CN109231768A - 机械压滤微波耦合脱水干化方法 - Google Patents

机械压滤微波耦合脱水干化方法 Download PDF

Info

Publication number
CN109231768A
CN109231768A CN201811278376.3A CN201811278376A CN109231768A CN 109231768 A CN109231768 A CN 109231768A CN 201811278376 A CN201811278376 A CN 201811278376A CN 109231768 A CN109231768 A CN 109231768A
Authority
CN
China
Prior art keywords
microwave
plate
filter
sludge
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811278376.3A
Other languages
English (en)
Other versions
CN109231768B (zh
Inventor
饶宾期
吴敏
卢锡龙
张岩
苏小雨
钱浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Norman Environmental Protection Engineering Technology Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201811278376.3A priority Critical patent/CN109231768B/zh
Publication of CN109231768A publication Critical patent/CN109231768A/zh
Application granted granted Critical
Publication of CN109231768B publication Critical patent/CN109231768B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/122Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using filter presses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/06Air heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Sludge (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

本发明涉及一种机械压滤微波耦合脱水干化方法,将微波调理‑脱水‑干化形成一个有机整体,先通过微波作用对污泥调理,破坏污泥的胶体结构,同时增大污泥颗粒,减少颗粒之间的吸附水,提高脱水性能,然后再通过微波的加热效率高对污泥进行干化,进一步降低污泥含水率。形成原位的微波调理脱水,不需要经过泵的输送,形成原位的干化,不需要输送装置将污泥输入到干化系统,微波发生器在不同的处理阶段起到不同的作用,在调理阶段,利用微波的破壁功能进行调理,在干化阶段,利用微波的加热效率高进行脱水,同时在干化时采用负压,进一步提高干化效率,降低能耗。

Description

机械压滤微波耦合脱水干化方法
技术领域
本发明涉及污水污泥处理领域,具体地说是一种机械压滤微波耦合脱水干化方法。
背景技术
市政污泥是污水经过污水处理厂处理后的产物,是一种由有机残片、细菌菌体、无机颗粒等组成的高含水率非均质体,采用普通方法难以脱水等特点。
早期的污泥处理装置有板框压滤机、转鼓离心机和带式过滤压滤机,经过这些设备脱水后污泥含水率一般在75%左右,这些污泥含水率依旧很高,对于运输以及成本消耗较大,并且无法在填埋场直接处理,这样放置时间一长,存活在污泥中的病菌就会超标,易腐烂产生恶臭造成环境污染。
污泥中含有4种形态水,即自由水、吸附水、毛细水和内部水。虽然吸附水、毛细水和内部水占比只是小部分,但是对污泥的高干脱水还是有很大的影响。通过微波调理后的污泥破坏了污泥胶体结构,释放出内部水变成易于通过机械方法脱除的自由水,而且增大污泥颗粒,使得污泥变大,可进一步提高污泥的脱水性能,所以,采用微波是污泥调理的一种重要手段。现有技术是污泥先经过微波调理后,然后通过泵输入到脱水设备中进行脱水,污泥变成含水率较低的泥饼。污泥的含水率一般还位于40-50%之间。为了进一步降低污泥的含水率,进入到下一步干化装置中,通过热干化方法将其进行干化处理达到所要求的含水率。现有技术存在几个问题:1、微波调理、机械脱水、干化是不同的阶段,需要配备单独的设备,导致整个系统复杂繁琐;2、经过微波调理后的污泥颗粒增大,然后又经过泵的剪切输送,将大颗粒污泥又被打碎成为小颗粒,影响脱水性能;3、当前微波的干化能耗较大,热能没有充分得到利用。
发明内容
本发明针对上述现有技术存在的不同脱水工序都需要配备单独设备、微波调理的干化能耗未能得到充分利用的技术问题,提出一种基于原位的微波调理及机械压力协同作用,实现深度脱水,并合理分配利用能量以降低能耗的方式处理污泥,实现微波调理-机械脱水-干化有机融合的一体化技术。
本发明的技术解决方案是,提供一种机械压滤微波耦合脱水干化方法,包括以下步骤:
开始工作进泥之前,高压力机械脱水装置处于除湿状态;高压力机械脱水装置的推动油缸作为动力机构将首压滤板推至极限位置,多压滤腔室被压至密闭状态;
进泥泵开始工作,污泥通过进泥管进入高压机械脱水装置的第一个密闭压滤腔室中,每一个压滤腔室之间通过进泥道相连,当第一个压滤腔室进满污泥后,通过进泥道进入下一个压滤腔室,依次进行下去;
当高压机械脱水装置所有的压滤腔室都浸满污泥后;微波调理干化装置开始对压滤腔中的污泥进行调理作用,经过微波辐射后,改善污泥的脱水性能;
高压机械脱水装置的动油缸开始工作,油缸作用中间压力传递板,推动力传递到力放大机构上,力放大机构对作用力成一定倍数进行放大,放大后的作用力作用在首压滤板上,使得首压滤板开始运动与相邻的滤板发生相对位移,压滤腔室开始缩小,内部的污泥受到滤板的挤压开始脱水,滤液通过泄水孔排出腔室外,机械压榨脱水一段时间后停止动力装置;
微波调理干化装置开始对脱水后的污泥进行微波加热脱水干化,在脱水干化之前,负压加热装置对压滤腔室内抽负压,进风阀关闭,真空阀打开,真空泵开始工作,通过与若干个压滤板的通气孔相连的金属波纹管对压滤腔室进行抽负压;微波调理干化装置中的微波发生器实际的功耗会有转化成部分热量使得金属腔室内空气升温,同时负压加热装置中的冷凝器工作也对空气加热,通过高压气泵将这两模块的热空气抽出来,通过金属波纹管通入到压滤腔室中对微波加热后的污泥进行热风干燥,实现微波机械热风三者协同对污泥进行脱水干化。
可选的,所述耦合脱水干化方法基于机械压滤微波耦合脱水干化一体化装置,所述机械压滤微波耦合脱水干化一体化装置包括进泥泵、进泥管、高压机械脱水装置、高压气泵、回风管和滤液排水管;所述的机械压滤微波耦合脱水干化一体化装置还包括负压加热装置和微波破壁干化装置,所述微波破壁干化装置嵌入在高压机械脱水装置的滤板中,微波在原位对污泥破壁改性同时进行脱水,形成原位微波调理,所述进泥管的进泥口设有进泥泵,所述高压机械脱水装置的尾板与进泥管相连接,所述高压机械脱水装置下端设有滤液排水管,所述滤液排水管通过金属软管与高压机械脱水装置中泄水孔连接,所述负压加热装置的进风口通过管道与高压机械脱水装置相连接,所述回风管入口设有高压气泵,所述高压气泵通过管道与微波破壁干化装置相连。
可选的,所述高压机械脱水装置包括首压滤板、压滤尾板、动力装置、中间压滤板、推动油缸和力放大机构,所述首压滤板和压滤尾板之间设置若干块中间压滤板,所述力放大机构安装在首压滤板和中间压力传递板,所述推动油缸作用于力中间压力传递板。
可选的,所述中间压滤板一侧为凸模结构,另一侧为凹模结构,所述首压滤板为凹模结构,所述压滤尾板为凸模结构,使之与相邻的中间压滤板形成密闭的压滤腔室,所述的中间压滤板中凸模结构嵌入到相邻滤板的凹模结构中形成密闭的压滤腔室,所述滤板凸模嵌入凹模中的部分边缘设有密封圈。
可选的,所述微波破壁干化装置包括微波发生器、陶瓷材料板、塑胶缓冲垫和塑料衬板,所述首压滤板凹模侧开有一环形槽,所述环形槽上设有4个对称分布的方形槽,所述压滤腔室与方形槽之间设有陶瓷材料板、塑胶缓冲垫和塑料衬板,所述陶瓷材料嵌入压滤板的板体中与所述方形槽构成密闭的金属腔室,所述微波发生器安置在金属腔室内,所述金属腔室设有散热通风道,所述塑胶缓冲垫设置在所述陶瓷材料板与塑料衬板之间,用于缓冲压力,防止陶瓷材料板被压碎,所述中间压滤板中间设有φ100mm-150mm的进泥通道。
可选的,所述中间压滤板的散热通风道设置在侧面,所述相邻中间压滤板之间散热通风道通过金属软管串联连接,所述金属软管最后的出风口与高压气泵相连;
所述金属密封挡环安装在压滤板凸模结构上,所述压滤板与金属密封挡环之间设有弹簧,所述凸模与凹模配合时,所述弹簧受力将金属密封挡环与凹模边缘压紧密封。
可选的,所述中间压滤板上方设有通气孔,所述通气孔与压滤腔室相通,所述通气孔通过金属波纹管与负压加热装置相连接,所述泄水孔设置在中间压滤板的下方。
可选的,所述负压加热装置包括进风阀、冷凝器、压缩机、真空泵、蒸发器、真空阀和积液阀,所述真空泵通过管道与蒸发器出风口相连,所述蒸发器进风口设有真空阀,所述真空阀通过管道分别与压滤板和进风阀相连,所述进风阀与高压气泵出风口相连,所述真空泵通过管道与冷凝器的进风口相连接,所述冷凝器的出风口通过管道与高压气泵的进气口相连接,所述热风阀设置在冷凝器与高压气泵连接管道上。
可选的,所述蒸发器放置在由金属制成的密闭腔室中,所述密闭腔室底部设计成漏斗状,便于冷凝水的回流收集,所述积液阀设置在腔室的底部。
可选的,所述冷凝器的加热翅片设计成波浪形,增加空气与加热片的接触面积,所述波浪形加热翅片成“S”型风道布置在密闭的腔室内,延长加热空气行走路径。
采用以上方法,具有如下优点:将微波调理-脱水-干化形成一个有机整体,先通过微波作用对污泥调理,破坏污泥的胶体结构,同时增大污泥颗粒,减少颗粒之间的吸附水,提高脱水性能,然后再通过微波的加热效率高对污泥进行干化,进一步降低污泥含水率。形成原位的微波调理脱水,不需要经过泵的输送,形成原位的干化,不需要输送装置将污泥输入到干化系统,微波发生器在不同的处理阶段起到不同的作用,在调理阶段,利用微波的破壁功能进行调理,在干化阶段,利用微波的加热效率高进行脱水,同时在干化时采用负压,进一步提高干化效率,降低能耗。
附图说明
图1为机械压滤微波耦合脱水干化一体化装置的结构示意图;
图2为高压机械脱水装置的结构示意图;
图3为微波破壁干化装置的结构示意图;
图4为负压加热装置的机构示意图。
如图所示,1、高压机械脱水装置,1-1、固定支撑板,1-2、推动油缸,1-3、拉杆支撑架,1-4、首压滤板,1-5、中间压滤板,1-6、导轨,1-7、压滤尾板,1-8、尾板进泥口,1-9、滚轮,1-10、插销同步移动杆,1-11、力放大机构,1-12、中间压力传递板,1-13压滤腔室,2、高压气泵回,3、热风阀,4、风管,5、负压加热装置,5-1、进风阀,5-2、冷凝器,5-3、膨胀阀,5-4、储液罐,5-5、压缩机,5-6、真空泵,5-7、蒸发器,5-8、真空阀,5-9、积液阀,5-10、金属波纹管,6、进泥管,7、进泥泵,8、微波破壁干化装置,8-1、微波发生器,8-2、金属腔室,8-3、陶瓷材料板,8-4、塑胶缓冲垫,8-5、塑料衬板,8-6、金属密封挡环,9、滤液排水管。
具体实施方式
下面结合附图和具体实施实例对本发明作进一步说明。
如图1所示,示意了机械压滤微波耦合脱水干化一体化装置的框架结构,包括进泥泵7、进泥管6、高压机械脱水装置1、高压气泵2、回风管4、负压加热装置5、滤液排水管9、微波破壁干化装置8,进泥泵7设置在整个系统的前端,高压机械脱水装置1通过进泥管6与进泥泵7相连,进泥管6上设有进泥阀,微波破壁干化装置8设置在高压机械脱水装置1的压滤板中,滤液排水管9设置在高压脱水装置1的下方,滤液排水管9通过金属软管与高压机械脱水装置1中的滤板相连,负压加热装置5与所述的高压机械脱水装置1之间设有高压气泵2,所述高压气泵2进气口通过管道与高压机械脱水装置1相连,出气口通过管道与负压加热装置5进风口相连。具体地,所述进泥泵7将污泥从入口通过进泥管6输送到高压机械脱水装置7,所述高压机械脱水装置1中滤板之间的压滤腔注满污泥,每一块压滤板中都有一整套微波破壁干化装置8,高压机械脱水装置1开始对污泥进行机械压力挤压脱水,所述负压加热装置5通过管道连接压滤腔,在真空泵作用下,对压滤腔进行抽负压,所述微波破壁干化装置8对抽成负压的压滤腔中污泥进行微波调理加热。
含水率86%-90%的污泥被送入高压机械脱水装置1中的压滤腔中,在微波处理下污泥胶体被破坏,污泥内部水释放出来变成自由水,脱水性能改善,同时,污泥微波加热温度升高。
如图2所示,示意了高压机械脱水装置的具体结构。高压机械脱水装置1包括固定支撑板1-1、拉杆支撑架1-3、首压滤板1-4、压滤尾板1-7、动力装置、中间压滤板1-5、导轨1-6、插销同步移动杆1-10、力放大机构1-11、中间压力传递板1-12,所述若干个中间压滤板1-5位于首压滤板1-4和压滤尾板1-7之间,所述力放大机构1-11安装与所述中间压力传递板1-12与所述首压滤板1-4之间,所述动力装置包括推动油缸1-2,所述推动油缸1-2设置在中间压力传递板1-12上;
所述力放大机构1-11用于将推动油缸1-2的力进行放大,并作用在首压滤板上,致使其与中间压滤板发生相对位移,压滤腔体积改变对污泥进行脱水;
所述的中间压滤板1-5为凹凸压滤板,所述中间压滤板1-5上设有相邻滤板之间限距装置,相邻两个压滤板之间形成可变压滤腔室1-13。
所述的中间压滤板1-5包括滤板体、塑料衬板和滤布,所述的塑料衬板固定在所述滤板体两侧上,所述滤布设置在塑料衬板外侧上,所述的塑料衬板上内部有网状导水槽,通过设置塑料衬板使得水分更容易流出以及高压气体易于分布到整个污泥腔室内,提高脱水效果,所述的滤板体上部开设有进气孔和通气槽,下部开设有泄水孔。所述的中间压滤板1-5一侧是凸模结构一侧是凹模结构,所述的首压滤板1-4为凹模结构,压滤尾板1-7为凸模结构,使之与相邻的凹凸中间压滤板1-5能够形成封闭的压滤腔室1-13,所述的凹凸中间压滤板1-5中凸模结构嵌入到相邻滤板的凹模结构中形成压滤腔室1-13,所述的首压滤1-4和压滤尾板1-7之间有若干块凹凸中间压滤板1-5。
如图3所示,示意了微波调理干化装置的具体结构。微波破壁干化装置8包括微波发生器8-1、陶瓷材料板8-2、塑胶缓冲垫8-4、塑料衬板8-5、压滤腔室1-13、金属密封挡环8-6、金属腔室8-2,所述微波调理干化装置5设置在高压机械脱水装置1中的每一块压滤板板体中,所述金属腔室8-2设置在压滤板的凹模一侧,所述滤板上设置金属腔室8-2的数量为4个,并且成环形分布,所述金属腔室8-2设有通风管道,所述相邻的压滤板中的金属腔室通过外部金属软管与通风管道连接,使得所有的滤板板体中得金属腔室串联相通;所述压滤腔室1-13与金属腔室8-2之间设有陶瓷材料板8-3、塑胶软垫8-4、塑料衬板8-5,所述陶瓷材料板8-3嵌入压滤板板体中,并且与金属腔室8-2形成密闭的空间,同时与压滤腔室1-13分隔开,所述塑胶软垫8-4设置在陶瓷材料板8-3的外侧,这样是为了防止在凸模与凹模配合时陶瓷材料板8-3被撞碎,所述塑胶软垫8-4外侧设有一块塑料衬板8-5,所述塑料衬板8-5上设有通水孔和泄水槽,在所述的塑料衬板8-5表面包裹一层滤布,用于防止污泥堵塞通水孔和泄水槽,所述凸模与相邻凹模配合的部分设有密封圈,这样使压滤腔室1-13足够密闭,所述金属密封挡环8-6安装在压滤板的凹模外面,并且金属密封挡环8-6上设有弹力压紧装置,所述弹力压紧装置在凹模与凸模配合时才处于压紧状态,卸料时处于非压紧状态,所述金属密封挡环8-6是防止微波泄漏的一道环节;具体地,压滤板的凹模与相邻的凸模配合形成密闭的压滤腔室1-13,为了防止污泥的泄漏,在凸模与凹模配合的部分设置一道塑胶密封圈,当污泥充满整个压滤腔室1-13的时候,微波发生器开始工作,为了防止微波泄漏,在凸模的边缘设置金属密封挡环8-6,当凸模与凹模合模是金属密封挡环8-6在预紧弹力装置的作用下,与凹模的边缘贴合,阻挡微波从塑胶密封圈的缝隙中泄漏,因为微波是无法穿透金属的,所以在给污泥调理加热的时候,微波发生器发出的微波穿过陶瓷材料、塑胶软垫和塑料衬板,并对污泥进行调理加热处理。
如图4所示,示意了负压加热装置的具体结构。负压加热装置5包括进风阀5-1、冷凝器5-2、压缩机5-5、真空泵5-6、蒸发器5-7、真空阀5-8和积液阀5-9,所述进风阀5-1安装在高压气泵2的出风口,所述真空阀5-8通过管道与所述的进风阀5-1的出风口相连,真空阀5-8的出风口与所述蒸发器5-7腔室进风口相连接,所述进风阀5-1与真空阀5-8之间并联了若干条金属波纹管5-10,所述金属波纹管5-10与高压机械脱水装置1的压滤板的气孔相连,所述真空泵5-6的进气口与蒸发器5-7腔室的出风口相连接,所述冷凝器5-2腔室与真空泵之间设置了压缩机5-5散热腔室,所述热风阀3入口和出口分别和冷凝器5-2腔室和高压气泵2相连;具体地,①进风阀5-1关闭,真空阀5-8打开,所述真空泵5-6开始工作,密闭的压滤腔室1-13内部空气通过金属波纹管5-10经过真空阀到达蒸发器5-7腔室内,使得压滤腔室内形成负压真空状态,所述由蒸发器降温后的空气经过真空泵5-6对工作中的压缩机5-5机体进行降温,延长压缩机的使用寿命;②进风阀5-1打开,热风阀3关闭,真空阀5-8关闭,高压气泵2开始工作,高压气泵2通过管道将微波发生器能耗损失产生的热空气从金属腔室中抽出,所述热空气经过金属波纹管吹入压滤腔中,对泥饼进行干燥,减少能量的损失,提高能量的多级利用;③热风阀3打开,进风阀5-1打开,真空阀5-8关闭,高压气泵2开始工作,所述冷凝器5-2对空气进行加热,所述热空气在高压气泵2作用下,通过金属波纹管5-10进入压滤腔室1-13,对压滤后的泥饼进行干化处理。
本装置工作原理如下:开始工作进泥之前,高压力机械脱水装置处于除湿状态;推动油缸作为动力机构将首压滤板推至极限位置,多压滤腔室被压至密闭状态,进泥泵开始工作,污泥通过进泥管进入高压机械脱水装置的第一个密闭压滤腔中,每一个压滤腔室之间通过进泥道相连,当首个压滤腔室进满污泥后,通过进泥道进入下一个压滤腔室,依次进行下去,当高压机械脱水装置所有的压滤腔室都浸满污泥后;微波破壁干化装置开始对压滤腔中的污泥进行调理作用,经过适当的微波辐射后,能够改善污泥的脱水性能;高压机械脱水装置的动油缸开始工作,油缸作用中间压力传递板,推动力传递到力放大机构上,力放大机构对作用力成一定倍数进行放大,放大后的作用力作用在首压滤板上,使得首压滤板开始运动与相邻的滤板发生相对位移,压滤腔室开始缩小,内部的污泥受到滤板的挤压开始脱水,滤液通过泄水孔排出腔室外,机械压榨脱水一段时间后停止动力装置;微波破壁干化装置开始对脱水后的污泥进行微波加热脱水干化,在脱水干化之前,负压加热装置对压滤腔室内抽负压,进风阀关闭,真空阀打开,真空泵开始工作,通过与若干个压滤板的通气孔相连的金属波纹管对压滤腔室进行抽负压,负压状态下,能够降低水的沸点,减少能耗;由于微波发生器实际的功耗会有转化成部分热量使得金属腔室内空气升温,同时负压加热装置中的冷凝器工作也对空气加热,通过高压气泵将这两模块的热空气抽出来,通过金属波纹管通入到压滤腔室中对微波加热后的污泥进行热风干燥,实现微波机械热风三者协同对污泥进行脱水干化。
虽然以上将实施例分开说明和阐述,但涉及部分共通之技术,在本领域普通技术人员看来,可以在实施例之间进行替换和整合,涉及其中一个实施例未明确记载的内容,则可参考有记载的另一个实施例。
以上仅就本发明较佳的实施例作了说明,但不能理解为是对权利要求的限制。本发明不仅局限于以上实施例,其具体结构允许有变化。总之,凡在本发明独立权利要求的保护范围内所作的各种变化均在本发明的保护范围内。

Claims (10)

1.一种机械压滤微波耦合脱水干化方法,包括以下步骤:
开始工作进泥之前,高压力机械脱水装置的推动油缸作为动力机构将首压滤板拉至极限位置,多压滤腔室同时形成密闭状态;
进泥泵开始工作,污泥通过进泥管进入高压机械脱水装置的第一个密闭压滤腔室中,每一个压滤腔室之间通过进泥道相连,当第一个压滤腔室进满污泥后,通过进泥道进入下一个压滤腔室,依次进行下去;
当高压机械脱水装置所有的压滤腔室都浸满污泥后;微波破壁干化装置开始对压滤腔中的污泥进行间歇性的调理作用,经过微波辐射后,污泥内部水释放出来,颗粒变大,部分内部水及吸附水转化为可被机械方式去除的自由水,改善污泥的脱水性能;
高压机械脱水装置的动油缸开始工作,油缸作用中间压力传递板,推动力传递到力放大机构上,力放大机构对作用力成一定倍数进行放大,放大后的作用力作用在首压滤板上,使得首压滤板开始运动与相邻的滤板发生相对位移,压滤腔室开始缩小,内部的污泥受到滤板的挤压开始脱水,滤液通过泄水孔排出腔室外,机械压榨脱水一段时间后停止动力装置;
微波调理干化装置开始对脱水后的污泥在原位进行微波加热真空干化,在干化之前,负压加热装置对压滤腔室内抽负压,进风阀关闭,真空阀打开,真空泵开始工作,通过与若干个压滤板的通气孔相连的金属波纹管对压滤腔室进行抽负压;微波调理干化装置中的微波发生器实际的功耗会有转化成部分热量使得金属腔室内空气升温,同时负压加热装置中的冷凝器工作也对空气加热,通过高压气泵将这两模块的热空气抽出来,通过金属波纹管通入到压滤腔室中对微波加热后的污泥进行热风干燥,实现机械压滤-微波-热风三者协同对污泥进行原位脱水干化。
2.根据权利要求1所述的机械压滤微波耦合脱水干化方法,其特征在于:基于机械压滤微波耦合脱水干化一体化装置,所述机械压滤微波耦合脱水干化一体化装置包括进泥泵(7)、进泥管(6)、高压机械脱水装置(1)、高压气泵(2)、回风管(4)和滤液排水管(9);所述的机械压滤微波耦合脱水干化一体化装置还包括负压加热装置(5)和微波破壁干化装置(8),所述微波破壁干化装置(8)嵌入在高压机械脱水装置(1)的滤板中,微波在原位对污泥破壁改性同时进行脱水,形成原位微波调理,所述进泥管(6)的进泥口设有进泥泵(7),所述高压机械脱水装置(1)的尾板(1-7)与进泥管(6)相连接,所述高压机械脱水装置(1)下端设有滤液排水管(9),所述滤液排水管(9)通过金属软管与高压机械脱水装置(1)中泄水孔连接,所述负压加热装置(5)的进风口通过管道与高压机械脱水装置(1)相连接,所述回风管(4)入口设有高压气泵(2),所述高压气泵(2)通过管道与微波破壁干化装置(8)相连。
3.根据权利要求2所述的机械压滤微波耦合脱水干化方法,其特征在于:所述高压机械脱水装置(1)包括首压滤板(1-4)、压滤尾板(1-7)、动力装置、中间压滤板(1-5)、推动油缸(1-2)和力放大机构(1-11),所述首压滤板(1-4)和压滤尾板(1-7)之间设置若干块中间压滤板(1-5),所述力放大机构(1-11)安装在首压滤板(1-4)和中间压力传递板(1-12)之间,所述推动油缸(1-2)作用于力中间压力传递板(1-12)。
4.根据权利要求3所述的机械压滤微波耦合脱水干化方法,其特征在于:所述中间压滤板(1-5)一侧为凸模结构,另一侧为凹模结构,所述首压滤板(1-4)为凹模结构,所述压滤尾板为凸模结构,使之与相邻的中间压滤板(1-5)形成密闭的压滤腔室,所述的中间压滤板(1-5)中凸模结构嵌入到相邻滤板的凹模结构中形成密闭的压滤腔室(1-13),所述滤板凸模嵌入凹模中的部分边缘设有密封圈。
5.根据权利要求4所述的机械压滤微波耦合脱水干化方法,其特征在于:所述微波破壁干化装置(8)包括微波发生器(8-1)、陶瓷材料板(8-3)、塑胶缓冲垫(8-4)和塑料衬板(8-5),所述首压滤板(1-4)凹模侧开有一环形槽,所述环形槽上设有4个对称分布的方形槽,所述压滤腔室(1-13)与方形槽之间设有陶瓷材料板(8-3)、塑胶缓冲垫(8-4)和塑料衬板(8-5),所述陶瓷材料(8-3)嵌入压滤板的板体中与所述方形槽构成密闭的金属腔室(8-2),所述微波发生器(8-1)安置在金属腔室(8-2)内,所述金属腔室(8-2)设有散热通风道,所述塑胶缓冲垫(8-4)设置在所述陶瓷材料板(8-3)与塑料衬板(8-5)之间,所述中间压滤板(1-5)中间设有进泥通道。
6.根据权利要求5所述的机械压滤微波耦合脱水干化方法,其特征在于:所述中间压滤板的散热通风道设置在侧面,所述相邻中间压滤板之间散热通风道通过金属软管串联连接,所述金属软管最后的出风口与高压气泵(2)相连,所述金属密封挡环(8-6)安装在压滤板凸模结构上,所述压滤板与金属密封挡环(8-6)之间设有弹簧,所述凸模与凹模配合时,所述弹簧受力将金属密封挡环(8-6)与凹模边缘压紧密封。
7.根据权利要求4所述的机械压滤微波耦合脱水干化方法,其特征在于:所述中间压滤板(1-5)上方设有通气孔,所述通气孔与压滤腔室相通,所述通气孔通过金属波纹管(5-10)与负压加热装置(5)相连接,所述泄水孔设置在中间压滤板(1-5)的下方。
8.根据权利要求2所述的机械压滤微波耦合脱水干化一体化装置,其特征在于:所述负压加热装置(5)包括进风阀(5-1)、冷凝器(5-2)、压缩机(5-5)、真空泵(5-6)、蒸发器(5-7)、真空阀(5-8)和积液阀(5-9),所述真空泵(5-6)通过管道与蒸发器(5-7)出风口相连,所述蒸发器(5-7)进风口设有真空阀(5-8),所述真空阀(5-8)通过管道分别与压滤板和进风阀(5-1)相连,所述进风阀(5-1)与高压气泵(2)出风口相连,所述真空泵(5-6)通过管道与冷凝器(5-2)的进风口相连接,所述冷凝器(5-2)的出风口通过管道与高压气泵(2)的进气口相连接,所述热风阀(3)设置在冷凝器与高压气泵(2)连接管道上。
9.根据权利要求8所述的机械压滤微波耦合脱水干化方法,其特征在于:所述蒸发器(5-7)放置在由金属制成的密闭腔室中,所述密闭腔室底部设计成漏斗状,便于冷凝水的回流收集,所述积液阀(5-9)设置在腔室的底部。
10.根据权利要求8所述的机械压滤微波耦合脱水干化方法,其特征在于:所述冷凝器(5-2)的加热翅片设计成波浪形,增加空气与加热片的接触面积,所述波浪形加热翅片成“S”型风道布置在密闭的腔室内,延长加热空气行走路径。
CN201811278376.3A 2018-10-30 2018-10-30 机械压滤微波耦合脱水干化方法 Active CN109231768B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811278376.3A CN109231768B (zh) 2018-10-30 2018-10-30 机械压滤微波耦合脱水干化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811278376.3A CN109231768B (zh) 2018-10-30 2018-10-30 机械压滤微波耦合脱水干化方法

Publications (2)

Publication Number Publication Date
CN109231768A true CN109231768A (zh) 2019-01-18
CN109231768B CN109231768B (zh) 2022-01-18

Family

ID=65079610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811278376.3A Active CN109231768B (zh) 2018-10-30 2018-10-30 机械压滤微波耦合脱水干化方法

Country Status (1)

Country Link
CN (1) CN109231768B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113087362A (zh) * 2021-03-22 2021-07-09 减一污泥处理技术(江苏)有限公司 一种污泥微波破壁碱水调理机及其应用
CN115301672A (zh) * 2022-06-30 2022-11-08 广西博世科环保科技股份有限公司 一种厨余垃圾综合处理方法
CN117383640A (zh) * 2023-12-11 2024-01-12 成都凯亚美环保机械制造股份有限公司 一种高效低温真空脱水干化成套设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987004114A1 (en) * 1985-12-30 1987-07-16 Ebara Corporation Dehydratation method and apparatus
CN105036515A (zh) * 2015-09-08 2015-11-11 陕西沃升机械制造有限公司 热辊压滤式污泥脱水干化一体机
CN205556434U (zh) * 2016-04-22 2016-09-07 无锡国联环保科技股份有限公司 一种污泥微波改性脱水及压滤一体装置
JP2016203059A (ja) * 2015-04-17 2016-12-08 日本アルシー株式会社 汚泥前処理装置、汚泥濃縮装置および汚泥濃縮方法
CN107200452A (zh) * 2016-03-18 2017-09-26 中国石油化工股份有限公司 微波热解污泥的装置及方法
CN206721013U (zh) * 2017-04-18 2017-12-08 中国石油大学(华东) 一种微波式造纸污泥干燥分离一体化装置
CN107585983A (zh) * 2017-04-08 2018-01-16 浙江威治环保科技有限公司 微波辅助处理的市政污泥深度减量化方法
CN107777853A (zh) * 2017-04-05 2018-03-09 王政峰 双干法污泥处理装置
CN108358421A (zh) * 2018-02-02 2018-08-03 华中科技大学 一种污泥水分脱除同时制备固体燃料的方法及产品

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987004114A1 (en) * 1985-12-30 1987-07-16 Ebara Corporation Dehydratation method and apparatus
JP2016203059A (ja) * 2015-04-17 2016-12-08 日本アルシー株式会社 汚泥前処理装置、汚泥濃縮装置および汚泥濃縮方法
CN105036515A (zh) * 2015-09-08 2015-11-11 陕西沃升机械制造有限公司 热辊压滤式污泥脱水干化一体机
CN107200452A (zh) * 2016-03-18 2017-09-26 中国石油化工股份有限公司 微波热解污泥的装置及方法
CN205556434U (zh) * 2016-04-22 2016-09-07 无锡国联环保科技股份有限公司 一种污泥微波改性脱水及压滤一体装置
CN107777853A (zh) * 2017-04-05 2018-03-09 王政峰 双干法污泥处理装置
CN107585983A (zh) * 2017-04-08 2018-01-16 浙江威治环保科技有限公司 微波辅助处理的市政污泥深度减量化方法
CN108358422A (zh) * 2017-04-08 2018-08-03 浙江威治环保科技有限公司 多腔室多级压滤污泥脱水方法
CN108503176A (zh) * 2017-04-08 2018-09-07 浙江威治环保科技有限公司 微波调理脱水干化污泥处理方法
CN206721013U (zh) * 2017-04-18 2017-12-08 中国石油大学(华东) 一种微波式造纸污泥干燥分离一体化装置
CN108358421A (zh) * 2018-02-02 2018-08-03 华中科技大学 一种污泥水分脱除同时制备固体燃料的方法及产品

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113087362A (zh) * 2021-03-22 2021-07-09 减一污泥处理技术(江苏)有限公司 一种污泥微波破壁碱水调理机及其应用
CN115301672A (zh) * 2022-06-30 2022-11-08 广西博世科环保科技股份有限公司 一种厨余垃圾综合处理方法
CN117383640A (zh) * 2023-12-11 2024-01-12 成都凯亚美环保机械制造股份有限公司 一种高效低温真空脱水干化成套设备
CN117383640B (zh) * 2023-12-11 2024-03-08 成都凯亚美环保机械制造股份有限公司 一种高效低温真空脱水干化成套设备

Also Published As

Publication number Publication date
CN109231768B (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
CN109231768A (zh) 机械压滤微波耦合脱水干化方法
CN107572741A (zh) 微波辅助处理的市政污泥深度减量化装置
CN109231764B (zh) 微波热风射流协同干化装置
CN206408078U (zh) 一种真空脱水干燥设备
CN107686224A (zh) 一种真空脱水干燥设备及工艺
CN103771680B (zh) 一种序批式余热回收真空干燥装置
CN209276346U (zh) 一种机械压滤微波耦合脱水干化一体化装置
CN104098242A (zh) 污水污泥深度处理方法
CN104140188A (zh) 节能型污水污泥无害化处理方法
CN104098241A (zh) 污水污泥深度处理装置
CN107777853A (zh) 双干法污泥处理装置
CN115435577A (zh) 一种利用水泥窑余热的生活垃圾烘干系统及方法
CN109231769A (zh) 机械压滤微波耦合脱水干化一体化装置
CN206721013U (zh) 一种微波式造纸污泥干燥分离一体化装置
CN103431512B (zh) 烟叶烘烤排湿气中余能循环利用装置
CN105526792A (zh) 一种物料干燥系统
CN203555145U (zh) 烟叶烘烤排湿气中余能循环利用装置
CN107702502A (zh) 一种具有排潮功能的带式干燥装置
CN109368976A (zh) 一种空心桨叶式干燥机及其用于污泥干化的烘干系统
CN107673577B (zh) 双螺旋通道式换热管和污泥升温降黏装置
CN105693049B (zh) 一种污水污泥深度处理方法
CN106517721A (zh) 一种造纸污泥的去水分离装置
CN109455897A (zh) 微波热风射流协同干化方法
CN209242901U (zh) 一种空心桨叶式干燥机及其用于污泥干化的烘干系统
CN207775034U (zh) 一种微波辅助处理的市政污泥深度减量化装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20211228

Address after: 311201 No. 3089 South Road, Xintang street, Xiaoshan District, Hangzhou, Zhejiang

Applicant after: Zhejiang Norman Environmental Protection Engineering Technology Co.,Ltd.

Address before: 315470 126 Guangming Road, Simen Town, Yuyao City, Ningbo, Zhejiang

Applicant before: Rao Binqi

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant