CN109225188A - 一种用于太阳光驱动的高效三元复合光催化剂及其制备方法 - Google Patents

一种用于太阳光驱动的高效三元复合光催化剂及其制备方法 Download PDF

Info

Publication number
CN109225188A
CN109225188A CN201811073738.5A CN201811073738A CN109225188A CN 109225188 A CN109225188 A CN 109225188A CN 201811073738 A CN201811073738 A CN 201811073738A CN 109225188 A CN109225188 A CN 109225188A
Authority
CN
China
Prior art keywords
titanium dioxide
efficient
carbon
optical drive
composite photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811073738.5A
Other languages
English (en)
Other versions
CN109225188B (zh
Inventor
张平
杨忠美
丁燕怀
姜勇
尹久仁
蒋鸿运
罗和安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201811073738.5A priority Critical patent/CN109225188B/zh
Publication of CN109225188A publication Critical patent/CN109225188A/zh
Application granted granted Critical
Publication of CN109225188B publication Critical patent/CN109225188B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种用于太阳光驱动的高效三元复合光催化剂及其制备方法,由碳、偏钛酸镁、二氧化钛组成;碳、偏钛酸镁、二氧化钛的质量百分比分别为1~10%,9~60%,30~90%。本发明具有如下的有益效果:1、工艺流程简单不需要复杂的设备,原料成本低廉,对环境无任何污染;2、可以控制碳包覆层的厚度;3、碳包覆层不仅包覆均匀,而且不含碳化不完全而遗留的有机功能团;4、其光催化产氢的效率可以达到33.3mmol·g‑1·h‑1;5、不仅具有优异的光催化性能,而且光学稳定性良好。

Description

一种用于太阳光驱动的高效三元复合光催化剂及其制备方法
技术领域
本发明涉及一种用于光催化的纳米复合材料及其制备方法。
背景技术
二氧化钛因其物化性质稳定,安全无毒,廉价等特点,被视作一个优良的光催化材料候选者。大量基于二氧化钛改性优化的工作已经被广泛报道,比如:元素掺杂,复合结构,氢化还原,构筑异质结等。在这些方法中,与金属或者半导体构筑异质结结构已经被证实可以有效地提高载流子分离效率和光生电子-空穴对的转移速率,从而提高光催化的效率。
偏钛酸镁(MgTiO3),作为钙钛矿家族(如SrTiO3,BaTiO3和CaTiO3等)的一员,因其在高频下低的介电损失和高温稳定性,已经被广泛研究用于陶瓷电容器和谐振器等。因其能带间隙较宽(3.7eV),所以将其作为光催化剂的研究非常少。基于已报道的光催化裂解水方面的文献,我们知道光催化剂必须拥有适合的导带及价带能级才能用于光催化裂解水产氢产氧,即:导带底的位置必须比氢还原电势更负(H+/H2,0V vs.NHE),而价带顶的位置必须比水氧化电势更正(H2O/O2,1.23V vs.NHE)。偏钛酸镁具有适合的电子结构和导带(-0.75eV)/价带(1.23V)位置,完全符合水裂解的氧化还原电势。另外,钙钛矿的导带底主要由空的过渡金属d轨道(Ti4+)构成,其电势是比0V要负的,因而是光催化裂解水的活性位点。因此,根据其良好的平台电势及光伏性,偏钛酸镁具有良好的光催化裂解水性能。
然而,二氧化钛和偏钛酸镁均为宽带隙半导体,只能应用太阳光中的紫外光部分,而到达地球表面的紫外光仅占4%。针对这个问题,必须要将它们的光谱吸收范围拓展到可见光区域(约占53%)。碳材料因其独特的共轭结构和光电耦合能力,近来已经广泛地用于无机光敏剂。除此之外,碳材料还兼具稳定,廉价,无毒及宽光谱响应等特性。碳包覆层与二氧化钛/偏钛酸镁异质结之间电子的相互作用势必提高载流子的分离与输运。虽然碳包覆的光催化剂复合材料已经有大量的报道,但是利用“初生”碳原子在基底表面原位地生成均匀碳包覆层未经报道。这里,所谓的“初生”碳原子是来源于金属镁粉在高温下还原二氧化碳而形成的。
虽然偏钛酸镁相关的光催化剂已经有少量的报道,但是大多数的方法是在液相中的进行的,这些方法一般都要涉及到有机溶剂和有害的副产物,并且在大多数的情况下这些反应过程都非常难以控制,其产量也不高。如果该材料具有良好的潜在应用,那么开发产量高且环境友好的制备途径具有重要意义。针对此技术难题,本发明提出了一种基于固相反应方法克级制备碳包覆的二氧化钛/偏钛酸镁异质结,所制备的复合光催化剂具有活跃的光催化水裂解性能。
发明内容
本发明的目的是提供一种用于光催化的纳米复合材料及其制备方法。不仅具有优异的光催化性能,并且具有良好的光学稳定性。
本发明的目的是通过如下方式实现的:1、一种用于太阳光驱动的高效三元复合光催化剂,由碳、偏钛酸镁、二氧化钛组成;碳、偏钛酸镁、二氧化钛的质量百分比分别为1~10%,9~60%,30~90%。
一种用于太阳光驱动的高效三元复合光催化剂的制备方法:
(1)首先将纳米二氧化钛,碱式碳酸镁、金属镁粉分散均匀,机械研磨1~5小时;
(2)将研磨好的混合粉体材料放入刚玉坩埚中,在惰性气体的保护下,450℃~850℃高温烧结10~30个小时,升温速率为3~5℃/min,然后自然冷却至室温,;
(4)用0.1~1.0mol/L盐酸溶液洗涤产物至PH值小于7,除去未反应的前驱体和生成的副产物;
(5)将盐酸清洗后的产物再用超纯水清洗次至PH为中性,然后干燥12~24小时,得一种用于太阳光驱动的高效三元复合光催化剂。
碱式碳酸镁、纳米二氧化钛、金属镁粉的重量百分比分别为10~40%,50~80%,5~15%。
本发明具有如下的有益效果:1、工艺流程简单不需要复杂的设备,原料成本低廉,对环境无任何污染,光催化剂的产量是克级水平;2、可以通过调节碱式碳酸镁的加入量,来控制二氧化钛与偏钛酸镁的摩尔比及碳包覆层的厚度;3、碳包覆层并不是通过碳化有机物而来,而是创新性地利用金属镁高温下还原二氧化碳原位生成碳沉积,因而不仅包覆均匀,而且不含碳化不完全而遗留的有机功能团;4、碳包覆层不仅将光催化剂的吸收光谱拓展至可见光区域,而且加强了光生电子-空穴的分离与输运效率,性能最佳的光催化剂在一个太阳光的光照下,其光催化产氢的效率可以达到33.3mmol·g-1·h-1。5、可以通过调节二氧化钛与偏钛酸镁的摩尔比来优化光催化性能。6、可以通过调节碳包覆层的厚度来优化光催化性能,本发明所述的制备方法具有一定的通用性;7、通过本发明方法所制备的复合光催化剂材料,不仅具有优异的光催化性能,而且光学稳定性良好,经过25小时的稳定性测试,其性能衰减低于5%。
附图说明
图1为按实施例1方案所制备纳米复合材料作为光催化剂,测试5个小时的光催化产氢性能曲线。
图2为按实施例1方案所制备纳米复合材料作为光催化剂,其低倍TEM图。
图3为按实施例1方案所制备纳米复合材料作为光催化剂,其高倍TEM图。
具体实施方式
下面结合实施例对本发明作进一步详细叙述。
实施例1
首先,将1.0克的纳米二氧化钛与0.4克的碱式碳酸镁和0.15克金属镁粉在玛瑙研钵中充分混合,在室温下,研磨1个小时,得到灰色混合物。然后,直接将研磨后的混合物放入刚玉瓷舟中并置于管式炉中,在氩气气氛下550℃烧结10个小时,接着冷却至室温。最后,将烧结后的混合物用0.1mol/L的盐酸反复清洗过滤直至PH小于7,以保证产物中的氧化镁被清洗干净,接着再用超纯水反复清洗过滤,用硝酸银溶液检测氯离子,保证残留的盐酸完全除去,然后70℃真空干燥12个小时。干燥完成后,得到的灰黑色粉末即为碳包覆的二氧化钛/偏钛酸镁纳米复合光催化材料(C/MgTiO3/TiO2)。
如图1所示,可以清楚看出本发明具有优异的光催化性能,达到33.3mmol·g-1·h-1
如图2所示,是本发明的低分辨率透射电镜图片,由图可以看出,纳米颗粒表面具有一层均匀的碳包覆层;
如图3所示,是相对应的高分辨率透射电镜图片,由图可以看出,两套不同的晶格条纹其间距分别为0.46nm和0.35nm,分别与偏钛酸镁的(003)晶面距和锐钛矿二氧化钛的(101)的晶面距一致。
实施例2
首先,将1.0克的纳米二氧化钛与0.6克的碱式碳酸镁和0.24克金属镁粉在玛瑙研钵中充分混合,在室温下,研磨1个小时,得到灰色混合物。然后,直接将研磨后的混合物放入刚玉瓷舟中并置于管式炉中,在氩气气氛下550℃烧结10个小时,接着冷却至室温。最后,将烧结后的混合物用0.1mol/L的盐酸反复清洗过滤直至PH小于7,以保证产物中的氧化镁被清洗干净,接着再用超纯水反复清洗过滤,用硝酸银溶液检测氯离子,保证残留的盐酸完全除去,然后70℃真空干燥12个小时。干燥完成后,得到的灰黑色粉末即为碳包覆的二氧化钛/偏钛酸镁纳米复合光催化材料(C/MgTiO3/TiO2)。
实施例3
首先,将1.0克的纳米二氧化钛与0.4克的碱式碳酸镁和0.15克金属镁粉在玛瑙研钵中充分混合,在室温下,研磨3个小时,得到灰色混合物。然后,直接将研磨后的混合物放入刚玉瓷舟中并置于管式炉中,在氩气气氛下550℃烧结10个小时,接着冷却至室温。最后,将烧结后的混合物用0.1mol/L的盐酸反复清洗过滤直至PH小于7,以保证产物中的氧化镁被清洗干净,接着再用超纯水反复清洗过滤,用硝酸银溶液检测氯离子,保证残留的盐酸完全除去,然后70℃真空干燥12个小时。干燥完成后,得到的灰黑色粉末即为碳包覆的二氧化钛/偏钛酸镁纳米复合光催化材料(C/MgTiO3/TiO2)。
实施例4
首先,将1.0克的纳米二氧化钛与0.4克的碱式碳酸镁和0.15克金属镁粉在玛瑙研钵中充分混合,在室温下,研磨1个小时,得到灰色混合物。然后,直接将研磨后的混合物放入刚玉瓷舟中并置于管式炉中,在氩气气氛下650℃烧结10个小时,接着冷却至室温。最后,将烧结后的混合物用0.1mol/L的盐酸反复清洗过滤直至PH小于7,以保证产物中的氧化镁被清洗干净,接着再用超纯水反复清洗过滤,用硝酸银溶液检测氯离子,保证残留的盐酸完全除去,然后70℃真空干燥12个小时。干燥完成后,得到的灰黑色粉末即为碳包覆的二氧化钛/偏钛酸镁纳米复合光催化材料(C/MgTiO3/TiO2)。
实施例5
首先,将1.0克的纳米二氧化钛与0.4克的碱式碳酸镁和0.15克金属镁粉在玛瑙研钵中充分混合,在室温下,研磨1个小时,得到灰色混合物。然后,直接将研磨后的混合物放入刚玉瓷舟中并置于管式炉中,在氩气气氛下550℃烧结20个小时,接着冷却至室温。最后,将烧结后的混合物用0.1mol/L的盐酸反复清洗过滤直至PH小于7,以保证产物中的氧化镁被清洗干净,接着再用超纯水反复清洗过滤,用硝酸银溶液检测氯离子,保证残留的盐酸完全除去,然后70℃真空干燥12个小时。干燥完成后,得到的灰黑色粉末即为碳包覆的二氧化钛/偏钛酸镁纳米复合光催化材料(C/MgTiO3/TiO2)。
对比例1:
按照实施例1的方法,不同的是,在制备过程中,二氧化钛与碱式碳酸镁的质量比不一样。
对比例2:
按照实施例1的方法,不同的是,在制备过程中,前驱体的研磨时间不一样。
对比例3:
按照实施例1的方法,不同的是,在制备过程中,研磨产物的烧结温度不一样。
对比例4:
按照实施例1的方法,不同的是,在制备过程中,研磨产物的烧结时间不一样。
光催化产氢性能的测试,具体步骤如下:
光催化水裂解性能是在北京泊菲莱Labsolar-ⅢAG在线光催化系统上测试的,光源型号为PLS-SXE300,配备AM 1.5G的滤光片,其强度相当于1个太阳光。测试之前,先将5毫克的催化剂分散于含有70ml超纯水和30ml三乙醇胺的混合溶液中,超声处理30分钟,以保证催化剂均匀分散,光源与液面的距离大约为10厘米,照射面积大约为10cm2。整个光催化过程均是在室温下进行的,并且全程通冷凝水以消除光源热量带来的影响。铂是通过原位光沉积的方法负载到催化剂表面,即加入一定量(铂占催化剂的质量比为1%)换算后的氯铂酸溶液到以上混合溶液中。整个体系的载气为高纯氩气,流速为6.0ml/min,用北京七星CS200型流速控制器标定。当光催化剂在光照下产生氢气后,一定时间后通过载气将其带入气相色谱中,进行在线定性定量检测。气相色谱的型号为GC9790,浙江福立生产,其检测器为热导池,配分子筛。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (3)

1.一种用于太阳光驱动的高效三元复合光催化剂,其特征在于,由碳、偏钛酸镁、二氧化钛组成;碳、偏钛酸镁、二氧化钛的质量百分比分别为1~10%,9~60%,30~90%。
2.一种用于太阳光驱动的高效三元复合光催化剂的制备方法,其特征在于,
(1)首先将纳米二氧化钛,碱式碳酸镁、金属镁粉分散均匀,机械研磨1~5小时;
(2)将研磨好的混合粉体材料放入刚玉坩埚中,在惰性气体的保护下,450℃~850℃高温烧结10~30个小时,升温速率为3~5℃/min,然后自然冷却至室温,;
(4)用0.1~1.0mol/L盐酸溶液洗涤产物至PH值小于7,除去未反应的前驱体和生成的副产物;
(5)将盐酸清洗后的产物再用超纯水清洗次至PH为中性,然后干燥12~24小时,得一种用于太阳光驱动的高效三元复合光催化剂。
3.根据权利要求2所述的一种用于太阳光驱动的高效三元复合光催化剂的制备方法,其特征在于,碱式碳酸镁、纳米二氧化钛、金属镁粉的重量百分比分别为10~40%,50~80%,5~15%。
CN201811073738.5A 2018-09-14 2018-09-14 一种用于太阳光驱动的高效三元复合光催化剂及其制备方法 Expired - Fee Related CN109225188B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811073738.5A CN109225188B (zh) 2018-09-14 2018-09-14 一种用于太阳光驱动的高效三元复合光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811073738.5A CN109225188B (zh) 2018-09-14 2018-09-14 一种用于太阳光驱动的高效三元复合光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN109225188A true CN109225188A (zh) 2019-01-18
CN109225188B CN109225188B (zh) 2020-12-01

Family

ID=65058108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811073738.5A Expired - Fee Related CN109225188B (zh) 2018-09-14 2018-09-14 一种用于太阳光驱动的高效三元复合光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN109225188B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112295585A (zh) * 2020-10-27 2021-02-02 南昌航空大学 一种钛酸镁/石墨相氮化碳复合可见光催化剂的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028225A (ja) * 2003-07-08 2005-02-03 Toto Ltd 光触媒材料
CN1792813A (zh) * 2005-11-14 2006-06-28 浙江大学 含镁钛酸铝固溶体粉体的合成方法
CN103265068A (zh) * 2013-05-30 2013-08-28 奇瑞汽车股份有限公司 掺碳纳米二氧化钛及其制备方法
CN104128208A (zh) * 2014-07-24 2014-11-05 徐州工程学院 改性纳米二氧化钛光催化剂及其制备方法和应用
CN104841470A (zh) * 2015-04-17 2015-08-19 浙江工业大学 一种复合型二氧化钛纳米片光催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028225A (ja) * 2003-07-08 2005-02-03 Toto Ltd 光触媒材料
CN1792813A (zh) * 2005-11-14 2006-06-28 浙江大学 含镁钛酸铝固溶体粉体的合成方法
CN103265068A (zh) * 2013-05-30 2013-08-28 奇瑞汽车股份有限公司 掺碳纳米二氧化钛及其制备方法
CN104128208A (zh) * 2014-07-24 2014-11-05 徐州工程学院 改性纳米二氧化钛光催化剂及其制备方法和应用
CN104841470A (zh) * 2015-04-17 2015-08-19 浙江工业大学 一种复合型二氧化钛纳米片光催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, ZHIZHONG ET AL.,: ""In situ formation of porous TiO2 nanotube array with MgTiO3 nanoparticles for enhanced photocatalytic activity"", 《SURFACE & COATINGS TECHNOLOGY》 *
崔玉民著,: "《二氧化钛光催化技术》", 31 December 2010, 中国书籍出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112295585A (zh) * 2020-10-27 2021-02-02 南昌航空大学 一种钛酸镁/石墨相氮化碳复合可见光催化剂的制备方法及应用

Also Published As

Publication number Publication date
CN109225188B (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
Wei et al. Defect modulation of Z-scheme TiO2/Cu2O photocatalysts for durable water splitting
Feng et al. Synthesis of branched WO3@ W18O49 homojunction with enhanced interfacial charge separation and full-spectrum photocatalytic performance
Hernández et al. Optimization of 1D ZnO@ TiO2 core–shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination
Zhang et al. Carbon-doped ZnO nanostructures: facile synthesis and visible light photocatalytic applications
Li et al. A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells
Chen et al. Heterojunctions in g-C3N4/B-TiO2 nanosheets with exposed {001} plane and enhanced visible-light photocatalytic activities
Shi et al. Visible-light photocatalytic degradation of BiTaO4 photocatalyst and mechanism of photocorrosion suppression
Ahmed et al. Enhanced photoelectrochemical water oxidation on nanostructured hematite photoanodes via p-CaFe2O4/n-Fe2O3 heterojunction formation
Song et al. Enhanced photoelectrochemical response of a composite titania thin film with single-crystalline rutile nanorods embedded in anatase aggregates
Spadavecchia et al. Electronic structure of pure and N-doped TiO2 nanocrystals by electrochemical experiments and first principles calculations
Zhang et al. Increasing the oxygen vacancy density on the TiO2 surface by La-doping for dye-sensitized solar cells
Yuan et al. Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride
Kanhere et al. Visible light driven photocatalytic hydrogen evolution and photophysical properties of Bi3+ doped NaTaO3
Pei et al. Oriented growth of Sc-doped Ta3N5 nanorod photoanode achieving low-onset-potential for photoelectrochemical water oxidation
Dai et al. Band structure engineering design of g-C3N4/ZnS/SnS2 ternary heterojunction visible-light photocatalyst with ZnS as electron transport buffer material
Pérez-González et al. Optical, structural, and morphological properties of photocatalytic TiO2–ZnO thin films synthesized by the sol–gel process
D’Arienzo et al. Solar light and dopant-induced recombination effects: photoactive nitrogen in TiO2 as a case study
Jang et al. Vertically aligned core–shell PbTiO3@ TiO2 heterojunction nanotube array for photoelectrochemical and photocatalytic applications
Ding et al. Substrate–electrode interface engineering by an electron-transport layer in hematite photoanode
Yuan et al. Preparation and DSC application of the size-tuned ZnO nanoarrays
CN108355692A (zh) 碳自掺杂的石墨相氮化碳/二氧化钛纳米复合材料及其制备方法、应用
Mezzetti et al. Hyperbranched TiO2–CdS nano-heterostructures for highly efficient photoelectrochemical photoanodes
CN101966450A (zh) 一种高效复合光催化剂及其制备方法
Guo et al. Improving photocatalytic activity in NO removal by adding metallic bismuth to SrTiO3 nanoparticles
Koshevoy et al. Photoelectrochemical methods for the determination of the flat-band potential in semiconducting photocatalysts: A comparison study

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201201

CF01 Termination of patent right due to non-payment of annual fee