CN109216033A - 一种量子点敏化太阳能电池用对电极材料的制备方法 - Google Patents

一种量子点敏化太阳能电池用对电极材料的制备方法 Download PDF

Info

Publication number
CN109216033A
CN109216033A CN201811025705.3A CN201811025705A CN109216033A CN 109216033 A CN109216033 A CN 109216033A CN 201811025705 A CN201811025705 A CN 201811025705A CN 109216033 A CN109216033 A CN 109216033A
Authority
CN
China
Prior art keywords
nitrogen
methyl orange
preparation
quantum dot
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811025705.3A
Other languages
English (en)
Other versions
CN109216033B (zh
Inventor
王桂强
张伟
王彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bohai University
Original Assignee
Bohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bohai University filed Critical Bohai University
Priority to CN201811025705.3A priority Critical patent/CN109216033B/zh
Publication of CN109216033A publication Critical patent/CN109216033A/zh
Application granted granted Critical
Publication of CN109216033B publication Critical patent/CN109216033B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

一种量子点敏化太阳能电池用对电极材料的制备方法,将甲基橙和FeCl3·6H2O溶于去离子水中,然后加入吡咯单体,室温下搅拌,得到掺杂甲基橙的聚吡咯纳米管;将掺杂甲基橙的聚吡咯纳米管用去离子水和乙醇清洗后,在60℃真空烘箱中干燥,干燥后的掺杂甲基橙的聚吡咯纳米管与KOH混合均匀,然后在N2保护下热处理,冷却到室温后,清洗杂质;然后在80℃真空烘箱中烘干,得到相互连结氮/硫共掺杂多孔碳纳米片。优点是:该电极材料为相互连结的氮/硫共掺杂多孔碳纳米片结构,具有较高的比表面积和孔体积,以及包含微孔、介孔、大孔的多级孔结构,使其具有优异的电化学性能。

Description

一种量子点敏化太阳能电池用对电极材料的制备方法
技术领域
本发明涉及一种量子点敏化太阳能电池用对电极材料的制备方法。
背景技术
多孔碳材料具有比表面积大、孔结构可调、价格便宜、导电性高、稳定性好等特点,因此可作为量子点敏化太阳能电池对电极材料。但是,颗粒状多孔碳材料内容易形成较长的电解质扩散通道,这将限制电解质的传输速率,从而影响多孔碳材料的电化学性能。低维多孔碳材料,特别是二维(2D)多孔碳材料能够提供较短的电解质扩散通道和较快的电子传输过程。因此,作为量子点敏化太阳能电池对电极,石墨烯基纳米结构碳材料和多孔碳纳米片材料都表现出比颗粒状多孔碳材料优异的电化学性能。
另一方面,研究发现,氮、硫、磷、硼等元素掺杂,可以明显改善碳材料的表面浸润性,提高其电导性能和表面电催化性能。因此,掺杂碳材料使其具有优异的电化学性能成为目前电化学领域的主要研究方向。
发明内容
本发明要解决的技术问题是提供一种量子点敏化太阳能电池用对电极材料的制备方法,该电极材料为相互连结的氮/硫共掺杂多孔碳纳米片结构,具有较高的比表面积和孔体积,以及包含微孔、介孔、大孔的多级孔结构,使其具有优异的电化学性能。
本发明的技术解决方案是:
一种量子点敏化太阳能电池用对电极材料的制备方法,其具体步骤是:
(1)制备掺杂甲基橙的聚吡咯纳米管
按照重量分数计,将0.35份-0.65份的甲基橙(MO)和3份-6份的FeCl3·6H2O溶于去离子水中,得到甲基橙-氯化铁混合水溶液;然后将0.7份-1.4份吡咯单体加入甲基橙-氯化铁混合水溶液中,室温下搅拌18h-24h,得到掺杂甲基橙的聚吡咯(PPy)纳米管;
(2)将掺杂甲基橙的聚吡咯纳米管用去离子水和乙醇清洗后,在60℃真空烘箱中干燥,干燥后的掺杂甲基橙的聚吡咯纳米管与KOH按照重量比1:1-1:3混合均匀,得到纳米管/KOH混合物;然后将纳米管/KOH混合物在N2保护下升温到600℃-800℃,热处理1h-3h,冷却到室温后,用1mol/L HCl和去离子水清洗杂质;然后在80℃真空烘箱中烘干,得到相互连结氮/硫共掺杂多孔碳纳米片。
进一步的,步骤(1)中所述FeCl3·6H2O与去离子水的质量体积比为0.01g/mL-0.02g/mL。
进一步的,热处理时,升温速率为3℃/min-10℃/min。
进一步的,所述相互连结氮/硫共掺杂多孔碳纳米片具有多级孔结构,包含微孔、介孔和大孔。
进一步的,所述相互连结氮/硫共掺杂多孔碳纳米片具有多级孔结构,氮元素与硫元素共同掺入到碳材料中,氮元素具有吡啶氮、吡咯氮和季胺氮三种状态,硫元素具有氧化态硫和噻吩硫二种状态。
本发明的有益效果:
制备方法简单,成本低廉。以掺杂甲基橙的聚吡咯纳米管为前驱体,通过在氮气气氛下进行简单的热处理,制备了相互连结的氮/硫共掺杂多孔碳纳米片。所制备的相互连结的氮/硫共掺杂多孔碳纳米片具有较高的比表面积和孔体积,以及包含微孔、介孔、大孔的多级孔结构。这些结构特征使所制备的相互连结的氮/硫共掺杂多孔碳纳米片作为量子点敏化太阳能电池用电极材料使用,具有优异的电化学性能。
附图说明
图1是本发明(对应实施例3)相互连结氮/硫共掺杂多孔碳纳米片的扫描电子显微镜照片;
图2是本发明(对应实施例3)相互连结氮/硫共掺杂多孔碳纳米片的透射电子显微镜照片;
图3是本发明(对应实施例3)相互连结氮/硫共掺杂多孔碳纳米片的高分辨透射电子显微镜照片;
图4是本发明(对应实施例3)相互连结氮/硫共掺杂多孔碳纳米片的氮吸附-脱附等温线;
图5是本发明(对应实施例3)相互连结氮/硫共掺杂多孔碳纳米片的孔尺寸分布曲线;
图6是本发明(对应实施例3)相互连结氮/硫共掺杂多孔碳纳米片的XPS扫描谱;
图7是本发明(对应实施例3)相互连结氮/硫共掺杂多孔碳纳米片的N1s拟合谱图;
图8是本发明(对应实施例3)相互连结氮/硫共掺杂多孔碳纳米片的S2p的拟合谱图;
图9是本发明(对应实施例3)相互连结氮/硫共掺杂多孔碳纳米片(NSPCNS)电极与传统PbS电极的Nyquist图;
图10是本发明(对应实施例3)相互连结氮/硫共掺杂多孔碳纳米片(NSPCNS)电极与传统PbS电极组装的量子点敏化太阳能电池的电流密度-电压曲线。
具体实施方式
实施例1
将0.35g的甲基橙(MO)和3g的FeCl3·6H2O溶于300mL去离子水中,然后将0.7g吡咯单体加入上述水溶液中,室温下搅拌18h,制备甲基橙(MO)掺杂的聚吡咯(PPy)纳米管;将合成的甲基橙掺杂的聚吡咯纳米管用去离子水和乙醇清洗;洗净后的甲基橙掺杂的聚吡咯纳米管在60℃真空烘箱中干燥;干燥后的甲基橙掺杂的聚吡咯纳米管3g与KOH 3g(按重量比1:1)混合均匀,然后将纳米管/KOH混合物放入马弗炉中,在N2保护下升温到800℃,热处理3h;升温速率为10℃/min;冷却到室温后,用1mol/L HCl和去离子水清洗,以除去无机盐杂质;清洗干净的样品在80℃真空烘箱中烘干,得到相互连结的氮/硫共掺杂多孔碳纳米片。
实施例2
将0.65g的甲基橙和6g的FeCl3·6H2O溶于300mL去离子水中,然后将1.4g吡咯单体加入上述水溶液中,室温下搅拌24h,制备MO掺杂的PPy纳米管;将合成的MO掺杂PPy纳米管用去离子水和乙醇清洗;洗净后的MO掺杂PPy纳米管在60℃真空烘箱中干燥;干燥后的MO掺杂PPy纳米管与KOH按重量比1:3混合均匀,然后将MO掺杂PPy纳米管/KOH混合物放入马弗炉中,在N2保护下升温到600℃,热处理1h;升温速率为3℃/min;冷却到室温后,用1M HCl和去离子水清洗,以除去无机盐杂质;清洗干净的样品在80℃真空烘箱中烘干;制备相互连结的氮/硫共掺杂多孔碳纳米片。
实施例3
将0.5g甲基橙(MO)和3.9g FeCl3·6H2O溶于300mL去离子水中,然后将1g吡咯单体加入上述水溶液中,室温下搅拌20h,制备MO掺杂的PPy纳米管;将合成的MO掺杂PPy纳米管用去离子水和乙醇清洗;洗净后的MO掺杂PPy纳米管在60℃真空烘箱中干燥;干燥后的MO掺杂PPy纳米管与KOH按重量比1:2混合均匀,然后将MO掺杂PPy纳米管/KOH混合物放入马弗炉中,在N2保护下升温到700℃,热处理2h;升温速率为5℃/min;冷却到室温后,用1M HCl和去离子水清洗,以除去无机盐杂质;清洗干净的样品在80℃真空烘箱中烘干,制备相互连结的氮/硫共掺杂多孔碳纳米片。该纳米片用扫描电子显微镜、透射电子显微镜、N2吸附、X-射线光电子能谱对样品进行分析表征如图1-8所示。图1和图2表明所制备的样品呈相互连结的纳米片结构,相互连结的纳米片形成多孔三维结构,图3可以看出纳米片是多孔结构。由图4中脱附曲线计算所制备样品的比表面积为1744.8m2/g,孔体积为1.01cm3/g。图5表明所制备样品具有多级孔结构,包含微孔、介孔和大孔。图6-图8表明所制备样品中含有碳、氮、硫、氧四种元素。氮元素有吡啶氮、吡咯氮和季胺氮三种状态,硫元素有氧化态硫和噻吩硫二种状态。这表明氮与硫共同掺入到碳材料中。
将实施例3制备的相互连结的氮/硫共掺杂多孔碳纳米片用于量子点敏化太阳能电池电极,并组装了量子点敏化太阳能电池。分析了氮/硫共掺杂多孔碳纳米片的电催化性能和所组装电池的光电性能。
将150mg NSPCNs样品与0.1mL TiCl4、0.1mL 30%Triton X-100及5mL正丁醇通过超声和研磨形成碳浆。用刮涂法将碳浆沉积到清洗干净的FTO导电玻璃表面,碳层厚度控制在7μm左右。然后将制备的碳电极在300℃下热处理30min,制备用于量子点敏化太阳能电池的碳对电极。为了比较,通过将Pb片放入1M S、1M Na2S和0.1M NaOH溶液中制备PbS电极。对称薄层电池的电化学阻抗谱(EIS)分析氮/硫共掺杂多孔碳纳米片电极对多硫(S2-/Sn 2-)电解质再生反应的电催化活性。图9表明氮/硫共掺杂多孔碳纳米片电极对多硫(S2-/Sn 2-)电解质再生反应的电催化活性与传统的PbS电极相似。
量子点敏化太阳能电池光阳极的制备方法如下:将9μm厚TiO2(P25)膜沉积到FTO导电玻璃表面,450℃下处理30min。将TiO2电极交替浸入0.1M Cd(CH3COO)2溶液和0.1MNa2S溶液中各1min,重复6次,制备CdS-TiO2电极。4℃条件下,将CdS-TiO2电极浸入0.08MCdSO4、0.16M N(CH3COONa)3和0.08M Na2SeSO3混合溶液中20h,制备CdS/CdSe量子点共敏化TiO2电极。将CdS/CdSe量子点共敏化TiO2电极与对电极面对面夹一起,中间用60μm Surlyn膜隔离。两电极间空隙填充多硫电解质(S2-/Sn 2-)组装量子点敏化太阳能电池。用Keithley2400数字源表记录电池的光电性能。电池光电性能在100mW/cm2(AM1.5)模拟光照下测量。图10表明氮/硫共掺杂多孔碳纳米片对电极组装的量子点敏化太阳能电池光电效率为5.31%,与传统的PbS对电极电池(5.51%)几乎相同,而明显高于普通多孔碳材料对电极电池,是理想的量子点敏化太阳能电池电极材料。
以上仅为本发明的具体实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种量子点敏化太阳能电池用对电极材料的制备方法,其特征是:
具体步骤是:
(1)制备掺杂甲基橙的聚吡咯纳米管
按照重量分数计,将0.35份-0.65份的甲基橙(MO)和3份-6份的FeCl3×6H2O溶于去离子水中,得到甲基橙-氯化铁混合水溶液;然后将0.7份-1.4份吡咯单体加入甲基橙-氯化铁混合水溶液中,室温下搅拌18h-24h,得到掺杂甲基橙的聚吡咯(PPy)纳米管;
(2)将掺杂甲基橙的聚吡咯纳米管用去离子水和乙醇清洗后,在60℃真空烘箱中干燥,干燥后的掺杂甲基橙的聚吡咯纳米管与KOH按照重量比1:1-1:3混合均匀,得到纳米管/KOH混合物;然后将纳米管/KOH混合物在N2保护下升温到600℃-800℃,热处理1h-3h,冷却到室温后,用1mol/L HCl和去离子水清洗杂质;然后在80℃真空烘箱中烘干,得到相互连结氮/硫共掺杂多孔碳纳米片。
2.根据权利要求1所述的量子点敏化太阳能电池用对电极材料的制备方法,其特征是:步骤(1)中所述FeCl3×6H2O与去离子水的质量体积比为0.01g/mL-0.02g/mL。
3.根据权利要求1所述的量子点敏化太阳能电池用对电极材料的制备方法,其特征是:热处理时,升温速率为3℃/min-10℃/min。
4.根据权利要求1所述的量子点敏化太阳能电池用对电极材料的制备方法,其特征是:所述相互连结氮/硫共掺杂多孔碳纳米片具有多级孔结构,包含微孔、介孔和大孔。
5.根据权利要求1所述的量子点敏化太阳能电池用对电极材料的制备方法,其特征是:所述相互连结氮/硫共掺杂多孔碳纳米片具有多级孔结构,氮元素与硫元素共同掺入到碳材料中,氮元素具有吡啶氮、吡咯氮和季胺氮三种状态,硫元素具有氧化态硫和噻吩硫二种状态。
CN201811025705.3A 2018-09-04 2018-09-04 一种量子点敏化太阳能电池用对电极材料的制备方法 Expired - Fee Related CN109216033B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811025705.3A CN109216033B (zh) 2018-09-04 2018-09-04 一种量子点敏化太阳能电池用对电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811025705.3A CN109216033B (zh) 2018-09-04 2018-09-04 一种量子点敏化太阳能电池用对电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN109216033A true CN109216033A (zh) 2019-01-15
CN109216033B CN109216033B (zh) 2020-08-14

Family

ID=64986092

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811025705.3A Expired - Fee Related CN109216033B (zh) 2018-09-04 2018-09-04 一种量子点敏化太阳能电池用对电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN109216033B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734158A (zh) * 2018-12-27 2019-05-10 金川集团股份有限公司 一种氮、硫共掺杂多孔碳片电容脱盐电极材料及其制备和应用
CN112408496A (zh) * 2020-11-09 2021-02-26 邵阳学院 一种氮、硫共掺杂碳@FeS纳米管及其制备方法和应用
CN116120925A (zh) * 2023-01-30 2023-05-16 陕西科技大学 高产率的氮硫共掺杂荧光碳量子点及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005006471A1 (en) * 2003-07-10 2005-01-20 Seoul National University Industry Foundation Nanostructured carbon materials having good crystallinity and large surface area suitable for electrodes, and method for synthesizing the same using catalytic graphitization of polymeric carbon precursors
CN104785248A (zh) * 2015-04-29 2015-07-22 上海博暄能源科技有限公司 氢气燃料电池催化剂的制备方法及用该方法制备的催化剂
CN105293472A (zh) * 2015-11-24 2016-02-03 绍兴文理学院 一种强酸性离子液体功能化的纳米多孔碳材料的制备方法
CN105289724A (zh) * 2015-09-28 2016-02-03 辽宁大学 Au/PILs/PPyNTs复合材料的制备方法及应用
CN105958033A (zh) * 2016-07-04 2016-09-21 吉林大学 一种非石墨化碳纳米管/硫复合材料的制备方法及应用
CN108063056A (zh) * 2017-12-08 2018-05-22 中北大学 一种多孔氮掺杂碳/碳纳米管复合材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005006471A1 (en) * 2003-07-10 2005-01-20 Seoul National University Industry Foundation Nanostructured carbon materials having good crystallinity and large surface area suitable for electrodes, and method for synthesizing the same using catalytic graphitization of polymeric carbon precursors
CN104785248A (zh) * 2015-04-29 2015-07-22 上海博暄能源科技有限公司 氢气燃料电池催化剂的制备方法及用该方法制备的催化剂
CN105289724A (zh) * 2015-09-28 2016-02-03 辽宁大学 Au/PILs/PPyNTs复合材料的制备方法及应用
CN105293472A (zh) * 2015-11-24 2016-02-03 绍兴文理学院 一种强酸性离子液体功能化的纳米多孔碳材料的制备方法
CN105958033A (zh) * 2016-07-04 2016-09-21 吉林大学 一种非石墨化碳纳米管/硫复合材料的制备方法及应用
CN108063056A (zh) * 2017-12-08 2018-05-22 中北大学 一种多孔氮掺杂碳/碳纳米管复合材料及其制备方法和应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734158A (zh) * 2018-12-27 2019-05-10 金川集团股份有限公司 一种氮、硫共掺杂多孔碳片电容脱盐电极材料及其制备和应用
CN109734158B (zh) * 2018-12-27 2021-10-15 金川集团股份有限公司 一种氮、硫共掺杂多孔碳片电容脱盐电极材料及其制备和应用
CN112408496A (zh) * 2020-11-09 2021-02-26 邵阳学院 一种氮、硫共掺杂碳@FeS纳米管及其制备方法和应用
CN116120925A (zh) * 2023-01-30 2023-05-16 陕西科技大学 高产率的氮硫共掺杂荧光碳量子点及其制备方法和应用
CN116120925B (zh) * 2023-01-30 2024-01-26 陕西科技大学 高产率的氮硫共掺杂荧光碳量子点及其制备方法和应用

Also Published As

Publication number Publication date
CN109216033B (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
Zou et al. NixSy nanowalls/nitrogen‐doped graphene foam is an efficient trifunctional catalyst for unassisted artificial photosynthesis
Perera et al. Manganese oxide nanorod–graphene/vanadium oxide nanowire–graphene binder-free paper electrodes for metal oxide hybrid supercapacitors
Li et al. Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability
Cai et al. PtRu nanofiber alloy counter electrodes for dye-sensitized solar cells
Liu et al. Carbon nanosphere@ vanadium nitride electrode materials derived from metal-organic nanospheres self-assembled by NH4VO3, chitosan, and amphiphilic block copolymer
Yao et al. Remarkable enhancement in the photoelectric performance of uniform flower-like mesoporous Fe3O4 wrapped in nitrogen-doped graphene networks
Shao et al. Enhanced-performance flexible supercapacitor based on Pt-doped MoS2
CN109216033A (zh) 一种量子点敏化太阳能电池用对电极材料的制备方法
CN109778225A (zh) 一种N,S共掺杂石墨烯/硒化钼/CoFe-LDH气凝胶及其制备
Li et al. High-efficiency layered sulfur-doped reduced graphene oxide and carbon nanotube composite counter electrode for quantum dot sensitized solar cells
Liu et al. Titanium dioxide nanoparticles modified three dimensional ordered macroporous carbon for improved energy output in microbial fuel cells
Chang et al. Nanoarchitecture of variable sized graphene nanosheets incorporated into three-dimensional graphene network for dye sensitized solar cells
Huo et al. A transparent cobalt sulfide/reduced graphene oxide nanostructure counter electrode for high efficient dye-sensitized solar cells
Navarro‐Pardo et al. 1D/2D cobalt‐based nanohybrids as electrocatalysts for hydrogen generation
Sha et al. MoSe2 nanostructures and related electrodes for advanced supercapacitor developments
Noh et al. Aligned photoelectrodes with large surface area prepared by pulsed laser deposition
Jia et al. High-performance molybdenum diselenide electrodes used in dye-sensitized solar cells and supercapacitors
Du et al. Cuprous sulfide on Ni foam as a counter electrode for flexible quantum dot sensitized solar cells
Yao et al. Great enhancement of electrochemical cyclic voltammetry stabilization of Fe3O4 microspheres by introducing 3DRGO
Gao et al. In situ synthesis of cobalt triphosphate on carbon paper for efficient electrocatalyst in dye-sensitized solar cell
Pei et al. PbS decorated multi-walled carbon nanotube/Ti mesh films as efficient counter electrodes for quantum dots sensitized solar cells
Lee et al. Direct growth of NiO nanosheets on mesoporous TiN film for energy storage devices
Yoon et al. Efficient Si/SiOx/ITO heterojunction photoanode with an amorphous and porous NiOOH catalyst formed by NiCl2 activation for water oxidation
Jiang et al. Fungi-derived, functionalized, and wettability-improved porous carbon materials: an excellent electrocatalyst toward VO2+/VO2+ redox reaction for vanadium redox flow battery
Xiong et al. La 0.5 Sr 0.5 CoO 2.91@ RGO nanocomposites as an effective counter electrode for dye-sensitized solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200814

Termination date: 20210904

CF01 Termination of patent right due to non-payment of annual fee