基稀土材料技术领域,具体涉及一种三元稀土掺杂的的多酸衍生物及其制备方法和作为荧光发光材料的应用。
背景技术
基于镧系离子的发光材料,作为经典的无机光学材料,由于其具有潜在的高量子效率、高寿命、可靠性和安全性等优点,多年来一直受到科研工作者和工业界的关注。基于以上优点,稀土基发光材料已用于各种领域,如发光二极管的光学应用、检测与传感、激光、生物成像、生物医学等。
众所周知,多金属氧酸盐(简称多酸),是由高价态的前过渡金属(如:VV,NbV,TaV,MoVI,WVI)构成的一系列金属氧簇。多酸拥有一系列优良的特性:(a) 杰出的热稳定性;(b)可调控的大小和形状以及结构多样性;(c) 拥有富氧表面并显示出良好的电化学性质;(d)可以作为多齿的无机配体,通过O供电子基团与金属离子配位。由于其丰富多样的拓扑结构和多功能,多酸在磁性、荧光、催化、药物化学和材料科学等领域引起了广泛的兴趣。自1971年,Peacock和Weakley报道第一例Ln3+基多酸化合物以来,Ln3+基多酸化合物的合成吸引着越来越多工作者的注意,并在催化、磁性和光学等领域有潜在应用。
近些年来,一系列单核、双核、三核、四核到二十四核的Ln3+基多酸已经被报道,并且展示出多样的结构和杰出的性能(参见 X. Ma,W. Yang,L. Chen,et al.CrystEngComm2015, 17, 8175-8197)。尽管大量的Ln3+基多酸化合物已经被报道,但是掺杂的Ln/Ln’-POMs多酸化合物研究相对较少。2013年,Noritaka等人成功合成了杂双核TBA8H4[{Ln(μ2- OH)2Ln’}(γ-SiW10O36)2] (Ln = Dy3+和Gd3+;Ln’ = Eu3+,Yb3+和Lu3+)(参见R.Sato,K. Suzuki,M. Sugawa,et al. Chem. - Eur. J.2013, 19, 12982-12990),并通过在TBA8H4[{Dy(μ2- OH)2Ln’}(γ-SiW10O36)2]中改变Ln’的种类的和比例从而实现Dy3+周围的配位环境改变,调控Dy3+离子的磁各向异性,并且具有良好的SMMs性质。2016年,Dorsa等人获得了另外一例Na9[HoxY(1‒x)(W5O18)2]·H2O (x = 0.001 ~ 0.25)化合物,研究表明时钟转换可以被视为提高分子自旋量子位一致性的方法(参见 M. Shiddiq,D. Komijani,Y.Duan,et al. Nature2016, 531, 348-351)。这些主要报道了Ln/Ln’-POMs化合物在磁性方面的研究。此外,Ln/Ln’-POMs化合物在光学方面的研究也有一定报道。2012年,吴传德课题组成功合成了杂双核的{[Ln(1‒x)Ln’x(DMF)8(H2O)6]-[ZnW12O40]}·4DMF (Ln = Tb;Ln’ =Eu;x = 0, 0.25,0.5,0.75和1.0) (参见 W. Zhao,C. Zou,L. Shi,et al. Dalton Trans. 2012, 41, 10091-10096),研究结果表明,该化合物的发射光颜色的改变可以通过调控Eu3+和Tb3+离子的比例实现。Tb0.25Eu0.75-POMs化合物的CIE1931坐标(0.342,0.362)接近于标准白光坐标(0.33,0.33)。2017年,Rik Van Deun等获得了杂四核的[Ln(4‒x)Ln’x(MoO4)(Mo7O24)4]14‒ (Ln = La3+;Ln’ = Eu3+,Tb3+,Sm3+,Dy3+和Nd3+;x = 0.05)多酸化合物(参见 A. M. Kaczmarek,K. Van Hecke,R. Van Deun,et al. Inorg. Chem.2017, 56,3190-3200)。研究结果表明,Ln3+离子掺杂的La-POMs展现出良好的荧光性质,可以作为潜在的可见光和近红外光照明材料。同年,Rik Van Deun等获得了另外一例杂多核[Tb3.94Eu0.06(MoO4)(Mo7O24)4]14‒和[Tb3.68Eu0.32(MoO4)(Mo7O24)4]14‒化合物,这些化合物具有良好温度依赖荧光性质(参见 A. M. Kaczmarek,J. Liu,B. Laforce,et al. Dalton Trans. 2017,46, 5781-5785)。目前稀土掺杂的多酸衍生物的研究大多停留在双元稀土掺杂的地步,对于三元甚至更多元的稀土掺杂的多酸衍生物的研究相对较少。
发明内容
本发明的目的在于制备一种Eu3+/Tb3+/Tm3+三元稀土掺杂的的多酸衍生物及其制备方法和作为荧光发光材料的应用。
为实现上述目的,本发明采用如下技术方案:
一种三元稀土掺杂的多酸衍生物,该多酸衍生物分子式为[N(CH3)4]3K2[EuxTbyTm1‒x‒y(C7H5O2)(H2O)2(α-PW11O39)]·11H2O,其中,0.02≤x≤0.05,0.40≤y≤0.45。
上述三元稀土掺杂的多酸衍生物的制备方法,其具体包括以下步骤:
将EuCl3·6H2O、TbCl3·6H2O、TmCl3·6H2O、苯甲酸和多酸前驱体K14[P2W19O69(H2O)]·24H2O 溶于蒸馏水中,调节pH至4.5-4.8,室温下搅拌20―30 min,然后在60 ± 5℃条件下加热1.0―1.5h,再趁热加入四甲基氯化铵并搅拌反应20―30 min,反应结束后冷却、过滤,滤液静置析出无色块状晶体,即为目标产物三元稀土掺杂的多酸衍生物。
其中,多酸前驱体K14[P2W19O69(H2O)]·24H2O参照文献(C. M. Tourne, G. F.Tourne. J. Chem. Soc., Dalton Trans.,1988, 2411)制备获得。
具体的,原料EuCl3·6H2O、TbCl3·6H2O和TmCl3·6H2O的质量比为0.005-0.010g:0.095-0.100 g:0.123 g;原料(EuCl3·6H2O+TbCl3·6H2O+TmCl3·6H2O,即三者的摩尔数之和)、苯甲酸、K14[P2W19O69(H2O)]·24H2O和四甲基氯化铵的摩尔比为0.600:0.200:0.465-0.500:1.000。
本发明所述Eu3+/Tb3+/Tm3+三元稀土掺杂的多酸衍生物荧光发射是由有机基团敏化引起的,具有白光发射的荧光发光性能,可作为荧光发光材料应用。
本发明采用自组装合成策略方法,将EuCl3·6H2O/TbCl3·6H2O/TmCl3·6H2O、苯甲酸和多酸前驱体K14[P2W19O69(H2O)]·24H2O按一定摩尔比在水溶液中反应制得具有白光发射性能的三元稀土掺杂多酸衍生物。在该反应中,Eu3+/Tb3+/Tm3+三种稀土离子均能够以相同的方式嵌入多酸骨架中,合成结构相同的稀土基多酸衍生物,在合成原料上按照不同的配比,能够得到Eu3+,Tb3+,Tm3+分布均匀的三元稀土掺杂的稀土基多酸衍生物。在该稀土衍生物中,多酸钨簇片段和苯甲酸配体都能够敏化稀土离子发光,Eu3+离子具有红光发射性能,Tb3+离子具有绿光发射性能,Tm3+离子具有绿光发射性能,三原色按照一定比例能够发射出白光光色。与传统固体白光发光材料相比,本发明具有以下优点:
1)本发明采用X射线单晶衍射的技术,能够精确解析出多酸稀土衍生物的晶体结构;
2)本发明采用常规水溶液法,操作简单、成本低、安全性高、易于合成且产量较高;通过自组装的合成策略,一步合成目标产物,操作简单、成本较低、环境污染小且安全性高;
3)本发明采用Eu3+/Tb3+/Tm3+三元稀土掺杂的多酸稀土衍生物作为发光材料,通过改变掺杂比例,能够有效地控制发光光色;
4)相对于传统的多酸稀土发光材料通过钨簇传递能量到稀土离子,本发明由有机基团起主要敏化稀土离子荧光发射的作用,具有更高的能量传递效率。
附图说明
图1是目标产物1‒5的合成示意图;
图2是目标产物1‒5阴离子结构的球棍示意图。表明稀土离子Ln3+与多酸构筑块与苯甲酸同时相连接;
图3是目标产物1‒5阴离子结构的多面体示意图;
图4是目标产物1‒5的热重曲线。目标产物1‒5具有相似的热失重曲线;
图5是目标产物1‒5的红外光谱图。证明了目标产物1‒5中含有磷钨酸骨架和多酸配体,也证明了目标产物1‒5结构相似;
图6是目标产物1‒5的XRD的模拟图和实验对比图。证明了目标产物1‒5是纯净的,同时证明了目标产物1‒5是同构的;
图7是目标产物1在272 nm激发光下的发射光谱图。证明了目标产物1中Eu荧光发射中心能够在272激发光下被苯甲酸配体激发;
图8是目标产物2在272 nm激发光下的发射光谱图。证明了目标产物2中Tb荧光发射中心能够在272激发光下被苯甲酸配体激发;
图9是目标产物3在272 nm激发光下的发射光谱图。证明了目标产物3中Tm荧光发射中心能够在272激发光下被苯甲酸配体激发;
图10是目标产物4和5在272 nm激发光下的发射光谱图。证明了目标产物4和5中Eu、Tb、Tm荧光发射中心能够在272 nm激发光下被苯甲酸配体激发;
图11是目标产物1‒3的发射光谱对应CIE坐标图。表明目标产物1发射出红色,目标产物2发射出绿色,目标产物3发射出蓝色;
图12是目标产物4和5的发射光谱对应CIE坐标图。表明目标产物4和5发射出白光。
具体实施方式
下面通过实施进一步详细描述本发明,但这并非是对本发明的限制,根据本发明的基本思想,可以做出各种修改和改进,但只要不脱离本发明的基本思想,均在发明的范围之内。
实施例1:
一种含Eu稀土的多酸衍生物的制备方法,其具体包括以下步骤:
将EuCl3∙6H2O (0.228 g,0.600 mmol)、苯甲酸 (0.244 g,0.200 mmol)和多酸前驱体K14[P2W19O69(H2O)]∙24H2O (2.120 g,0.465 mmol)加入到30 mL蒸馏水中,搅拌至完全溶解。用3 mol/L的KOH水溶液将pH值调至4.5,室温下搅拌20―30 min。将该溶液放入60 ℃的水浴中搅拌加热1.5 h,再趁热加入四甲基氯化铵(0.110 g,1.000 mmol)并搅拌反应20―30min,反应结束后待溶液冷却、过滤,滤液静置两周后析出无色块状晶体,即得目标产物1。
实施例2:
一种含Tb稀土的多酸衍生物的制备方法,其具体包括以下步骤:
将TbCl3∙6H2O (0.228 g,0.600 mmol)、苯甲酸 (0.244 g,0.200 mmol)和多酸前驱体K14[P2W19O69(H2O)]∙24H2O (2.120 g,0.465 mmol) 加入到30 mL蒸馏水中,搅拌至完全溶解。用3 mol/L的KOH溶液将pH值调至4.5,室温下搅拌20―30 min。将该溶液放入60 ℃的水浴中搅拌加热1.5 h,再趁热加入四甲基氯化铵(0.110 g,1.000 mmol) 并搅拌反应20―30min,反应结束后待溶液冷却、过滤,滤液静置两周后析出无色块状晶体,即得目标产物2。
实施例3:
一种含Tm稀土的多酸衍生物的制备方法,其具体包括以下步骤:
将TmCl3∙6H2O (0.228 g,0.600 mmol)、苯甲酸(0.244 g,0.200mmol)和多酸前驱体K14[P2W19O69(H2O)]∙24H2O (2.120g,0.465mmol) 加入到30 mL蒸馏水中,搅拌至完全溶解。用3mol/L的KOH溶液将pH值调至4.5,室温下搅拌20―30 min。将该溶液放入60 ℃的水浴中搅拌加热1.5 h,再趁热加入四甲基氯化铵 (0.110 g,1.000 mmol) 并搅拌反应20―30 min,反应结束后待溶液冷却、过滤,滤液静置两周后析出无色块状晶体,即得目标产物3。
实施例4:
一种Eu/Tb/Tm三元稀土掺杂的多酸衍生物的制备方法,其具体包括以下步骤:
将EuCl3∙6H2O(0.010 g,0.026 mmol)、TbCl3∙6H2O (0.095 g,0.254 mmol)和TmCl3∙6H2O(0.123 g,0.320 mmol)的混合物、苯甲酸(0.244g,0.200mmol)、多酸前驱体K14[P2W19O69(H2O)]∙24H2O (2.12 0g,0.465 mmol) 加入到30 mL蒸馏水中,搅拌至完全溶解。用3 mol/L的KOH溶液将pH值调至4.5,室温下搅拌20―30 min。将该溶液放入60 ℃的水浴中搅拌加热1.5 h,再趁热加入四甲基氯化铵(0.110 g,1.000 mmol)并搅拌反应20―30 min,反应结束后待溶液冷却、过滤,滤液静置两周后析出无色块状晶体,即得目标产物4。
实施例5:
一种Eu/Tb/Tm三元稀土掺杂的多酸衍生物的制备方法,其具体包括以下步骤:
将EuCl3∙6H2O(0.005 g,0.013 mmol)、TbCl3∙6H2O(0.100 g,0.267 mmol)和TmCl3∙6H2O(0.123 g,0.320 mmol)的混合物、苯甲酸(0.244g,0.200mmol)、多酸前驱体K14[P2W19O69(H2O)]∙24H2O(2.120g,0.465mmol) 加入到30 mL蒸馏水中,搅拌至完全溶解。用3 mol/L的KOH溶液将pH值调至4.5,室温下搅拌20―30 min。将该溶液放入60℃的水中水浴搅拌加热1.5 h,再趁热加入四甲基氯化铵(0.110 g,1.000 mmol) 并搅拌反应20―30 min,反应结束后待溶液冷却、过滤,滤液静置两周后析出无色块状晶体,即得目标产物5。
实施例6:
目标产物1的固态荧光光谱在室温下测得。在272 nm的激发光照射下,目标产物1的发射光谱如图11所示,其对应于CIE坐标图上的坐标(0.663,0.335),坐落在红光区。
实施例7:
目标产物2的固态荧光光谱在室温下测得。在272 nm的激发光照射下,目标产物2的发射光谱如图11所示,其对应于CIE坐标图上的坐标(0.324,0.591),坐落在绿光区。
实施例8:
目标产物3的固态荧光光谱在室温下测得。在272 nm的激发光照射下,目标产物3的发射光谱如图11所示,其对应于CIE坐标图上的坐标(0.217,0.210),坐落在蓝光区。
实施例9:
目标产物4的固态荧光光谱在室温下测得。在272 nm的激发光照射下,目标产物4的发射光谱如图12所示,其对应于CIE坐标图上的坐标(0.299,0.337),坐落在白光区。
实施例10:
目标产物5的固态荧光光谱在室温下测得。在272 nm的激发光照射下,目标产物5的发射光谱如图12所示,其对应于CIE坐标图上的坐标(0.279,0.314),坐落在白光区。
本发明通过自组装的方法制备合成了目标产物1‒5(合成路线见图1)。在水溶液中,稀土离子容易水解产生沉淀,加入苯甲酸配体可以起到防止稀土离子水解的作用。多酸前驱体K14[P2W19O69(H2O)]·24H2O在水溶液中能够分解为{PW9O33}和{WO6}多酸片段,有助于构筑结构新颖的多酸构筑块。在该体系中,苯甲酸配体与稀土离子配位后,并与多酸片段反应,形成苯甲酸-稀土离子-多酸多酸稀土衍生物。
本发明采用X-射线单晶衍射技术对上述实施制备得到的目标产物1‒3的晶体结构进行测定和表征,其晶胞参数如下:
目标产物1,单斜晶系,空间群为P-1,晶胞参数a =12.9454 (14) Å, b = 13.5128(14) Å, c = 20.206 (2) Å, α = 82.9783 (18)°, β = 78.1714 (18)°, γ = 75.1355(18)°, V = 3334.7 (6) Å3, Z = 2, R1 = 0.0422, wR2 = 0.0955;
目标产物2,单斜晶系,空间群为P-1,晶胞参数a = 12.921 (3) Å, b = 13.504 (3)Å, c = 20.156 (4) Å, α = 82.918 (4)°, β = 78.077 (4)°, γ = 75.141 (3)°, V =3316.9 (12) Å3, Z = 2, R1 = 0.0682, wR2 = 0.1534;
目标产物3,单斜晶系,空间群为P-1,晶胞参数a =12.8403 (14) Å, b = 13.4246(15) Å, c = 19.981 (2) Å, α = 83.917 (2)°, β = 78.657 (2)°, γ = 75.480 (2)°,V = 3263.6 (6) Å3, Z = 2, R1 = 0.0422, wR2 = 0.0955;
目标产物1‒3具有相似的晶胞参数,表明三者结构是同构的。
同时,本发明对目标产物1‒5进行了红外光谱和XRD表征,目标产物1‒5的红外光谱以及它们XRD图谱的一致性,证实了目标产物1‒5都是同构的。
图4是目标产物1‒5的热重曲线。本发明中,目标产物1‒5具有相似的热失重曲线(图4)。以目标产物1为例,在25‒140°C范围内第一步失重6.17%,对应于11个结晶水的失去(理论值6.05%);在140‒490°C范围内第二步失重7.83%,对应于配位水和有机阳离子氧化分解(理论值7.38%);在490‒890°C范围内第三步失重,对应于有机配体部分氧化分解和多酸骨架的部分分解。
本发明中对目标产物1‒5进行了红外光谱和XRD表征(见图5和6)。在红外光谱图中,目标产物1‒5具有相似的红外光谱谱图,700‒1100 cm‒1范围内对应于多酸骨架中ν(P–Oa),ν(W–Ot),ν(W–Ob)和ν(W–Oc)伸缩振动,在1400‒1600 cm‒1范围内对应于苯甲酸配体骨架中芳香环的伸缩振动和四甲基胺阳离子中δ(C‒H)弯曲振动,在1642cm‒1处对应于苯甲酸配体中的ν(C=O)伸缩振动。在XRD谱图中,目标产物1‒5和模拟XRD具有相似的峰的位置,峰强度不同可能是由于目标产物1‒5的XRD峰在收集过程中优先去向不同引起的。
通过红外光谱和XRD表征证明:目标产物1‒5结构是同构的,在此,以目标产物1为例,对目标产物1‒5的结构进行详细描述(详见图2和3)。由图2和3 可以看出:目标产物1包括一个[Eu(C7H5O2)(α-PW11O39)]5‒多酸阴离子,两个K+离子,三个[N(CH3)4]+阳离子和九个结晶水分子。在[Eu(C7H5O2)(α-PW11O39)]5‒多酸阴离子结构中,Eu+离子具有八配位四方反棱柱配位构型,Eu+离子通过与Keggin型缺位阴离子结构(α-PW11O39)7‒中缺位处的四个氧原子配位,嵌入到(α-PW11O39)7‒结构中,苯甲酸通过羧基上的两个氧原子配位到Eu+离子,最终形成苯甲酸-稀土离子-多酸体系的多酸稀土衍生物。
本发明中,在272nm的激发光下,
目标产物1结构中的苯甲酸配体和多酸组分吸收能量,然后传递给Eu+离子并敏化其发光,在592、616和701nm处发射出Eu+离子的特征发射峰,分别归属于Eu+离子中的5D07F15D07F25D07F4跃迁,其发光光色对应于CIE坐标图中的红光光色(0.663,0.335)(见图7和11)。
目标产物2结构中的苯甲酸配体和多酸组分吸收能量,然后传递给Tb+离子并敏化其发光,在490、545、595和620nm处发射出Tb+离子的特征发射峰,分别归属于Tb+离子中的5D47F65D47F55D47F45D47F3跃迁,其发光光色对应于CIE坐标图中的绿光光色(0.324,0.591)(见图8和11)。
目标产物3结构中的苯甲酸配体和多酸组分吸收能量,然后传递给Tm+离子并敏化其发光,在450和481nm处发射出Tm+离子的特征发射峰,分别归属于Tm+离子中的1D23F41G43H6跃迁,其发光光色对应于CIE坐标图中的蓝光光色(0.217,0.210)(见图9和11)。
目标产物4结构中的苯甲酸配体和多酸组分吸收能量,然后传递给Eu+,Tb+和Tm+离子并敏化其发光,在400nm‒750nm处发射出Eu+,Tb+和Tm+离子的特征发射峰,其发光光色对应于CIE坐标图中的白光光色区域(0.299,0.337)(见图10和12)。
目标产物5结构中的苯甲酸配体和多酸组分吸收能量,然后传递给Eu+,Tb+和Tm+离子并敏化其发光,在400nm‒750nm处发射出Eu+,Tb+和Tm+离子的特征发射峰,其发光光色对应于CIE坐标图中的白光光色区域(0.279,0.315)(见图10和12)。

Claims (5)

1.一种三元稀土掺杂的多酸衍生物,其特征在于,该多酸衍生物分子式为[N(CH3)4]3K2[EuxTbyTm1‒x‒y(C7H5O2)(H2O)2(α-PW11O39)]·11H2O,其中,0.02≤x≤0.05,0.40≤y≤0.45。
2.权利要求1所述三元稀土掺杂的多酸衍生物的制备方法,其特征在于,包括以下步骤:
将EuCl3·6H2O、TbCl3·6H2O、TmCl3·6H2O、苯甲酸和多酸前驱体K14[P2W19O69(H2O)]·24H2O 溶于蒸馏水中,调节pH至4.5-4.8,室温下搅拌20-30 min,然后在60 ± 5 ℃条件下加热1.0―1.5 h,再趁热加入四甲基氯化铵并搅拌反应20―30 min,反应结束后冷却、过滤,滤液静置析出无色块状晶体,即为三元稀土掺杂的多酸衍生物。
3.根据权利要求2所述三元稀土掺杂的多酸衍生物的制备方法,其特征在于,原料EuCl3·6H2O、TbCl3·6H2O和TmCl3·6H2O的质量比为0.005-0.010 g:0.095-0.100 g:0.123g。
4.根据权利要求2所述三元稀土掺杂的多酸衍生物的制备方法,其特征在于,原料(EuCl3·6H2O+TbCl3·6H2O+TmCl3·6H2O)、苯甲酸、K14[P2W19O69(H2O)]·24H2O和四甲基氯化铵的摩尔比为0.600:0.200:0.465-0.500:1.000。
5.权利要求1所述三元稀土掺杂的多酸衍生物作为荧光发光材料的应用。
CN201811120906.1A 2018-09-26 2018-09-26 一种三元稀土掺杂的多酸衍生物及其制备方法和作为荧光发光材料的应用 Active CN109232671B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811120906.1A CN109232671B (zh) 2018-09-26 2018-09-26 一种三元稀土掺杂的多酸衍生物及其制备方法和作为荧光发光材料的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811120906.1A CN109232671B (zh) 2018-09-26 2018-09-26 一种三元稀土掺杂的多酸衍生物及其制备方法和作为荧光发光材料的应用

Publications (2)

Publication Number Publication Date
CN109232671A true CN109232671A (zh) 2019-01-18
CN109232671B CN109232671B (zh) 2021-04-30

Family

ID=65057395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811120906.1A Active CN109232671B (zh) 2018-09-26 2018-09-26 一种三元稀土掺杂的多酸衍生物及其制备方法和作为荧光发光材料的应用

Country Status (1)

Country Link
CN (1) CN109232671B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110342470A (zh) * 2019-07-30 2019-10-18 河南大学 一种新型过氧钨酸盐稀土衍生物及制备方法
CN113136036A (zh) * 2021-04-22 2021-07-20 福州大学 一种用作高温阻变存储器活性层的多酸基金属有机框架材料

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106750350A (zh) * 2016-11-17 2017-05-31 中国科学院福建物质结构研究所 一种三元稀土有机框架晶体材料、其合成方法及应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106750350A (zh) * 2016-11-17 2017-05-31 中国科学院福建物质结构研究所 一种三元稀土有机框架晶体材料、其合成方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HECHEN WU ET AL.: "Elucidating white light emissions in Tm3+/Dy3+codoped polyoxometalates: a color tuning and energy transfer mechanism study", 《DALTON TRANSACTIONS》 *
HUANYAO JI ET AL.: "Synthesis, Structure, and Photoluminescence of Color-Tunable and White-Light-Emitting Lanthanide Metal-Organic Open Frameworks Composed of AlMo6(OH)6O183- Polyanion and Nicotinate", 《INORGANIC CHEMISTRY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110342470A (zh) * 2019-07-30 2019-10-18 河南大学 一种新型过氧钨酸盐稀土衍生物及制备方法
CN110342470B (zh) * 2019-07-30 2020-11-27 河南大学 一种过氧钨酸盐稀土衍生物及制备方法
CN113136036A (zh) * 2021-04-22 2021-07-20 福州大学 一种用作高温阻变存储器活性层的多酸基金属有机框架材料
CN113136036B (zh) * 2021-04-22 2022-06-14 福州大学 一种用作高温阻变存储器活性层的多酸基金属有机框架材料

Also Published As

Publication number Publication date
CN109232671B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
Ma et al. Syntheses, structures, tunable emission and white light emitting Eu 3+ and Tb 3+ doped lanthanide metal–organic framework materials
Wu et al. A helical chain-like organic–inorganic hybrid arsenotungstate with color-tunable photoluminescence
Zhao et al. Novel polyoxometalate hybrids consisting of copper–lanthanide heterometallic/lanthanide germanotungstate fragments
Sun et al. Solvothermal synthesis, crystal structure, and properties of lanthanide-organic frameworks based on thiophene-2, 5-dicarboxylic acid
CN107722047B (zh) 一种双核稀土铕配合物发光材料及其制备方法和应用
Xu et al. White-light emission based on a single component Sm (III) complex and enhanced optical properties by doping methods
Wu et al. An organic chromophore-modified samarium-containing polyoxometalate: excitation-dependent color tunable behavior from the organic chromophores to the lanthanide ion
Li et al. Two chiral tetradecanuclear hydroxo-lanthanide clusters with luminescent and magnetic properties
Liu et al. Organocounterions-assisted and pH-controlled self-assembly of five nanoscale high-nuclear lanthanide substituted heteropolytungstates
An et al. Efficient pure white light emission based on a three-component La: Eu, Tb-doped luminescent lanthanide metal–organic framework
Song et al. Synthesis, crystal structure and luminescence properties of lanthanide complexes with a new semirigid bridging furfurylsalicylamide ligand
CN106633089A (zh) 一种掺杂稀土配位聚合物白光发光材料及其制备方法
Cepeda et al. Enhancing luminescence properties of lanthanide (iii)/pyrimidine-4, 6-dicarboxylato system by solvent-free approach
Hasan et al. Synthesis, crystal structure and photoluminescence studies of [Eu (dbm) 3 (impy)] and its polymer-based hybrid film
Luo et al. Coordination polymers of lanthanide complexes with benzene dicarboxylato ligands
Li et al. Utilizing the adaptive precursor [As 2 W 19 O 67 (H 2 O)] 14–to support three hexanuclear lanthanoid-based tungstoarsenate dimers
CN109232671A (zh) 一种三元稀土掺杂的多酸衍生物及其制备方法和作为荧光发光材料的应用
Liu et al. First quadruple-glycine bridging mono-lanthanide-substituted borotungstate hybrids
Wang et al. Crystal structure and photoluminescence of europium, terbium and samarium compounds with halogen-benzoate and 2, 4, 6-tri (2-pyridyl)-s-triazine
Ban et al. Polyoxotungstate incorporating organotriphosphonate ligands and lanthanide ions: syntheses, characterization, magnetism and photoluminescence properties
Tan et al. A series of lanthanide glutarates: lanthanide contraction effect on crystal frameworks of lanthanide glutarates
Chen et al. Synthesis, structures and luminescent properties of a series of novel Sr II–Ln III (Ln= Eu, Gd, Tb) coordination polymers
CN108864158A (zh) 一种四核稀土铽配合物及其制备方法和作为发光材料的应用
Li et al. Lanthanide coordination frameworks constructed from 3, 3′, 4, 4′-diphenylsulfonetetracarboxylic and 1, 10-phenanthroline: synthesis, crystal structures and luminescence properties
Luo et al. Three 3D organic–inorganic hybrid heterometallic polyoxotungstates assembled from 1: 2-type [Ln (α-SiW11O39) 2] 13− silicotungstates and [Cu (dap) 2] 2+ linkers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant