CN109188976A - 一种控制芯片 - Google Patents

一种控制芯片 Download PDF

Info

Publication number
CN109188976A
CN109188976A CN201811075481.7A CN201811075481A CN109188976A CN 109188976 A CN109188976 A CN 109188976A CN 201811075481 A CN201811075481 A CN 201811075481A CN 109188976 A CN109188976 A CN 109188976A
Authority
CN
China
Prior art keywords
voltage
module
control
control chip
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811075481.7A
Other languages
English (en)
Inventor
卢知伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gree Electric Appliances Inc of Zhuhai
Original Assignee
Gree Electric Appliances Inc of Zhuhai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gree Electric Appliances Inc of Zhuhai filed Critical Gree Electric Appliances Inc of Zhuhai
Priority to CN201811075481.7A priority Critical patent/CN109188976A/zh
Priority to PCT/CN2018/123323 priority patent/WO2020052161A1/zh
Publication of CN109188976A publication Critical patent/CN109188976A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Power Sources (AREA)

Abstract

本发明公开了一种控制芯片,用于解决控制芯片在供电电压过高容易被烧毁的技术问题,实现对高电压进行有效检测,确保控制芯片的安全性和可靠性。该控制芯片包括供电引脚、电压检测模块、电压处理模块和控制功能模块;该供电引脚分别与所述电压检测模块的输入端和所述电压处理模块的输入端连接,所述电压检测模块的输出端与所述电压处理模块连接,所述电压处理模块的输出端与所述控制功能模块的电压输入端连接;所述电压检测模块对通过所述供电引脚输入的供电电压进行检测,在所述供电电压大于所述控制芯片的最大额定工作电压时,所述电压检测模块向所述电压处理模块发送高压控制信号对所述供电电压进行处理后的输送给所述控制功能模块。

Description

一种控制芯片
技术领域
本发明涉及电子技术领域,尤其涉及一种控制芯片。
背景技术
微控制器单元(Microcontroller Unit,MCU)拥有独立的处理器,I/O(Input/Output,输入/输出)器件和内存,可以减小尺寸,降低设备成本,在各个领域应用十分广泛,比如家用电器,医疗仪器,工业控制,远程设备,办公设备,玩具以及嵌入式系统中。
MCU由于在工业设备领域,医疗领域,家用电器领域,消费类电子领域等都有使用,因此,MCU的可靠性和安全性被越来越多的用户和设计者所重视。在实际使用过程中,保障MCU的可靠性和安全性的其中一个因素就是其供电电压,若是输入到MCU中的供电电压过高,可能会导致微控制器芯片MCU被烧毁,而MCU中可能存储有一些重要敏感的信息,毁坏代价相对较高,因此需要对MCU的供电电压进行检测。
发明内容
本发明实施例提供一种控制芯片,用于解决控制芯片的供电电压过高而导致控制芯片被高压烧坏的技术问题,以实现对控制芯片的供电电压过高进行准确检测,进而能够提高对外界环境的容忍度,可以保证控制芯片本身的安全性和可靠性,提高芯片产品的竞争力。
本发明实施例提供一种控制芯片,该控制芯片包括供电引脚、电压检测模块、电压处理模块和控制功能模块;其中:
所述供电引脚,分别与所述电压检测模块的输入端和所述电压处理模块的输入端连接,用于将来自所述控制芯片外部的供电电压输入给所述控制芯片;
所述电压检测模块的输出端与所述电压处理模块连接,用于对所述供电引脚输入的所述供电电压进行检测,并在所述供电电压大于所述控制芯片的最大额定工作电压时,通过所述电压检测模块的输出端向所述电压处理模块发送高压控制信号;
所述电压处理模块的输出端与所述控制功能模块的电压输入端连接,用于根据所述高压控制信号对所述供电电压进行处理,以通过处理后的所述供电电压控制所述控制功能模块的工作状态;其中,处理后的供电电压小于所述最大额定工作电压。
在一种可能的设计中,所述电压处理模块包括电压转换模块,根据所述高压控制信号,所述电压转换模块将大于所述最大额定工作电压的所述供电电压转换成所述控制芯片的额定工作电压范围内的电压,并将转换得到的电压输入所述控制功能模块的电压输入端。
在一种可能的设计中,所述电压处理模块包括第一开关电路,所述高压控制信号用于控制所述第一开关电路断开,以断开所述控制功能模块的输入电压。
在一种可能的设计中,所述电压处理模块包括第一开关电路和线性稳压模块,所述第一开关电路连接于所述供电引脚和所述线性稳压模块之间,所述线性稳压模块连接于所述第一开关电路和所述控制功能模块的电压输入端之间;
所述高压控制信号用于控制所述第一开关电路连通以将所述供电电压从所述供电引脚传输至所述线性稳压模块,所述线性稳压模块用于将所述供电电压进行转换成预定的输出电压,并将所述预定的输出电压输入所述控制功能模块的电压输入端。
在一种可能的设计中,所述电压检测模块具体用于:
在所述供电电压大于所述最大额定工作电压时,确定所述供电电压所属的高压范围;其中,不同的高压范围对应不同类型的高压控制信号,不同类型的高压控制信号对应不同的电压处理策略;
根据确定的高压范围,确定对应类型的高压控制信号。
在一种可能的设计中,所述电压处理模块包括电压转换模块和第一开关电路;
在确定的高压控制信号是第一类高压控制信号时,则控制所述电压转换模块将大于所述最大额定工作电压的所述供电电压转换成所述控制芯片的额定工作电压范围内的电压,并将转换得到的电压输入所述控制功能模块的电压输入端;
在确定的高压控制信号是第二类高压控制信号时,则控制所述第一开关电路断开,以断开所述控制功能模块的输入电压。
在一种可能的设计中,所述电压检测模块包括电压检测电路,所述电压处理模块包括电压处理电路,所述电压检测电路和/或所述电压处理电路包括耐高压的晶体管;所述控制功能模块包括控制功能电路,所述控制功能电路包括高速低阈值的晶体管。
在一种可能的设计中,所述控制芯片还包括用于实现辅助功能的辅助功能模块,所述辅助功能模块对应的电路包括的晶体管采用不同于所述耐高压的晶体管和所述高速低阈值的晶体管的制程制作。
在一种可能的设计中,在所述供电引脚和所述电压处理模块之间还设置有第二开关电路;
在所述电压检测模块对所述供电电压进行检测时,所述第二开关电路处于断开状态;
在所述电压检测模块向所述电压处理模块发送所述高压控制信号时,所述电压检测模块还向所述第二开关电路发送开启信号,以控制所述第二开关电路连通。
在一种可能的设计中,所述供电引脚与所述控制功能模块之间还设置有第三开关电路,所述电压检测模块的输出端还与所述第三开关电路连接,当所述供电电压处于所述控制芯片的额定工作电压范围内时,所述电压检测模块向所述第三开关电路发送开启信号,控制所述第三开关电路连通以将所述供电电压输入所述控制功能模块的电压输入端。
在一种可能的设计中,所述电压检测模块还与所述控制功能模块连接,在所述供电电压处于所述控制芯片的额定工作电压范围内时,通过所述电压检测模块将所述供电电压输入给所述控制功能模块的电压输入端。
本发明实施例提供的控制芯片,通过电压检测模块对供电引脚输入的供电电压进行检测,并在供电电压大于控制芯片的最大额定工作电压时,通过电压检测模块的输出端向电压处理模块发送高压控制信号,从而实现对过高供电电压的准确检测,进一步地,电压处理模块可以根据高压控制信号的控制对供电电压进行处理,并且使得处理后的供电电压小于控制芯片的最大额定工作电压,那么在通过处理后的供电电压控制控制功能模块的工作状态的过程中,可以避免过高的供电电压对控制芯片的烧毁,避免控制芯片因供电电压过高而遭受毁坏,从而解决控制芯片由于供电电压过高而发生毁坏的技术问题,在高压情况下仍可以保证控制芯片的安全性和可靠性,提升控制芯片的器件稳定性,尽量延长控制芯片的使用寿命。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的控制芯片的一种结构示意图;
图2为本发明实施例提供的控制芯片的另一种结构示意图;
图3为本发明实施例提供的控制芯片的另一种结构示意图;
图4为本发明实施例提供的控制芯片的另一种结构示意图;
图5为本发明实施例提供的控制芯片的另一种结构示意图;
图6为本发明实施例提供的控制芯片的另一种结构示意图;
图7为本发明实施例提供的控制芯片的另一种结构示意图;
图8为本发明实施例提供的控制芯片的另一种结构示意图;
图9为本发明实施例提供的控制芯片的另一种结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互任意组合。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本发明的说明书和权利要求书及上述附图中的部分术语“第一”和“第二”是用于区别不同对象,而非用于描述特定顺序。此外,术语“包括”以及它们任何变形,意图在于覆盖不排他的保护。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例中的控制芯片,可以包括MCU这种控制芯片,或者也可以包括其它类型的控制芯片。其中,如前所述,MCU的应用是十分广泛的,例如,对于电视机的遥控器,就可以使用MCU进行设计,从而对电视机进行遥控;再例如,可以将MCU设计在智能设备(比如手机、电脑等)中,通过MCU的功能设计,实现智能设备上的一些功能作用,等等。
为了更好的理解本发明实施例中的技术方案,下面将结合说明书附图以及具体的实施方式对本发明实施例中的技术方案进行详细的说明。
请参见图1,图1为本发明实施例提供的控制芯片的一种结构示意图。如图1所示,该控制芯片包括供电引脚、电压检测模块、电压处理模块和控制功能模块。其中,供电引脚分别与电压检测模块的输入端和电压处理模块的输入端连接,供电引脚用于将来自控制芯片外部的供电电压输入给控制芯片内,供电引脚的作用是作为接收供电电压输入的一个接口,例如可以是理解为一般芯片中的VCC引脚。而电压检测模块的输出端与电压处理模块连接,电压检测模块用于对供电引脚输入的供电电压进行检测,判断该供电电压是否大于控制芯片的最大额定工作电压。在本发明实施例中,设定控制芯片的额定工作电压范围为3.5V-5V,即在区间[3.3V,5V]之间的任意电压均可以理解为是控制芯片的额定工作电压,按照前述假设,那么上述控制芯片的最大额定工作电压就是5V。需要说明的是,前述举例的3.5V-5V的额定工作电压范围只是控制芯片的一种额定工作电压范围举例,不同的控制芯片可能有着不同的额定工作电压范围,那么对应的,不同的控制芯片的最大额定工作电压也就可能不同,本发明实施例主要通过3.5V-5V的额定工作电压范围对本实施例中的技术方案进行示意性说明。
当电压检测模块检测到输入的供电电压大于控制芯片的最大额定工作电压时,电压检测模块可以产生对应的控制信号,以通过通知信号触发电压处理模块对供电电压进行相应的处理,由于是在供电电压大于控制芯片的最大额定工作电压时产生的该控制信号,为了便于描述,本发明实施例将在供电电压大于最大额定工作电压时由电压检测模块向电压处理模块发送的控制信号称作高压控制信号,以使得电压处理模块在高压控制信号的作用下对供电电压进行处理,即本发明实施例中的电压处理模块的功能就是根据高压控制信号的控制作用触发对过高的供电电压进行相应处理,在具体实施过程中可能具有多种不同的处理方式,但无论是哪种处理方式,处理后的供电电压均小于控制芯片的最大额定工作电压。
另外,电压处理模块的输出端与控制功能模块的电压输入端连接,这样可以将由电压处理模块处理过后的供电电压再通过电压处理模块的输出端输入给控制功能模块的电压输入端,进而对控制功能模块的工作状态进行控制,以避免将过高的供电电压输入给控制功能模块而导致控制功能模块被过高的输入电压烧坏,从而实现对控制芯片的保护。本发明实施例中的控制功能模块可以用于表明控制芯片起到的功能作用,例如控制芯片设计在电视机的遥控器中,那么在使用遥控器时,控制功能模块的作用就可以是对电视机起到遥控作用,即可以将控制功能模块理解为是控制芯片中的核心功能模块,控制芯片对外的控制作用可以在一定程度上通过该控制功能模块实现。
在本发明实施例中,为了便于描述,在某些实施例介绍中,将电压检测模块检测到的供电电压大于控制芯片的最大额定工作电压时的供电电压称为高压,此时对应的电压检测模块产生的控制信号称作高压控制信号,以及将电压检测模块检测到的供电电压小于控制芯片的最大额定工作电压时的供电电压称为低压,此时对应的电压检测模块产生的控制信号称作低压控制信号。需要说明的是,高压和低压在本发明实施例中只是相对于控制芯片的最大额定工作电压而言,并不实际上表示电压值的过高或过低。
进一步地,图1所示的控制功能模块可以包括模拟功能模块和数字功能模块(在图1中并未示出),其中,模拟功能模块可以是指由模拟电路结构所组成的功能模块,以及数字功能模块可以是指由数字电路结构组成的功能模块。经过电压处理模块处理后的供电电压输入到控制功能模块,可以是指输入到模拟功能模块中,或者可以是指输入到数字功能模块中,或者可以是指同时输入到模拟功能模块和数字功能模块中,通过输入到不同的功能模块中,可以控制相应部分的功能模块进行工作,进而使得控制芯片可以实现不同的控制功能。
在本发明实施例中,当控制芯片的供电电压高于最大额定工作电压时,通过电压检测模块可以对较高的供电电压进行检测,以实现对高压的检测,进一步地可以通过高压控制信号触发电压处理模块对供电电压进行处理,再通过处理后的小于最大额定工作电压的供电电压对控制芯片的工作状态进行控制,避免控制芯片因供电电压过高而遭受毁坏。总的来说,采用本发明实施例的技术方案,可以解决控制芯片在供电电压过高而可能发生烧毁的技术问题,从而在高压情况下可以保证控制芯片的安全性和可靠性,提高控制芯片产品的竞争力。
如前所述,在供电电压大于控制芯片的最大额定工作时,可以通过电压处理模块对供电电压进行不同的处理,具体来说,可以是通过电压检测模块发送不同类型的高压控制信号以指示对过高的供电电压进行不同的处理,并且,为了实现对供电电压的不同处理,可以通过对应不同的电压处理结构进行不同的处理,也就是说,为了支持对供电电压的不同处理,电压处理模块可以包括不同的电压处理结构,为了便于理解,以下对不同的电压处理结构举例说明。
第一种电压处理结构
请参见图2所示,电压处理模块可以包括第一开关电路,即电压处理模块的控制功能由第一开关电路实现。通过供电引脚将来自控制芯片外部的供电电压输入给控制芯片,电压检测模块对供电引脚输入的供电电压进行检测,并在供电电压大于控制芯片的最大额定工作电压时,通过电压检测模块向第一开关电路发送高压控制信号,基于第一开关电路的电压处理结构,该高压控制信号可以指示第一开关电路处于断开状态,即此时可以将该高压控制信号理解为是断开信号,或者若第一开关电路默认处于断开状态的话,该高压控制信号可以理解为是使得第一开关电路保持继续保持断开状态的信号,从而使得供电电压无法输入到控制功能模块中,控制功能模块停止工作,以对控制功能模块进行最大程度的保护。
根据图2所示的控制芯片,在供电电压大于控制芯片的最大额定工作电压时,则断开控制功能模块的供电电压,进而使得控制功能模块停止工作,进而在高压情况下对控制芯片起到较大程度上的保护作用,避免了由于供电电压过高时,造成控制芯片的毁坏,提高了控制芯片的安全性和可靠性。
进一步地,在图2所示的控制芯片的结构的基础之上,还可以包括线性稳压模块,例如图3所示,第一开关电路连接于供电引脚和线性稳压模块之间,而线性稳压模块连接于第一开关电路和控制功能模块的电压输入端之间,即,第一开关电路和线性稳压模块以串联的方式连接于供电引脚和控制功能模块之间。其中,线性稳压模块例如可以是低压差线性稳压器(Low Dropout Regulator,LDO),或者还可以是其它类型的稳压器,线性稳压模块可以将输入的在一定范围的电压转换成预定的输出电压,一般来说,根据线性稳压模块的不同类型,不同类型的线性稳压模块能够进行电压转换的幅度也有所差别,以及其对应的预定的输出电压也可能不同,并且,针对某个线性稳压模块来说,还可以根据不同的应用场景和使用需求设置不同的预定的输出电压。
在如图3所示的结构中,高压控制信号可以用于控制第一开关电路连通以将供电电压从供电引脚传输至线性稳压模块,再基于线性稳压模块的电压转换作用还可以将输入的不同大小的电压转换成预定的输出电压,再将转换的预定的输出电压传输给控制功能模块,例如输入给控制功能模块中的数字电路部分。
通过线性稳压模块将供电电压进行稳定的转换,这样可以适用于多种不同的输入电压,保证转换后的供电电压(即输入给控制功能模块)的稳定性,进而可以更好地对控制芯片进行保护。
第二种电压处理结构
请参见图4所示,电压处理模块可以包括电压转换模块,即电压处理模块的控制功能由电压转换模块实现,其中,电压转换模块具有降压的作用,也就是说,电压转换模块能够在供电电压过高时,将该供电电压进行降压处理,例如将过高的供电电压转换为控制芯片的额定工作电压范围内的任一额定工作电压,继续以前述的额定工作电压范围是3.5V-5V为例,假设检测的供电电压是8.5V,那么通过电压转换模块的降压作用,则可以将8.5V的高压转换成5V的额定工作电压。通过供电引脚将来自控制芯片外部的供电电压输入给控制芯片,电压检测模块对供电引脚输入的供电电压进行检测,并在供电电压大于控制芯片的最大额定工作电压时,通过电压检测模块的输出端向电压转换模块发送高压控制信号,基于电压转换模块的电压处理结构,该高压控制信号则可以指示电压转换模块将过高的供电电压进行降压处理,并且可以根据控制芯片的额定工作电压范围指示电压转换模块进行降压的幅度,从而可以将过高的供电电压转换为额定工作电压,进一步地,再由电压转换模块将转换后的额定工作电压输入给控制功能模块的电压输入端,从而使得控制功能模块正常工作。
根据图4所示的控制芯片,在供电电压大于控制芯片的最大额定工作电压时,可以通过电压转换模块将供电电压转换成控制芯片的额定工作电压,以实现对过高供电电压的有效换换,并将降压得到的额定工作电压输入给控制功能模块以实现控制功能模块的正常工作。也就是说,即使在供电电压大于控制芯片的最大额定工作电压时,也可以通过电压转换模块的降压作用,将过高的供电电压转换为控制功能模块能够正常工作并不会影响控制功能模块的器件安全的电压,在尽量避免控制芯片器件损坏的基础上,还可以使得控制芯片的持续工作,确保控制芯片工作的连续性和稳定性。
第三种电压处理结构
请参见5所示,本发明实施例中的电压处理模块可以同时包括如前所述的第一开关电路和电压转换模块,而第一开关电路和电压转换模块可以对应不同的电压处理方式,在实施过程中,具体选择哪种电压处理结构来对过高的供电电压进行处理,可以根据供电电压所属的高压范围决定,所以在本发明实施例中,可以将大于最大额定工作电压的供电电压划分为两个高压范围,继续以前述的3.3V-5V的额定工作电压范围为例,例如设置的两个高压范围是:第一个高压范围是(5V,9V],第二个高压范围是大于9V。根据不同的高压范围可以采用不同的电压处理方式,由于电压处理是根据电压检测模块发送的高压控制信号进行的,所以对应于不同的高压范围可以分别对应不同的高压控制信号,例如与第一个高压范围对应的是第一类高压控制信号,以及与第二个高压范围对应的是第二类高压控制信号,并且,不同类型的高压控制信号对应不同的电压处理策略,例如与第一类高压控制信号对应的电压处理策略是以电压转换模块对供电电压进行降压处理,以及与第二类高压控制信号对应的电压处理策略是以通过第一开关电路的断开以切断控制功能模块的输入电压。图5中的第一开关电路的实施可以参见前述图2中的第一开关电路的实施介绍,以及图5中的电压转换模块可以参见前述图4中的电压转换模块的实施介绍,此处就不再重复介绍了。
也就是说,在第三种电压处理结构中,电压转换模块和第一开关电路可以以并联的方式存在,而具体选择哪种方式进行电压处理可以根据供电电压的具体值决定。当供电电压不太高时,可以采用降压的方式在保证控制芯片的安全的基础上,还可以确保控制功能模块的持续工作,保证控制芯片的工作连续性,当电压过高时,为了最大程度上对控制芯片进行保护,以尽量避免由于过高的电压对控制芯片造成难以预料的损坏,所以此时可以直接切断控制功能模块的输入电压,通过直接切断电源的方式对控制芯片进行最大可能的保护。
本发明实施例中,可以根据大于控制芯片最大额定工作电压的供电电压所处的范围,根据不同的范围使得电压检测模块产生的控制信号从而控制第一开关电路或电压转换模块对供电电压进行处理,使得对供电电压的处理更具针对性,提供可选的两种电压处理方式,所以针对电压的处理也就更为灵活。
以上介绍了三种可能的电压处理方式以及对应的电压处理结构,在具体实施过程中可以根据具体的应用需求选择不同的处理方式。另外需要说明的是,上述只是以三种电压处理方式以及对应的电压处理结构进行举例说明,当然还可也包括其它可能的电压处理方式以及对应的电压处理结构。
在一种可能的实施方式中,在图1所示的控制芯片的结构的基础上,在供电引脚和电压处理模块之间还设置第二开关电路,具体请参见图6所示。在电压检测模块对供电电压进行检测时,第二开关电路可以默认处于断开状态,这样可以暂时阻止供电电压流向控制功能模块,当电压检测模块检测到供电电压大于控制芯片的额定工作电压而产生高压控制信号时,同时可以向第二开关电路发送开启信号,以通过该开启信号触发第二开关电路连通,进而可以将供电电压输入给电压处理模块有电压处理模块对其进行处理。
本发明实施例中,在电压检测模块对供电电压进行检测时,第二开关电路可以一直处于断开状态,只有在电压检测模块对供电电压完成检测并确定需要对供电电压进行处理时,才通过开启信号控制第二开关电路连通,这样可以避免在电压检测模块在检测供电电压时,供电电压已经输入给了电压处理模块,若是电压处理模块出现了异常情况,可能会使得供电电压在电压处理模块中未经过处理就直接输送给了控制功能模块,若是该供电电压大于控制芯片的额定工作电压,将会使得控制芯片被毁坏,因此通过第二开关电路,可以在一定程度上避免上述情况出现时造成的控制芯片的毁坏,对控制芯片进行更好的保护。
在另外一种实施方式中,当电压检测模块检测大偶的供电电压属于控制芯片的额定工作电压范围内时,也可以向第二开关电路发送开启信号,进而将额定工作电压输送给控制功能模块进行正常的工作。
如前所述,在具体实施过程中,当通过电压检测模块的检测,确定供电电压为控制芯片的额定工作电压时,此时则可以将该供电电压直接输送给控制功能模块,以使得控制功能模块正常进行工作。
在一种可能的实施方式中,请参见图7所示,可以在供电引脚和控制功能模块之间再设置第三开关电路,电压检测模块的输出端还与第三开关电路连接,当供电电压处于控制芯片的额定工作电压范围内时,电压检测模块可以向第三开关电路发送开启信号,控制第三开关电路连通以将供电电压输入控制功能模块的电压输入端,即直接将供电电压输送给控制功能模块。也就是说,当电压检测模块检测到在供电电压大于控制芯片的最大额定工作电压或小于控制芯片的最小额定工作电压时,电压检测模块不会产开启信号作用于第三开关电路,第三开关电路的初始状态为断开状态,自然也就不会通过第三开关电路对控制功能模块进行供电电压的输送。只有当电压检测模块检测到在供电电压处于控制芯片的额定工作电压范围时,电压检测模块才通过第三开关电路将供电电压直接传输给控制功能模块,而不需要使用电压处理模块进行处理,以实现供电电压的快速输送,确保控制功能模块工作的及时性,从而有效提高了控制功能模块的工作效率,一定程度上提高了控制芯片的工作效率。
在另一种实施方式中,请参见图8所示,电压检测模块还可以与控制功能模块直接连接,在供电电压处于控制芯片的额定工作电压范围内时,可以通过电压检测模块将供电电压直接输送给控制功能模块的电压输入端,以使得控制功能模块的快速有效工作,提高控制功能模块的工作效率,并且可以提高控制芯片的工作效率,通过直连的方式可以节约控制芯片的内部资源。
在本发明实施例中,电压检测模块可以包括电压检测电路,即电压检测模块可以由电压检测电路构成,而电压检测电路可以包括耐高压的晶体管,所谓耐高压的晶体管指的是能够承受较高电压的晶体管,例如是指能够承受超过8V电压的晶体管。在电压检测模块中的电压检测电路使用耐高压的晶体管进行搭建,是为了当供电电压输入到电压检测模块中时,使得电压检测模块能够承受大于控制芯片的额定工作电压的供电电压,使得电压检测模块能够更好地对供电电压进行检测,进而产生高压控制信号控制电压处理模块对供电电压进行处理,以便于更好对控制芯片进行保护,更好地避免因供电电压过高而造成控制芯片毁坏的问题。可知的是,晶体管的耐高压能力越强,那么电压检测模块所能够承受的供电电压也就越大,也就能更好地对供电电压进行检测。类似的,电压处理模块可以包括电压处理电路,电压处理电路也由可以由耐高压的晶体管进行搭建,因为电压处理模块会对供电电压进行处理,若是电压处理模块承受高压的能力不足,那么可能就无法对供电电压进行处理,也就可能造成控制芯片的毁坏。
控制功能模块可以包括控制功能电路,而控制功能电路可以包括高速低阈值的晶体管,所谓高速低阈值的晶体管可以指的是晶体管的速度和沟道长度以及阈值电压呈负相关关系,阈值电压越低,沟道长度越短,晶体管速度越快,通常将沟道长度短、阈值电压低的晶体管称为高速低阈值的晶体管。在控制功能模块中的控制功能电路使用高速低阈值的晶体管进行搭建,是为了使控制功能模块在正常工作时,可以具有较快的开关关断速度,从而可以快速地实现该控制功能模块所要完成的快速控制功能,可以提高控制功能模块的工作效率,从而提高控制芯片的工作效率。
可以理解的是,耐高压的晶体管和高速低阈值的晶体管是不同性质的晶体管,所以耐高压的晶体管和高速低阈值的晶体管可以通过不同的制作工艺制作而成的,即,耐高压的晶体管和高速低阈值的晶体管的制程不同,也就是说,在控制芯片中,可以根据各模块所实现的功能不同采用不同制作工艺而具有不同器件特性的晶体管,确保各个模块的多功能性。
由于在现有技术中,为了满足控制芯片的制作需求,在一个控制芯片(例如MCU芯片)中一般只会使用同一种制程的晶体管,即,目前在一个芯片中所有的晶体管都是采用相同的制程制作而成,并且一般都是沿用该做法,而采用相同制程的制作工艺制作而成的晶体管的功能就是相同的,比如均是耐高压的晶体管,或者均是高速低阈值的晶体管,然而,在本发明实施例中,由于电压检测模块需要实现高压检测的目的,所以需要由耐高压的晶体管的参与,并且同时希望通过控制功能模块实现高速高效控制的功能,则可以利用高速低阈值的晶体管,在此设计思想之下,本发明实施例不再按照现有技术中的只在一个控制芯片中使用同一种制程的晶体管的制作方式,而是以打破常规思路的方式将两种不同制程的晶体管同时使用在了同一颗芯片中,从而实现不同的芯片功能,从而增加芯片的扩展应用。例如,40nm制程的晶体管,工作电压在1.1V左右,阈值电压为0.4V,当电压在2.5V左右就会发生击穿,而550nm制程的晶体管,工作电压在5V左右,阈值电压为0.7V,击穿电压在8V左右,所以控制功能模块中的逻辑功能电路可以用40nm的晶体管来搭建,而550nm制程的晶体管则可以用来搭建高压检测电路,这样的话可以将原有额定工作电压为1.1V左右的芯片,抗压能力提高到8V,而在具体实施过程中,具体需要提高到多少,可以根据设计者的预期需求去选择对应制程的晶体管。
在此设计思路的基础之上,本发明实施例中的控制芯片还可以包括辅助功能模块,该辅助功能模块可以实现一些辅助功能,例如温度检测功能和选择功能等其它辅助功能,而该辅助功能模块对应的电路中可以采用另外一种类型的晶体管来进行搭建,根据前述的原理,该辅助功能模块中的晶体管由于是实现其它的功能,那么则可以选用不同于前述的耐高压的晶体管和高速低阈值的晶体管的制程的其它制程的晶体管,从而以通过不同制作工艺以实现不同的功能。
最后,为了便于对本发明实施例中的控制芯片整体上进行理解,以下再结合图9进行说明。请参见图9所示,其中的I/O口为控制芯片的输入输出管脚,外部供电电源可以通过I/O口来给控制芯片供电,例如可以将其理解为是前述的供电引脚;HVD(High VoltageDetector,高电压检测)模块用于检测外部的供电电压,尤其是可以检测较高的供电电压,并且可以输出信号,例如可以向LDO模块和数字电路部分分别输出控制信号,例如可以将HVD器理解为是前述的高压检测模块;DC-DC(DC to DC converter,直流转换器)用于实现直流到直流的转换,具体来说可以将高压转换成低压,或者可以将低压转换成高压,例如可以理解为是前述的电压转换模块;SW1、SW2、SW3是三个开关,SW1是LDO模块与外部供电电源之间的开关,SW2是模拟电路部分与外部供电电源之间的开关,SW3是DC-DC与外部供电电源之间的开关。
在具体实施过程中,HVD模块可以为模拟电路,搭建此部分电路的晶体管需要采用耐高压的晶体管,对开关速度不高,通常面积较大,开关速度相对较低,其余数字电路部分以及模拟电路部分可以都使用高速低阈值的晶体管搭建,明显可知,两种晶体管的工艺制程并不相同。当芯片供电电压增高超过控制芯片的最高额定工作电压时,HVD模块输出电压会增高,并断开模拟电路部分与输入电源的连接,以及LDO与输入电源的连接,表示异常,例如,当RCC模块收到HVD模块的输出值为1时(输出电压为高),会将数字电路部分复位,当芯片供电电压正常时,HVD模块输出又由高变低,打开模拟电路部分以及LDO与输入电源的连接,表示正常。以及,当RCC模块收到HVD的输出值为0时(输出电压为低),则可以撤离复位信号,数字电路部分则可以重新开始工作。
通过本发明实施例中的控制芯片,不仅可以实现对高压的检测,以实现对控制芯片过压保护,确保控制芯片的安全性和可靠性。并且,可以采用不同制程的晶体管搭建具备不同功能的电路,从而实现不同的芯片功能,增强了控制芯片的多功能性。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种控制芯片,其特征在于,所述控制芯片包括供电引脚、电压检测模块、电压处理模块和控制功能模块;其中:
所述供电引脚,分别与所述电压检测模块的输入端和所述电压处理模块的输入端连接,用于将来自所述控制芯片外部的供电电压输入给所述控制芯片;
所述电压检测模块的输出端与所述电压处理模块连接,用于对所述供电引脚输入的所述供电电压进行检测,并在所述供电电压大于所述控制芯片的最大额定工作电压时,通过所述电压检测模块的输出端向所述电压处理模块发送高压控制信号;
所述电压处理模块的输出端与所述控制功能模块的电压输入端连接,用于根据所述高压控制信号对所述供电电压进行处理,以通过处理后的供电电压控制所述控制功能模块的工作状态;其中,处理后的供电电压小于所述最大额定工作电压。
2.如权利要求1所述的控制芯片,其特征在于,所述电压处理模块包括直流转换模块,根据所述高压控制信号,所述直流转换模块将大于所述最大额定工作电压的所述供电电压转换成所述控制芯片的额定工作电压范围内的电压,并将转换得到的电压输入所述控制功能模块的电压输入端。
3.如权利要求1所述的控制芯片,其特征在于,所述电压处理模块包括第一开关电路,所述高压控制信号用于控制所述第一开关电路断开,以断开所述控制功能模块的输入电压。
4.如权利要求1所述的控制芯片,其特征在于,所述电压处理模块包括第一开关电路和线性稳压模块,所述第一开关电路连接于所述供电引脚和所述线性稳压模块之间,所述线性稳压模块连接于所述第一开关电路和所述控制功能模块的电压输入端之间;
所述高压控制信号用于控制所述第一开关电路连通以将所述供电电压从所述供电引脚传输至所述线性稳压模块,所述线性稳压模块用于将所述供电电压进行转换成预定的输出电压,并将所述预定的输出电压输入所述控制功能模块的电压输入端。
5.如权利要求1所述的控制芯片,其特征在于,所述电压检测模块具体用于:
在所述供电电压大于所述最大额定工作电压时,确定所述供电电压所属的高压范围;其中,不同的高压范围对应不同类型的高压控制信号,不同类型的高压控制信号对应不同的电压处理策略;
根据确定的高压范围,确定对应类型的高压控制信号。
6.如权利要求5所述的控制芯片,其特征在于,所述电压处理模块包括直流转换模块和第一开关电路;
在确定的高压控制信号是第一类高压控制信号时,则控制所述电压转换模块将大于所述最大额定工作电压的所述供电电压转换成所述控制芯片的额定工作电压范围内的电压,并将转换得到的电压输入所述控制功能模块的电压输入端;
在确定的高压控制信号是第二类高压控制信号时,则控制所述第一开关电路断开,以断开所述控制功能模块的输入电压。
7.如权利要求1所述的控制芯片,其特征在于,所述电压检测模块包括电压检测电路,所述电压处理模块包括电压处理电路,所述电压检测电路和/或所述电压处理电路包括耐高压的晶体管;所述控制功能模块包括控制功能电路,所述控制功能电路包括高速低阈值的晶体管。
8.如权利要求7所述的控制芯片,其特征在于,所述控制芯片还包括用于实现辅助功能的辅助功能模块,所述辅助功能模块对应的电路包括的晶体管采用不同于所述耐高压的晶体管和所述高速低阈值的晶体管的制程制作。
9.如权利要求1-8任一所述的控制芯片,其特征在于,在所述供电引脚和所述电压处理模块之间还设置有第二开关电路;
在所述电压检测模块对所述供电电压进行检测时,所述第二开关电路处于断开状态;
在所述电压检测模块向所述电压处理模块发送所述高压控制信号时,所述电压检测模块还向所述第二开关电路发送开启信号,以控制所述第二开关电路连通。
10.如权利要求1-8任一所述的控制芯片,其特征在于,所述供电引脚与所述控制功能模块之间还设置有第三开关电路,所述电压检测模块的输出端还与所述第三开关电路连接,当所述供电电压处于所述控制芯片的额定工作电压范围内时,所述电压检测模块向所述第三开关电路发送开启信号,控制所述第三开关电路连通以将所述供电电压输入所述控制功能模块的电压输入端。
CN201811075481.7A 2018-09-14 2018-09-14 一种控制芯片 Pending CN109188976A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811075481.7A CN109188976A (zh) 2018-09-14 2018-09-14 一种控制芯片
PCT/CN2018/123323 WO2020052161A1 (zh) 2018-09-14 2018-12-25 一种控制芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811075481.7A CN109188976A (zh) 2018-09-14 2018-09-14 一种控制芯片

Publications (1)

Publication Number Publication Date
CN109188976A true CN109188976A (zh) 2019-01-11

Family

ID=64911331

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811075481.7A Pending CN109188976A (zh) 2018-09-14 2018-09-14 一种控制芯片

Country Status (2)

Country Link
CN (1) CN109188976A (zh)
WO (1) WO2020052161A1 (zh)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1622331A (zh) * 2003-11-25 2005-06-01 松下电器产业株式会社 半导体集成电路及微处理器单元切换方法
CN1679236A (zh) * 2003-02-27 2005-10-05 富士通株式会社 半导体装置
JP2006042051A (ja) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd 過電流防止回路
CN1797886A (zh) * 2004-12-23 2006-07-05 鸿富锦精密工业(深圳)有限公司 防止芯片误动作电路
CN101202502A (zh) * 2006-12-11 2008-06-18 郑再钦 交/直流转换稳压电路
CN201639272U (zh) * 2010-01-29 2010-11-17 比亚迪股份有限公司 一种电机控制器的电源保护装置
CN201656423U (zh) * 2010-03-02 2010-11-24 鸿富锦精密工业(深圳)有限公司 过压保护装置及使用其的电子设备
CN102201701A (zh) * 2010-03-26 2011-09-28 德昌电机(深圳)有限公司 控制电路、电机装置及使用该电机装置的风扇
CN202066965U (zh) * 2011-04-15 2011-12-07 江苏吉美思物联网产业股份有限公司 具有过压保护的gps装置
CN102983559A (zh) * 2012-11-21 2013-03-20 无锡中星微电子有限公司 一种具有改善耐压特性的集成电路
CN102983847A (zh) * 2012-12-18 2013-03-20 中国科学院微电子研究所 一种宽电源电压低功耗定时器电路
CN103001204A (zh) * 2011-09-09 2013-03-27 亚旭电子科技(江苏)有限公司 过电压保护电路及具有该过电压保护电路的可携式电子装置
CN202906445U (zh) * 2012-09-18 2013-04-24 天津市亚安科技股份有限公司 监控系统的供能装置
CN203396864U (zh) * 2013-07-31 2014-01-15 格科微电子(上海)有限公司 静电放电检测电路及处理系统
US20150326110A1 (en) * 2013-08-21 2015-11-12 Chicony Power Technology Co., Ltd. Power supply apparatus with reducing voltage overshooting
CN106130118A (zh) * 2016-07-28 2016-11-16 深圳市英特源电子有限公司 多接口usb充电电路及充电器
CN106300267A (zh) * 2016-08-29 2017-01-04 珠海格力电器股份有限公司 电机过载保护装置和方法、电机系统
CN106602864A (zh) * 2016-12-19 2017-04-26 中国科学院微电子研究所 一种时钟倍压电路及电荷泵

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3459692B2 (ja) * 1994-10-12 2003-10-20 キヤノン株式会社 電源装置
JP2000209770A (ja) * 1999-01-13 2000-07-28 Seiko Epson Corp 電子機器
JP2001211640A (ja) * 2000-01-20 2001-08-03 Hitachi Ltd 電子装置と半導体集積回路及び情報処理システム
CN101651335B (zh) * 2009-09-23 2011-08-17 福建星网锐捷网络有限公司 电子设备保护装置及电子设备
US20120277931A1 (en) * 2011-04-28 2012-11-01 Hycon Technology Corp. Micro control unit for providing stable voltage output to electric device and system for protecting electric device
CN203894394U (zh) * 2014-05-15 2014-10-22 青岛歌尔声学科技有限公司 具有电流监控功能的供电电路及电子设备
CN107294375B (zh) * 2015-09-14 2019-05-21 Oppo广东移动通信有限公司 一种智能直流转换装置及应用系统
CN105634284A (zh) * 2016-01-15 2016-06-01 深圳市大地和电气股份有限公司 一种电源控制电路及低压控制电源电路
WO2018161422A1 (zh) * 2017-03-10 2018-09-13 华为技术有限公司 供电电路及供电方法
CN108110885B (zh) * 2017-12-29 2020-07-31 惠州华阳通用电子有限公司 一种供电自动切换装置
CN108054910A (zh) * 2018-01-10 2018-05-18 四川阵风科技有限公司 供电装置

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1679236A (zh) * 2003-02-27 2005-10-05 富士通株式会社 半导体装置
CN1622331A (zh) * 2003-11-25 2005-06-01 松下电器产业株式会社 半导体集成电路及微处理器单元切换方法
JP2006042051A (ja) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd 過電流防止回路
CN1797886A (zh) * 2004-12-23 2006-07-05 鸿富锦精密工业(深圳)有限公司 防止芯片误动作电路
CN101202502A (zh) * 2006-12-11 2008-06-18 郑再钦 交/直流转换稳压电路
CN201639272U (zh) * 2010-01-29 2010-11-17 比亚迪股份有限公司 一种电机控制器的电源保护装置
CN201656423U (zh) * 2010-03-02 2010-11-24 鸿富锦精密工业(深圳)有限公司 过压保护装置及使用其的电子设备
CN102201701A (zh) * 2010-03-26 2011-09-28 德昌电机(深圳)有限公司 控制电路、电机装置及使用该电机装置的风扇
CN202066965U (zh) * 2011-04-15 2011-12-07 江苏吉美思物联网产业股份有限公司 具有过压保护的gps装置
CN103001204A (zh) * 2011-09-09 2013-03-27 亚旭电子科技(江苏)有限公司 过电压保护电路及具有该过电压保护电路的可携式电子装置
CN202906445U (zh) * 2012-09-18 2013-04-24 天津市亚安科技股份有限公司 监控系统的供能装置
CN102983559A (zh) * 2012-11-21 2013-03-20 无锡中星微电子有限公司 一种具有改善耐压特性的集成电路
CN102983847A (zh) * 2012-12-18 2013-03-20 中国科学院微电子研究所 一种宽电源电压低功耗定时器电路
CN203396864U (zh) * 2013-07-31 2014-01-15 格科微电子(上海)有限公司 静电放电检测电路及处理系统
US20150326110A1 (en) * 2013-08-21 2015-11-12 Chicony Power Technology Co., Ltd. Power supply apparatus with reducing voltage overshooting
CN106130118A (zh) * 2016-07-28 2016-11-16 深圳市英特源电子有限公司 多接口usb充电电路及充电器
CN106300267A (zh) * 2016-08-29 2017-01-04 珠海格力电器股份有限公司 电机过载保护装置和方法、电机系统
CN106602864A (zh) * 2016-12-19 2017-04-26 中国科学院微电子研究所 一种时钟倍压电路及电荷泵

Also Published As

Publication number Publication date
WO2020052161A1 (zh) 2020-03-19

Similar Documents

Publication Publication Date Title
US9419807B2 (en) PD in PoE system having redundant PSE channel inputs
CN103166168B (zh) 一种高压直流固态功率控制器
CN101651335B (zh) 电子设备保护装置及电子设备
CN102033502B (zh) 可编程控制器
CN104412480A (zh) 车载用电源装置
CN107785864B (zh) 监控断路器的监控单元和包括这种单元的断路器
KR20180113160A (ko) 고전압 제어 유닛의 제어 소프트웨어를 업데이트하기 위한 장치 및 방법
CN105305388A (zh) 用于监视和切换负载电路的装置和方法
CN105843087A (zh) 与功率切换设备通信
CN107466488A (zh) 隔离驱动器
CN117458668A (zh) 电池保护电路、电池保护板及电子设备
US7847441B2 (en) Semiconductor integrated circuit
CN108181978B (zh) 一种电子设备的电力控制方法及装置
CN102778849A (zh) 开关机控制电路、电子设备及开关机控制方法
CN105790360A (zh) 充电电路、电子设备及信息处理方法
CN108259030A (zh) 一种自动根据输入选择功率路径的开关装置
CN109188976A (zh) 一种控制芯片
CN109450309B (zh) 一种基于航空电源系统发电机控制器的防拍合方法
CN102346529A (zh) 电源控制电路
KR20190002680A (ko) 전압 발생 장치 및 반도체 칩
CN113936941B (zh) 一种开关装置及配电系统
CN210804042U (zh) 一种下位机上下电时序控制系统及机器人
CN106340856B (zh) Dc到dc转换器输入节点短路保护
CN108847771A (zh) 延长PMC芯片寿命的供电电路及Expander背板
CN203299809U (zh) 一种数据保护电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190111