CN109212563B - 北斗/gps三频周跳探测与修复方法 - Google Patents

北斗/gps三频周跳探测与修复方法 Download PDF

Info

Publication number
CN109212563B
CN109212563B CN201710518983.1A CN201710518983A CN109212563B CN 109212563 B CN109212563 B CN 109212563B CN 201710518983 A CN201710518983 A CN 201710518983A CN 109212563 B CN109212563 B CN 109212563B
Authority
CN
China
Prior art keywords
cycle slip
frequency
epoch
ewl
ionosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710518983.1A
Other languages
English (en)
Other versions
CN109212563A (zh
Inventor
李博峰
覃亚男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201710518983.1A priority Critical patent/CN109212563B/zh
Publication of CN109212563A publication Critical patent/CN109212563A/zh
Application granted granted Critical
Publication of CN109212563B publication Critical patent/CN109212563B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明提供了一种北斗/GPS三频周跳探测与修复方法,包括:获取并固定EWL周跳;获取并固定WL周跳;利用周跳固定的EWL/WL组合观测值和非差三频观测值建立历元间差分GB模型;根据历元间电离层变化量先验值建立电离层加权模型,求解位置参数浮点解和NL周跳浮点解;对NL浮点解周跳尝试固定,当固定失败时,尝试部分周跳固定,若部分周跳固定成功,则输出NL周跳整数解,并计算当前历元与前一历元间电离层变化量,否则,周跳解算失败;当固定成功时,直接输出NL周跳整数解,并计算当前历元与前一历元间电离层变化量。

Description

北斗/GPS三频周跳探测与修复方法
技术领域
本发明涉及卫星导航定位领域,尤其是一种北斗/GPS三频周跳探测与修复方法。
背景技术
随着中国自主研发、独立运行的北斗导航卫星系统开始覆盖亚太地区,目前,北斗已能在亚太地区提供高质量的独立导航服务,并将在2020年左右覆盖全球。北斗是第一个全系统播发三频信号的GNSS定位系统,其三个频率分别为B1(1561.098MHz)、B2(1207.14MHz)和B3(1268.52MHz)。三频信号能提供给用户更多的观测数据,以及由这些原始观测数据衍生出的各种组合观测值,理论上可以提高周跳探测。多频(Multi-frequency)是目前及未来GNSS的发展方向,在提升定位精度方面有很大优势,然而卫星播发频率数量的增加也就意味着周跳出现的可能性更大,这对于利用相位观测值实施高精度应用来说是一个不容忽视的问题。
发明内容
申请人研究发现,三频信号的一个优势就在于,它可以组成更多符合不同应用要求的线性组合,如波长更长、周跳更易固定的EWL/WL组合观测值。由于EWL组合观测值波长很长(北斗为6.3707m,GPS为5.8610m),受历元间电离层变化量的影响非常小,可以完全将其忽略而不会影响EWL周跳的正确固定。周跳固定的EWL(Extra Wide Lane,超宽巷)组合观测值可充当高精度伪距观测值,用于WL周跳探测。在采样间隔较大或者电离层活动较大的情况下,历元间电离层变化量可能会影响WL周跳的固定,可利用历史数据模型化电离层变化量,用预报值减弱历元间电离层变化量对WL(Wide Lane,宽巷)周跳探测的影响。
目前的周跳探测与修复方法普遍是基于GF(Geometry-free,基于无几何域)模型,由于其消除了接收机位置参数,抛弃了EWL/WL组合观测值对于NL周跳探测的辅助作用,该模型相比于GB(Geometry-based,基于几何域)模型强度较低。为了充分利用EWL/WL组合观测值与NL(Narrow Lane,窄巷)观测值的相互联系,采用以接收机位置信息为桥梁的GB模型,并通过电离层预报值建立IW模型(Ionosphere-weighted,电离层加权模型),严格处理历元间电离层变化量,实现GB模型下的三频观测值周跳探与修复。
实际应用中,观测环境的复杂多变使不同的周跳观测强度不同,精度差异较大,因而不能有效地固定所有周跳。比如,新升卫星由于高度角过低,卫星精度较差,周跳不易固定,增加固定全部周跳的难度,或容易出现周跳错误固定,导致定位错误,这种情况下,部分周跳固定的方法更为有效。
本发明的目的在于提供一种北斗/GPS三频周跳探测与修复方法,以解决三频CDMA卫星系统数据预处理的周跳问题。
为了达到上述目的,本发明提供了种北斗/GPS三频周跳探测与修复方法,包括:
获取并固定EWL周跳;
获取并固定WL周跳;
利用周跳固定的EWL/WL组合观测值和非差三频观测值建立历元间差分GB模型;
根据历元间电离层变化量先验值建立电离层加权模型,求解位置参数浮点解和NL周跳浮点解;
对NL浮点解周跳尝试固定,当整体固定失败时,尝试部分周跳固定,若部分周跳固定成功,则输出NL周跳整数解,并计算当前历元与前一历元间电离层变化量,否则,周跳解算失败;当固定成功时,直接输出NL周跳整数解,并计算当前历元与前一历元间电离层变化量。
优选的,在上述的北斗/GPS三频周跳探测与修复方法中,获取EWL周跳并固定所述EWL周跳的步骤包括:
设置卫星截止高度角,利用SPP获取卫星钟差、坐标初值以及设计矩阵,并获取三频观测值前后历元间差分;
在实施周跳探测的当前历元获取三频相位观测值,所述三频相位观测值组成相位EWL观测值,根据相应的伪距组合观测值与所述相位EWL观测值建立历元间差分GF模型,根据所述历元间差分GF模型获取EWL周跳并固定所述EWL周跳。
优选的,在上述的北斗/GPS三频周跳探测与修复方法中,所述差分GF模型如下:
Figure BDA0001336995360000031
Figure BDA0001336995360000032
其中,下标j表示第j个频率fj,下标s表示卫星,φj和pj为相位观测向量和伪距观测向量,都以米为单位,ρ为卫星和接收机之间的几何距离,包含对流层延迟,以米为单位;δtj和dtj分别为相位和伪距的接收机钟差,以米为单位;δts,j和dts,j分别为相位和伪距的卫星钟差,都以米为单位;ι是第一个频率f1上的电离层延迟,以米为单位,
Figure BDA0001336995360000033
λj为第j个频率fj的波长,以米/周为单位;aj=φj(t0)-φs,j(t0)+zj是模糊度,其中zj为整数,φs,j(t0)为卫星初始相位偏差,φj(t0)为接收机初始相位偏差,均以周为单位。
优选的,在上述的北斗/GPS三频周跳探测与修复方法中,获取并固定WL周跳的步骤包括:
获取当前历元与前一观测历元电离层变化量先验值;
判断历元间电离层先验值是否大于一预定阈值;
若历元间电离层先验值大于所述预定阈值,则三频相位观测值组成WL观测值,与周跳固定的EWL观测值建立历元间差分GF模型,电离层改正,求解并固定WL周跳;
否则,利用三频相位观测值组成WL观测值,与周跳固定的EWL观测值建立历元间差分GF模型,直接求解WL周跳并固定。
优选的,在上述的北斗/GPS三频周跳探测与修复方法中,GF模型下WL周跳的估值为:
Figure BDA0001336995360000041
其中,[·]代表四舍五入算子,
Figure BDA0001336995360000042
为周跳改正的EWL组合观测值,Δφ(i,j,k)是组合相位观测值定义,λ(i,j,k)为组合相位观测值的波长,i,j,k,l,m,n,分别为组合系数。
优选的,在上述的北斗/GPS三频周跳探测与修复方法中,利用周跳固定的EWL/WL组合观测值和非差三频观测值建立历元间差分GB模型如下:
Figure BDA0001336995360000043
E(pj+δts)=Ab+esδt-βjι,
其中,b=xk+1-xk是两个历元间的基线参数。
优选的,在上述的北斗/GPS三频周跳探测与修复方法中,所述电离层加权模型如下:
Figure BDA0001336995360000051
Figure BDA0001336995360000052
其中,H=[A,es]:是合并基线参数和接收机钟差后的设计矩阵,b=[b,δt],
Figure BDA0001336995360000053
是电离层变化量预报值的方差,τ=[τ1,…τn]T;ι表示第1个频率上的n*1维电离层延迟,以米为单位,b是两个历元间的基线参数,z表示整数周跳,e2f+2表示(2f+2)*1维向量,其元素均为1,υ表示电离层延迟变化量与频率相关的系数阵,不同频率上的电离层延迟变化量与其频率的平方成反比,Is表示s维单位矩阵,Γ=[Λ,0]T,Qs表示非差观测值与高度角相关的协因数阵,δι表示观测值接收机钟差,ι0表示第1个频率上的n*1维电离层延迟变化量的先验值。
优选的,在上述的北斗/GPS三频周跳探测与修复方法中,所述输出NL周跳整数解为:
Figure BDA0001336995360000054
其中,
Figure BDA0001336995360000055
为第一次部分固定的最优整数解,
Figure BDA0001336995360000056
为第二次部分固定的最优整数解。
与现有技术相比,本发明实施例所提供的北斗/GPS三频周跳探测与修复方法至少具有以下有益效果:
第一,本发明实施例所提供的北斗/GPS三频周跳探测与修复方法利用三频信号能够提供更多观测数据,及由这些原始观测数据衍生出的保持模糊度整数特性的线性组合的优势,以成功率最高为准则,选出波长更长、周跳更容易固定、且成功率极高的EWL/WL组合,有效地固定EWL/WL周跳。
第二,当前的周跳探测方法普遍是基于无几何域(GF)模型,这种模型消除了位置参数,完全抛弃了EWL.WL组合观测值与NL观测值之间以接收机位置参数为纽带的相互联系,与本发明实施例中采用的GB模型相比,模型强度低。本发明实施例中采用的GB模型,以接收机位置参数为桥梁,利用周跳固定的EWL/WL组合观测值辅助NL周跳探测,周跳解算成功率更高。
第三,当前周跳探测与修复方法都单纯的忽略电离层对于周跳探测的影响,当数据采样的间隔较大或电离层活跃时,忽略电离层会导致周跳探测失败或错误,本发明的技术方案严格考虑了历元间电离层变化量对WL和NL周跳探测的影响,使周跳解算结果更为可靠。
第四,由于观测环境的复杂性,使不同周跳具有的几何强度不同,本发明的技术方案在不能有效的整体固定周跳时,采用部分周跳固定的方法,提高周跳固定的成功率和正确率,实现观测数据的最高利用率。
附图说明
图1为本发明一实施例中北斗/GPS三频周跳探测与修复方法的流程图。
具体实施方式
下面将结合示意图对本发明的具体实施方式进行更详细的描述。根据下列描述和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明实施例提供了一种北斗/GPS三频周跳探测与修复方法,如图1所示,图1为本发明一实施例中北斗/GPS三频周跳探测与修复方法的流程图。所述方法包括:读入观测数据,设置卫星截止高度角,利用SPP(Single Point Positioning,单点定位)获取卫星钟差、坐标初值以及设计矩阵,并获取三频观测值前后历元间差分,如图1中的步骤S1。
接下来,进入步骤S2,在实施周跳探测的当前历元获取三频相位观测值,所述三频相位观测值组成相位EWL观测值,根据相应的伪距组合观测值与所述相位EWL观测值建立历元间差分GF模型,根据所述历元间差分GF模型获取EWL周跳并固定所述EWL周跳。
具体的,设置所述卫星截止高度角,所述卫星截止高度角设置为5°~20°,较佳的,在本发明一实施例中,将所述卫星截止高度角设置为10°。SPP剔除掉高度角较低的卫星,高度角的权重分配公式为
Figure BDA0001336995360000071
其中,θ为卫星高度角。
接下来,获取接收机坐标初值、设计矩阵以及卫星钟差。为了防止卫星钟差在两个相邻历元间发生跳变,采用与前一历元相同的星历数据计算当前历元的卫星坐标和卫星钟差。对流层采用UNB3模型改正,电离层改正采用无电离层组合削弱电离层影响。其中,UNB3模型是指新布伦斯威克大学的一个研究小组研究的对流层延迟改正模型。匹配前后历元相同的卫星,三频观测值前后历元作差,形成历元间差分观测值。
根据所述伪距EWL观测值和相位EWL观测值建立的历元间差分GF模型如下,即,GF模型下非差单站单历元单频相位观测方程和伪距观测方程如下:
Figure BDA0001336995360000072
Figure BDA0001336995360000073
其中,下标j表示第j个频率fj,下标s表示卫星,φj和pj为相位观测向量和伪距观测向量,都以米为单位,ρ为卫星和接收机之间的几何距离,包含对流层延迟,以米为单位;δtj和dtj分别为相位和伪距的接收机钟差,以米为单位;δts,j和dts,j分别为相位和伪距的卫星钟差,都以米为单位;ι是第一个频率f1上的电离层延迟,以米为单位,
Figure BDA0001336995360000081
λj为第j个频率fj的波长,以米/周为单位;aj=φj(t0)-φs,j(t0)+zj是模糊度,其中zj为整数,φs,j(t0)为卫星初始相位偏差,φj(t0)为接收机初始相位偏差,均以周为单位。
不同于粗差,GNSS周跳具有整数性和连续性的特性,连续性是指相同的整数会自周跳发送历元向后延续。因此,周跳的探测必须建立在观测数据历元间差分的基础上。GF模型历元间差分观测方程如下:
Figure BDA0001336995360000082
Figure BDA0001336995360000083
其中,Δ表示差分算子,具体的,Δ(*)=(*)k+1-(*)k
在上述的历元间单插模型中,接收机和卫星的初始相位偏差都完全消除,两个历元间差分后的整数Δzj即定义为周跳。严格来说,接收机钟差Δδtj=δtj(k+1)-δtj(k)及Δdtj=dtj(k+1)-dtj(k)因频间偏差和观测值种类间偏差的存在而不同,但由于频间偏差和观测值种类间偏差在一段时间内非常稳定,因此有Δδtj=Δdtj≡Δδt,并且历元单差后的卫星钟差和接收机钟差都可以被卫星和接收机间的几何距离ρ吸收。
按照三频GNSS组合理论,不失一般性,假设三频GNSS的三个载波频率分别为f1、f2和f3,则历元间差分的三频组合观测值的GF模型如下:
Figure BDA0001336995360000084
Δp(l,m,n)=Δρ+β(l,m,n)Δι+Δεp(l,m,n),(式5b)
其中,z(i,j,k)是组合周跳,组合相位观测值定义为:
Figure BDA0001336995360000091
其中,组合系数i、j和k都是整数,组合伪距观测值有相似的结合。组合相位观测值的频率、波长、整数周跳及电离层因子定义如下:
f(i,j,k)=i·f1+j·f2+k·f3,(式7)
Figure BDA0001336995360000092
z(i,j,k)=i·z1+j·z2+k·z3,(式9)
Figure BDA0001336995360000093
假设三个频率上的噪声是相互独立且等精度σφ,则由误差传播定律可得组合相似的精度σφ(i,j,k)为:
Figure BDA0001336995360000094
其中,μ(i,j,k)为噪声因子。
GF模型下EWL周跳的估值为:
Figure BDA0001336995360000095
其中,[·]代表四舍五入算子。同样的,假设三频观测值的伪距噪声是独立等精度σp,则解算的浮点周跳精度为:
Figure BDA0001336995360000101
如果EWL周跳浮点解的精度
Figure BDA0001336995360000102
足够小,EWL周跳浮点解中的一个小偏差不会影响整数周跳的正确固定。上述(式12)中由于忽略历元间电离层变化量而导致的浮点解偏差为:
Figure BDA0001336995360000103
其中,Δι为两个历元间的电离层变化量。对应的成功率由以下公式获得:
Figure BDA0001336995360000104
其中,
Figure BDA0001336995360000105
考虑组合观测值波长、电离层因子以及噪声因子等因素,以成功率最大为准则,选取一对最优的GF组合观测值,具体的,在本发明一实施例中,北斗系统为
Figure BDA0001336995360000106
和p(1,1,1),GPS系统为
Figure BDA0001336995360000107
和p(0,1,1)
进一步的,在步骤S3中,获取当前历元与前一观测历元电离层变化量先验值。
具体的,通过外界或历史数据模型化历元电离层变化获取历元间单差后的电离层变化量先验值。
在实际应用中,采样间隔较小,电离层活动较缓,历元间的电离层变化量很小,将其忽略而不会影响WL/NL周跳的浮点解;当观测数据采用间隔较大,电离层变化量随采样间隔增大而增大,历元间电离层延迟的变化量不能忽略,此时可利用先前没有周跳或周跳已修改的数据求取先前历元的电离层信息,根据数据采样间隔大小和电离层活跃情况,采用一定历元窗口来模型化电离层变化,并预报历元间电离层变化量,削弱历元间电离层变化量对WL/NL周跳浮点解的影响。
根据上述(式3)可推导出,在没有周跳的情况下,两历元间的电离层变化量可由以下公式获得:
Figure BDA0001336995360000111
其中,下标i和j分别表示频率fi和fj
Figure BDA0001336995360000112
Figure BDA0001336995360000113
分别表示两个频率上历元间差分后相位观测值,
Figure BDA0001336995360000114
历元间电离层变化量在短时间内呈现出很强的时间相关性,因此在几分钟内可以将其表示为一个关于时间的函数,函数模型如下:
Figure BDA0001336995360000115
根据采样间隔大小和电离层活跃情况选择合适的利用窗口,通过没有周跳或周跳已正确固定的历史数据获取电离层变化量序列,在最小二乘准则下求得电离层变化量函数模型的系数,再代入所求历元时刻,预报当前历元与前一历元电离层变化量先验值。在本发明一实施例中,采用一阶函数模型即可很好的拟合和预测效果。
步骤S4,判断历元间电离层先验值是否大于一预定阈值,若是,则执行步骤S5,否则,执行步骤S6。
具体的,在实际应用中,当采样间隔很小或者电离层活动平缓时,历元间单差后的电离层延迟变化量非常小,此时可将其忽略;当采样间隔逐渐增大或电离层活动加剧时,历元间电离层延迟的变化量以及不能忽略,此时可利用先前没有周跳或周跳以及探测和修复的数据获取先前利用的电离层信息,根据采样间隔的大小以及电离层活跃状态的不同,采用不同大小的滑动窗口来预报当前历元电离层变化量,获取先验值,削弱历元间电离层变化量对周跳探测的影响。
步骤S5,三频相位观测值组成WL观测值,与周跳固定的EWL观测值建立历元间差分GF模型,电离层改正,求解并固定WL周跳。
具体的,周跳固定的EWL组合观测值可充当高精度的伪距观测值,因此,GF模型下WL周跳的估值为:
Figure BDA0001336995360000121
其中,
Figure BDA0001336995360000122
为周跳改正的EWL组合观测值,WL周跳
Figure BDA0001336995360000123
的浮点解精度和由于忽略历元间电离层变化量而导致的浮点解偏差分别为:
Figure BDA0001336995360000124
Figure BDA0001336995360000125
同样的,考虑组合观测值波长、电离层因子、噪声因子等因素,以成功率最大为准则,选取一对最优的GF组合观测值,在本发明的一实施例中,北斗系统为φ(1,0,-1)和φ(1,4,-5),GPS系统为φ(1,0,-1)和φ(0,-1,1),在历元间电离层变化量为10cm时,成功率分别为100%和99.4032%,因此要求在历元间电离层变化量大于所述预定阈值时进行电离层改正。
步骤S6,利用三频相位观测值组成WL观测值,与周跳固定的EWL观测值建立历元间差分GF模型,求解WL周跳并固定。
步骤S7,利用周跳固定的EWL/WL组合观测值和非差三频观测值建立历元间差分GB模型。
具体的,在所有的EWL/WL组合观测中,只有两个是相互独立的,还剩一个独立于这两个EWL/WL观测量的NL观测量信息。为了充分利用以接收机位置信息为纽带的EWL/WL和NL观测值之间的相互联系,利用周跳固定的EWL/WL观测值对NL周跳探测的辅助作用,采用GB模型探测NL周跳。
历元间差分的对流程延迟变化量非常小,可以忽略;卫星钟差可以从星历文件获取。为了简洁,可省略历元间差分算子,那么卫星钟差改正后的历元间单差GB模型可以表示为:
Figure BDA0001336995360000131
E(pj+δts)=Ab+esδt-βjι,(式22)
其中,b=xk+1-xk是两个历元间的基线参数。引入kronecker积(克罗内克积),结合所有f个频率上的观察值以及周跳固定的EWL/WL组合观测值有:
Figure BDA0001336995360000132
Figure BDA0001336995360000133
其中,
Figure BDA0001336995360000134
是观测值减去计算值后的向量,
Figure BDA0001336995360000135
Figure BDA0001336995360000136
分别表示周跳改正后的EWL组合观测值和WL观测值,β=[βEWL,βWL,β1,…,βf]T
Figure BDA0001336995360000137
Λ=diag(λEWL,λWL,λ1,…,λf),
Figure BDA0001336995360000138
是观测值减去计算值后的向量,βp=[β1,…,βf]T。其中,下标EWL和WL分别代表超宽巷和宽巷组合的各项系数。
上述(式23)和(式24)可合并简写为:
Figure BDA0001336995360000141
其中,y=[φT,pT]T,v=[-βφ T,βp T]T,Γ=[Λ,0]T
单历元非差观测值的方差阵可表示为:
Figure BDA0001336995360000142
其中,Qs是非差非组合观测值与高度角相关的协因数阵,Qf=blkdiag(Qφ,Qp)表示特定频率的精度,
Figure BDA0001336995360000143
其中,σφWL和σφEWL分别表示相位宽巷和超宽巷观测值的精度。
步骤S8:根据历元间电离层变化量先验值建立IW模型(电离层加权模型),求解位置参数浮点解、NL周跳浮点解。
具体的,利用获取到的当前历元的电离层变化量的先验值,在上述(式25)的基础上引入电离层伪观测方程来建立IW模型,所述IW模型如下:
Figure BDA0001336995360000144
Figure BDA0001336995360000145
其中,H=[A,es]:是合并基线参数和接收机钟差后的设计矩阵,相应的有b=[b,δt],
Figure BDA0001336995360000146
是电离层变化量预报值的方差。
根据上述(式27)和(式28)在最小二乘准则下求得参数的最小二乘解,将求得的周跳项浮点解
Figure BDA00013369953600001517
及其协方差阵
Figure BDA0001336995360000151
通过LAMBDA方法尝试固定整数周跳。
步骤S9:对上述步骤S8中的浮点周跳尝试整体固定,判断固定是否成功,若固定成功,则进入步骤S11;若固定不成功,则进入步骤S10。
若周跳固定成功,则输出固定周跳解,并计算当前历元与前一历元间电离层变化量。反之,则执行步骤S10。
步骤S10:对上述步骤S8中的浮点周跳进行尝试部分周跳固定,判断固定是否成功,若固定成功,则进入步骤S11;若固定不成功,则周跳解算失败。
步骤S11:输出NL周跳整数解,计算当前历元与前一历元间电离层变化量。
假设最小二乘解中周跳项浮点解和协方差阵有如下形式:
Figure BDA0001336995360000152
其中,周跳向量
Figure BDA0001336995360000153
假设为能可靠地固定的一个子集,利用LAMBDA方法固定其最优整数解
Figure BDA0001336995360000154
根据
Figure BDA0001336995360000155
Figure BDA0001336995360000156
的关系更新
Figure BDA0001336995360000157
及其协方差阵
Figure BDA0001336995360000158
Figure BDA0001336995360000159
Figure BDA00013369953600001510
在实际应用中,由于低高度角的卫星更容易受观测异常的影响,因此可根据高度角排序筛选子集
Figure BDA00013369953600001511
其做法是,假设卫星的高度角为θ1<…θn,首先用最低的高度角θ1来选择子集
Figure BDA00013369953600001512
即剔除高度角最低的那颗卫星的周跳浮点解,其余卫星的周跳浮点解设为
Figure BDA00013369953600001513
然后判断采用LAMBDA方法能否固定
Figure BDA00013369953600001514
若能,则固定
Figure BDA00013369953600001515
Figure BDA00013369953600001516
并按照上述(式30a)和(式30b)更新剩余周跳的浮点解,若不能固定,则进一步剔除高度角低于θ2的卫星的周跳浮点解,重复上述步骤直到子集
Figure BDA0001336995360000161
能被固定或为空。对于更新后的子集
Figure BDA0001336995360000162
也同样此案有LAMBDA方法尝试固定。
若采用部分固定法成,则输出固定周跳解
Figure BDA0001336995360000163
并计算当前历元与前一历元间电离层变化量。反之,则周跳解算失败。
与现有技术相比,本发明实施例所提供的北斗/GPS三频周跳探测与修复方法至少具有以下有益效果:
第一,本发明实施例所提供的北斗/GPS三频周跳探测与修复方法利用三频信号能够提供更多观测数据,及由这些原始观测数据衍生出的保持模糊度整数特性的线性组合的优势,以成功率最高为准则,选出波长更长、周跳更容易固定、且成功率极高的EWL/WL组合,有效地固定EWL/WL周跳。
第二,当前的周跳探测方法普遍是基于无几何域(GF)模型,这种模型消除了位置参数,完全抛弃了EWL.WL组合观测值与NL观测值之间以接收机位置参数为纽带的相互联系,与本发明实施例中采用的GB模型相比,模型强度低。本发明实施例中采用的GB模型,以接收机位置参数为桥梁,利用周跳固定的EWL/WL组合观测值辅助NL周跳探测,周跳解算成功率更高。
第三,当前周跳探测与修复方法都单纯的忽略电离层对于周跳探测的影响,当数据采样的间隔较大或电离层活跃时,忽略电离层会导致周跳探测失败或错误,本发明的技术方案严格考虑了历元间电离层变化量对WL和NL周跳探测的影响,使周跳解算结果更为可靠。
第四,由于观测环境的复杂性,使不同周跳具有的几何强度不同,本发明的技术方案在不能有效的整体固定周跳时,采用部分周跳固定的方法,提高周跳固定的成功率和正确率,实现观测数据的最高利用率。
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

Claims (7)

1.一种北斗/GPS三频周跳探测与修复方法,其特征在于,包括:
获取并固定EWL周跳;
获取并固定WL周跳;
利用周跳固定的EWL/WL组合观测值和非差三频观测值建立历元间差分GB模型;
根据历元间电离层变化量先验值建立电离层加权模型,求解位置参数浮点解和NL周跳浮点解;
对NL浮点解周跳尝试固定,当整体固定失败时,尝试部分周跳固定,若部分周跳固定成功,则输出NL周跳整数解,并计算当前历元与前一历元间电离层变化量,否则,周跳解算失败;当固定成功时,直接输出NL周跳整数解,并计算当前历元与前一历元间电离层变化量;
所述电离层加权模型如下:
Figure FDA0004107107980000011
Figure FDA0004107107980000012
其中,H=[A,es]是合并基线参数和接收机钟差后的设计矩阵,b=[b,δt],
Figure FDA0004107107980000013
是电离层变化量预报值的方差,τ=[τ1,…τn]T;ι表示第1个频率上的n*1维电离层延迟,以米为单位,b是两个历元间的基线参数,z表示整数周跳,e2f+2表示(2f+2)*1维向量,其元素均为1,υ表示电离层延迟变化量与频率相关的系数阵,不同频率上的电离层延迟变化量与其频率的平方成反比,Is表示s维单位矩阵,Γ=[Λ,0]T,Qs表示非差观测值与高度角相关的协因数阵,l0表示第1个频率上的n*1维电离层延迟变化量的先验值。
2.如权利要求1所述的北斗/GPS三频周跳探测与修复方法,其特征在于,获取EWL周跳并固定所述EWL周跳的步骤包括:
设置卫星截止高度角,利用SPP获取卫星钟差、坐标初值以及设计矩阵,并获取三频观测值前后历元间差分;
在实施周跳探测的当前历元获取三频相位观测值,所述三频相位观测值组成相位EWL观测值,根据相应的伪距组合观测值与所述相位EWL观测值建立历元间差分GF模型,根据所述历元间差分GF模型获取EWL周跳并固定所述EWL周跳。
3.如权利要求2所述的北斗/GPS三频周跳探测与修复方法,其特征在于,所述差分GF模型如下:
Figure FDA0004107107980000021
Figure FDA0004107107980000022
其中,下标j表示第j个频率fj,下标s表示卫星,φj和pj为相位观测向量和伪距观测向量,都以米为单位,p为卫星和接收机之间的几何距离,包含对流层延迟,以米为单位;δtj和dtj分别为相位和伪距的接收机钟差,以米为单位;δts,j和dts,j分别为相位和伪距的卫星钟差,都以米为单位;ι是第一个频率f1上的电离层延迟,以米为单位,βj=f1 2/fj 2;λj为第j个频率fj的波长,以米/周为单位;aj=φj(t0)-φs,j(t0)+zj是模糊度,其中zj为整数,φs,j(t0)为卫星初始相位偏差,φj(t0)为接收机初始相位偏差,均以周为单位。
4.如权利要求1所述的北斗/GPS三频周跳探测与修复方法,其特征在于,获取并固定WL周跳的步骤包括:
获取当前历元与前一观测历元电离层变化量先验值;
判断历元间电离层先验值是否大于一预定阈值;
若历元间电离层先验值大于所述预定阈值,则三频相位观测值组成WL观测值,与周跳固定的EWL观测值建立历元间差分GF模型,电离层改正,求解并固定WL周跳;
否则,利用三频相位观测值组成WL观测值,与周跳固定的EWL观测值建立历元间差分GF模型,直接求解WL周跳并固定。
5.如权利要求4所述的北斗/GPS三频周跳探测与修复方法,其特征在于,GF模型下WL周跳的估值为:
Figure FDA0004107107980000031
其中,[·]代表四舍五入算子,
Figure FDA0004107107980000032
为周跳改正的EWL组合观测值,Δφ(i,j,k)是组合相位观测值定义,λ(i,j,k)为组合相位观测值的波长,i,j,k,l,m,n,分别为组合系数。
6.如权利要求1所述的北斗/GPS三频周跳探测与修复方法,其特征在于,利用周跳固定的EWL/WL组合观测值和非差三频观测值建立历元间差分GB模型如下:
Figure FDA0004107107980000033
E(pj+δts)=Ab+esδt-βjι,
其中,b=xk+1-xk是两个历元间的基线参数。
7.如权利要求1所述的北斗/GPS三频周跳探测与修复方法,其特征在于,所述输出NL周跳整数解为:
Figure FDA0004107107980000041
其中,
Figure FDA0004107107980000042
为第一次部分固定的最优整数解,
Figure FDA0004107107980000043
为第二次部分固定的最优整数解。
CN201710518983.1A 2017-06-29 2017-06-29 北斗/gps三频周跳探测与修复方法 Active CN109212563B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710518983.1A CN109212563B (zh) 2017-06-29 2017-06-29 北斗/gps三频周跳探测与修复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710518983.1A CN109212563B (zh) 2017-06-29 2017-06-29 北斗/gps三频周跳探测与修复方法

Publications (2)

Publication Number Publication Date
CN109212563A CN109212563A (zh) 2019-01-15
CN109212563B true CN109212563B (zh) 2023-06-02

Family

ID=64960958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710518983.1A Active CN109212563B (zh) 2017-06-29 2017-06-29 北斗/gps三频周跳探测与修复方法

Country Status (1)

Country Link
CN (1) CN109212563B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113970772B (zh) * 2021-10-27 2024-04-12 东南大学 一种面向城市环境的多频bds-2/bds-3/ins车载组合定位方法
CN114527492B (zh) * 2022-02-18 2022-09-16 中国科学院上海天文台 一种电离层异常环境下的周跳实时探测方法
CN116953741B (zh) * 2022-04-13 2024-04-02 上海海积信息科技股份有限公司 一种应用于全球导航卫星系统gnss的周跳探测与修复方法
CN114675314B (zh) * 2022-05-30 2022-08-26 深圳市智联时空科技有限公司 一种重新收敛的精密单点定位方法
CN117705099B (zh) * 2023-11-17 2024-05-28 武汉大学 基于变参考历元tdcp/mems imu的实时动态定位方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749594A (zh) * 2015-04-10 2015-07-01 武汉大学 一种gps双频非差周跳探测与修复方法及装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749594A (zh) * 2015-04-10 2015-07-01 武汉大学 一种gps双频非差周跳探测与修复方法及装置

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
GPS三频组合观测量的特征及应用研究;吕志成等;《全球定位系统》;20111215(第06期);7-11 *
Three frequency GNSS navigation prospect demonstrated with semi-simulated data;Bofeng Li 等;《Advances in Space Research》;20121110;第51卷(第7期);1175-1185 *
一种北斗三频实时周跳探测与修复新方法;满小三等;《全球定位系统》;20160215;第41卷(第01期);14-18 *
一种改进的基于BDS三频非差观测的周跳实时探测与修复模型;高杰等;《测绘工程》;20161225;第25卷(第12期);25-31 *
低采样率下北斗三频数据周跳探测与修复;徐婷佳等;《电子测量与仪器学报》;20170315;第31卷(第03期);402-407 *
北斗/GPS多频实时精密定位理论与算法;李金龙;《测绘学报》;20151115;第44卷(第11期);1297 *
北斗短基线三频实测数据单历元模糊度固定;何俊等;《武汉大学学报(信息科学版)》;20150305;第40卷(第03期);361-365 *
基于三差的GPS周跳探测与修复;李博峰 等;《工程勘察》;20061231(第8期);44-46 *

Also Published As

Publication number Publication date
CN109212563A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
CN109212563B (zh) 北斗/gps三频周跳探测与修复方法
CN109764879B (zh) 一种卫星定轨方法、装置及电子设备
CN109581452B (zh) 一种gnss参考站载波相位整周模糊度解算方法
Li et al. Three carrier ambiguity resolution: distance-independent performance demonstrated using semi-generated triple frequency GPS signals
CN108445518B (zh) 一种基于双差模糊度固定解约束的gnss精密时间传递方法
US7755542B2 (en) GNSS signal processing methods and apparatus
US9958550B2 (en) Navigation satellite system positioning involving the generation of receiver-specific or receiver-type-specific correction information
CN108415049A (zh) 提高网络rtk双差宽巷模糊度固定正确率的方法
CN108549095B (zh) 一种区域cors网非差并行增强方法及系统
CN105699999B (zh) 一种固定北斗地基增强系统基准站窄巷模糊度的方法
CN105842720B (zh) 一种基于载波相位的广域精密实时定位方法
CN104199061B (zh) 一种建立gps系统和bds系统载波相位频率标准的方法
CN103698790B (zh) 北斗与gps双系统宽巷载波相位混频星间差分组合方法
CN106896386A (zh) Glonass频间偏差精确估计方法
CN109799520A (zh) 一种基于gnss三频的纯载波相位rtk定位方法
Chen et al. A geometry-free and ionosphere-free multipath mitigation method for BDS three-frequency ambiguity resolution
CN112285745A (zh) 基于北斗三号卫星导航系统的三频模糊度固定方法及系统
Cao et al. Uncombined precise point positioning with triple-frequency GNSS signals
CN116148909B (zh) 多频多模非组合精密单点定位瞬时窄巷模糊度固定方法
Banville et al. Improving real-time kinematic PPP with instantaneous cycle-slip correction
CN114994729B (zh) 多频多模宽巷-窄巷-非组合upd实时序贯估计方法
CN103675858B (zh) 北斗系统b1与gps系统l1载波相位混频差分方法
Defraigne et al. Advances in multi-GNSS time transfer
Tolman et al. Absolute precise kinematic positioning with GPS and GLONASS
Yu et al. The benefit of B1C/B2a signals for BDS-3 wide-area decimeter-level and centimeter-level point positioning with observable-specific signal bias

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant