CN109182239A - 一种谷氨酸棒杆菌重组菌及其构建方法 - Google Patents

一种谷氨酸棒杆菌重组菌及其构建方法 Download PDF

Info

Publication number
CN109182239A
CN109182239A CN201811074264.6A CN201811074264A CN109182239A CN 109182239 A CN109182239 A CN 109182239A CN 201811074264 A CN201811074264 A CN 201811074264A CN 109182239 A CN109182239 A CN 109182239A
Authority
CN
China
Prior art keywords
recombinant bacterium
corynebacterium glutamicum
icd
nadph
glutamicum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811074264.6A
Other languages
English (en)
Inventor
徐建中
杨汉昆
张伟国
于海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201811074264.6A priority Critical patent/CN109182239A/zh
Publication of CN109182239A publication Critical patent/CN109182239A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01041Isocitrate dehydrogenase (NAD+) (1.1.1.41)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01042Isocitrate dehydrogenase (NADP+) (1.1.1.42)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01049Glucose-6-phosphate dehydrogenase (1.1.1.49)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种谷氨酸棒杆菌重组菌及其构建方法,属于基因工程和酶工程领域。本发明应用基因工程方法,敲除基因zwf、malE,替换谷氨酸棒杆菌基因icdCg为变形链球菌Streptococcus mutans JH 1005中基因icdSm,达到重组菌胞内NADPH水平精确调控的目的。重组菌经LBG液体培养基摇瓶实验,重组菌胞内NADH含量由出发菌的1.97μmol(g DCW)‑1增加到2.73μmol(g DCW)‑1,胞内NADPH含量降低至0.15μmol(g DCW)‑1,明显低于出发菌胞内NADPH含量1.43μmol(g DCW)‑1。此发明成功阻断了谷氨酸棒杆菌中NADPH合成的相关途径,为构建可精确调控胞内NADPH水平的菌株提供崭新的思路。

Description

一种谷氨酸棒杆菌重组菌及其构建方法
技术领域
本发明涉及一种谷氨酸棒杆菌重组菌及其构建方法,属于基因工程和酶工程技术领域。
背景技术
NADPH(还原型烟酰胺腺嘌呤二核苷酸磷酸)又称为还原型辅酶Ⅱ,在很多生物体内的化学反应中起递氢体的作用,具有重要的生物学意义。它是烟酰胺腺嘌呤二核苷酸(NAD+)中与腺嘌呤相连的核糖环系2'-位的磷酸化衍生物,NADPH在细胞内分布广泛,通过参与800多个氧化还原反应来调节细胞内氧化还原水平并影响着众多基因表达、细胞功能、代谢途径和物质跨膜运输,参与多种合成代谢反应,如参与合成代谢,如氨基酸、脂类及核苷酸等细胞组成物质的合成均需NADPH提供还原力,对细胞正常生长和代谢有重要影响NADPH是NADP+的还原形式。并且是微生物代谢网络中含量最丰富的氧化还原辅酶之一。
微生物细胞内NADPH主要通过中心碳代谢途径合成。其中,磷酸戊糖途径的不可逆氧化阶段是NADPH的主要来源。依赖NADP+的6-磷酸葡萄糖脱氢酶和6-磷酸葡萄糖酸脱氢酶在氧化生成1mol 6-磷酸葡萄糖酸和氧化脱羧生成1mol 5-磷酸核酮糖过程中,分别产生1mol NADPH。微生物胞内NADPH的消耗主要通过同化作用。同化作用利用中心碳代谢途径的中间代谢物,合成75~100个细胞原件、辅酶以及辅基,维持细胞正常生长代谢。此过程需消耗大量ATP和NADPH,如合成1g大肠杆菌干细胞需消耗41mol ATP和18mol NADPH。由此可见,胞内NADPH的生成和消耗同胞内很多重要的代谢途径相关联,维持细胞内辅酶的平衡对于细胞生长、代谢以及产物的合成都非常关键。为了维持细胞正常生长和代谢,必须精确调控细胞内NADPH的供应与需求。
NADPH对C.glutamicum lysCfbr合成L-赖氨酸非常重要,合成1mol L-赖氨酸需要消耗4mol NADPH。在L-赖氨酸生物合成途径中有四个反应涉及NADPH的消耗。谷氨酸棒杆菌中NADPH的代谢调控机制在不同的生理条件下通过13C代谢流分析得以阐明,这为建立NADPH平衡具有重要作用。在谷氨酸棒杆菌中葡萄糖-6-磷酸脱氢酶、6-磷酸葡萄糖酸脱氢酶、苹果酸酶和异柠檬酸脱氢酶以NADP+为辅因子,参与NADPH合成,这些NADPH不仅要满足L-赖氨酸合成需求而且还要用于菌体生长。因为,增加1g菌体需要消耗16.4mmol NADPH。谷氨酸棒杆菌中NADPH的代谢是非常灵活的,它的消耗与合成很大程度上取决于菌体生长状态、碳源的供应以及菌体的遗传背景。目前许多基于NADPH供给的调控策略无法调控和优化胞内NADPH与中心碳代谢的特异性,为满足L-赖氨酸高效合成时对NADPH的需求,理论上提高NADPH的供给水平可显著增加L-赖氨酸产量。但一味强调提高辅因子NADPH的合成量,不仅不利于L-赖氨酸的大量积累,还阻碍了菌体对糖的利用和降低菌体量,辅因子NADPH水平与胞内微环境、代谢网络和目标代谢产物合成之间的关系还不明确。
发明内容
为解决上述问题,本发明首次用来源于Streptococcus mutans中的NAD+-依赖型异柠檬酸脱氢酶替换C.glutamicum lysCfbr中的NADP+-依赖型异柠檬酸脱氢酶并同时敲除葡萄糖-6-磷酸脱氢酶和苹果酸酶编码基因,解决了不破坏三羧酸循环的情况下,阻断其NADPH的合成。本发明的目的是:阻断胞内NADPH的合成,实现菌株胞内NADPH水平的精确调控。
本发明的第一个目的是提供一种谷氨酸棒杆菌重组菌,所述重组菌异源表达了NAD+-依赖型异柠檬酸脱氢酶icdSm,并敲除了NADP+-依赖型异柠檬酸脱氢酶icdCg、葡萄糖-6-磷酸脱氢酶zwf和苹果酸酶malE。
在本发明的一种实施方式中,所述的NAD+-依赖型异柠檬酸脱氢酶来源于变形链球菌Streptococcus mutans。
在本发明的一种实施方式中,所述NAD+-依赖型异柠檬酸脱氢酶的核苷酸序列如SEQ ID NO.1所示。
在本发明的一种实施方式中,所述NADP+-依赖型异柠檬酸脱氢酶的核苷酸序列如SEQ ID NO.2所示。
在本发明的一种实施方式中,所述的葡萄糖-6-磷酸脱氢酶的核苷酸序列如SEQID NO.3所示。
在本发明的一种实施方式中,所述的苹果酸酶的核苷酸序列如SEQ ID NO.4所示。
在本发明的一种实施方式中,所述重组菌的宿主为谷氨酸棒杆菌C.glutamicumlysCfbr
在本发明的一种实施方式中,所述重组菌以pK18mobsacB作为表达载体。
本发明的第二个目的是提供一种所述重组菌的构建方法,包括如下步骤:
(1)分别构建重组自杀型质粒pK18mobsacB-ΔicdCg::icdSm、pK18mobsacB-△zwf和pK18mobsacB-△malE;
(2)重组菌株C.glutamicum lysCfbrΔzwfΔmalEΔicdCg::icdSm的构建:分别将步骤(1)的三种重组自杀型质粒转化到宿主谷氨酸棒杆菌C.glutamicum lysCfbr中,筛选得到所述的重组菌。
本发明的第三个目的是提供重组菌在饲料工业、医药工业或食品工业中的应用。
本发明的有益效果是:本发明通过利用菌株C.glutamicum lysCfbr(基因lysC编码酶AK解除反馈抑制作用)为出发菌株,该菌株为遗传背景清晰的L-赖氨酸产生菌,利用基因工程手段敲除参与胞内NADPH合成途径中的关键酶基因zwf(葡萄糖-6-磷酸脱氢酶)、malE(苹果酸酶),并将自身NADP+-依赖型异柠檬酸脱氢酶(编码基因icdCg)替换成Streptococcus mutans NAD+-依赖型异柠檬酸脱氢酶(编码基因icdSm),获得基因工程菌株C.glutamicum lysCfbrΔzwfΔmalEΔicdCg::icdSm,重组菌经LBG液体培养基摇瓶实验,重组菌胞内NADH含量由出发菌的1.97μmol(g DCW)-1增加到2.73μmol(g DCW)-1,胞内NADPH含量降低至0.15μmol(g DCW)-1,明显低于出发菌胞内NADPH含量1.43μmol(g DCW)-1。此发明成功阻断了谷氨酸棒杆菌中NADPH合成的相关途径,可精确调控胞内NADPH水平的菌株提供崭新的思路。
附图说明
图1:谷氨酸棒杆菌L-赖氨酸合成中NADPH的生成途径;
注:编码基因:zwf葡萄糖-6-磷酸脱氢酶,gnd 6-磷酸葡萄糖酸脱氢酶,malE苹果酸酶;icd异柠檬酸脱氢酶。
图2:验证基因zwf、malE敲除和基因icd替换PCR产物电泳图;
泳道说明:M泳道为DNA Marker/Ladder;1号泳道为以C.glutamicum lysCfbrΔzwf基因组为模板,zwf-F和zwf-R为引物的PCR产物;2号泳道为以C.glutamicum lysCfbrΔzwfΔmalE基因组为模板,malE-F和malE-R为引物的PCR产物;3号泳道为以C.glutamicumlysCfbrΔzwfΔmalEΔicdCg::icdSm基因组为模板,icd-F和icd-R为引物的PCR产物;
图3:重组菌和出发菌胞内腺嘌呤核苷酸(ATP、ADP和AMP)的测定;
图4:重组菌和出发菌胞内吡啶核苷酸(NAD+、NADH、NADP+和NADPH)的测定。
具体实施方式
以下通过具体实施案例来进一步说明本发明内容,以使本领域的技术人员可以更好地理解本发明并能予以实施,但是这些实施案例不构成对本发明的限制。
表1.PCR扩增所需引物序列(下划线为酶切位点)
实施例1:敲除C.glutamicum lysCfbr中zwf编码基因
以C.glutamicum ATCC 13032基因组为模板,分别以zwf-L-F/zwf-L-R和zwf-R-F/zwf-R-R为引物PCR(表1),获得分别在3’端和5’端有相同限制性内切酶的PCR产物。将以上述PCR产物分别与线性化并与重组自杀型质粒pK18mobsacB酶连构建重组质粒pK18mobsacB-Δzwf。
将验证正确的质粒pK18mobsacB-△zwf电击转化C.glutamicum lysCfbr,经含有50μg·mL-1卡那霉素的LBG固体培养基于30℃培养筛选获得第一次同源重组转化子。再将经一次重组的转化子接入含100g·L-1蔗糖的LBGS液体培养基于30℃培养,培养基中含蔗糖会导致含sacB基因的线性化整合基因片段与基因组DNA中目的基因进行第二次同源重组,LBGS培养的菌液在LBG平板上划线分离,在平板上长出的菌落可能是回复野生型也可能是基因敲除型,菌落PCR验证单菌落,提取转化子染色体,以目标基因icd的上下游引物进行PCR并对PCR产物进行测序鉴定,最终获得目的重组菌株C.glutamicum lysCfbrΔzwf。
实施例2:敲除C.glutamicum lysCfbrΔzwf中malE编码基因
以C.glutamicum ATCC 13032基因组为模板,分别以malE-L-F/malE-L-R和malE-R-F/malE-R-R为引物PCR(表1),获得分别在3’端和5’端有相同限制性内切酶的PCR产物。将以上述PCR产物分别与线性化并与重组自杀型质粒pK18mobsacB酶连构建重组质粒pK18mobsacB-ΔmalE。
将验证正确的质粒pK18mobsacB-ΔmalE电击转化C.glutamicum lysCfbrΔzwf,经含有50μg·mL-1卡那霉素的LBG固体培养基于30℃培养筛选获得第一次同源重组转化子。再将经一次重组的转化子接入含100g·L-1蔗糖的LBGS液体培养基于30℃培养,培养基中含蔗糖会导致含sacB基因的线性化整合基因片段与基因组DNA中目的基因进行第二次同源重组,LBGS培养的菌液在LBG平板上划线分离,在平板上长出的菌落可能是回复野生型也可能是基因敲除型,菌落PCR验证单菌落,提取转化子染色体,以目标基因malE的上下游引物进行PCR并对PCR产物进行测序鉴定,最终获得目的重组菌株C.glutamicum lysCfbrΔzwfΔmalE。
实施例3:Streptococcus mutans JH1005编码基因icdSm表达框的获得
根据GenBank中Streptococcus mutans JH1005全基因组核酸序列中的ICD基因序列,在其基因上下游分别加入限制性内切酶EcoR I和Xho I酶切位点序列并在上游加入谷氨酸棒杆菌SD识别序列GAAAGGAGATATACC(SEQ ID NO.5),并将组合好的序列提交给通用生物系统(安徽)有限公司进行合成,获得含有目的基因的重组质粒pUC57-icdSm。随后,采用限制性内切酶EcoR I和Xho I酶切重组质粒pUC57-icdSm。随后采用胶回收试剂盒回收icdSm片段。将icdSm片段与经相同限制性内切酶酶切后的C.glutamicum-E.coli穿梭表达质粒pDXW-8相连构建重组质粒pDXW-8-icdSm。最后,以pDXW-8-icdSm为模板,以Ptac-F/Ptac-R为引物进行PCR(表1),获得Ptac-icdSm-rrnBT1T2表达框。
实施例4:C.glutamicum lysCfbr中ICD编码基因icdCg替换为Streptococcusmutans JH 1005ICD编码基因icdSm
以C.glutamicum ATCC 13032基因组为模板,分别以icd-L-F/icd-L-R和icd-R-F/icd-R-R为引物PCR(表1),获得分别在3’端和5’端有相同限制性内切酶的PCR产物。将以上述PCR产物分别与线性化并与重组自杀型质粒pK18mobsacB酶连构建重组质粒pK18mobsacB-ΔicdCg;将将纯化后的PCR产物Ptac-icdSm-rrnBT1T2与pK18mobsacB-ΔicdCg连接,二者同时用Sal I酶切,酶切产物通过粘性末端连接,获得重组质粒pK18mobsacB-ΔicdCg::icdSm
将验证正确的质粒pK18mobsacB-ΔicdCg::icdSm电击转化C.glutamicum lysCfbrΔzwfΔmalE,经含有50μg·mL-1卡那霉素的LBG固体培养基于30℃培养筛选获得第一次同源重组转化子。再将经一次重组的转化子接入含100g·L-1蔗糖的LBGS液体培养基于30℃培养,培养基中含蔗糖会导致含sacB基因的线性化整合基因片段与基因组DNA中目的基因进行第二次同源重组,LBGS培养的菌液在LBG平板上划线分离,在平板上长出的菌落可能是回复野生型也可能是基因敲除型,菌落PCR验证单菌落,提取转化子染色体,以目标基因icd的上下游引物进行PCR并对PCR产物进行测序鉴定,最终获得目的重组菌株C.glutamicumlysCfbrΔzwfΔmalEΔicdCg::icdSm
实施例5:重组菌C.glutamicum lysCfbrΔzwfΔmalEΔicdCg::icdSm和出发菌C.glutamicum lysCfbr胞内辅酶ⅠNAD(H)和辅酶ⅡNADP(H)的测定
辅酶ⅠNAD(H)的测定:收集500万细菌,加入0.5ml酸性(碱性)提取液,超声破碎1min(强度20%或200W,超声2s,停1s),盖紧后煮沸5min,冰浴中冷却后,10000g 4℃离心10min,取上清液200μL至另一新的离心管中,加入等体积的碱性(酸性)提取液使之中和,10000g 4℃离心10min,取上清。随后,以试剂盒NAD/NADH Quantification ColorimetericKit特异性检测NAD+和NADH,并计算NADH/NAD+
辅酶ⅡNADP(H)的测定:收集400-500万细菌,加入0.9ml酸性(碱性)提取液,超声破碎1min(强度20%或200W,超声2s,停1s),盖紧后煮沸5min,冰浴中冷却后,10000g 4℃离心10min,取上清液200μL至另一新的离心管中,加入等体积的碱性(酸性)提取液使之中和,10000g 4℃离心10min,取上清。随后,以试剂盒NADP/NADPH QuantificationColorimeteric Kit特异性检测NADP+和NADPH,并计算NADPH/NADP+
表2为重组菌和出发菌胞内吡啶核苷酸(NAD+、NADH、NADP+和NADPH)的含量,从表中可以看出,胞内NADPH含量降低至0.15μmol(g DCW)-1,明显低于出发菌胞内NADPH含量1.43μmol(g DCW)-1
表2.重组菌和出发菌胞内吡啶核苷酸含量
a:单位是μmol(g DCW)-1.
实施例6:重组菌C.glutamicum lysCfbrΔzwfΔmalEΔicdCg::icdSm和出发菌C.glutamicum lysCfbr胞内ATP、ADP、AMP的测定
利用0.6mol·L-1高氯酸(PCA)抽提重组菌C.glutamicum lysCfbrΔzwfΔmalEΔicdCg::icdSm和出发菌C.glutamicum lysCfbr胞内ATP、ADP和AMP。随后,采用HPLC技术对抽提液进行分析,测定胞内ATP、ADP和AMP的浓度。将50ml细胞样品从培养物中取出,立即在液氮中冷冻60s,并储存在-20℃。通过HPLC(Agilent 1100系列,Thermo electroncorporation,MA,USA)测量细胞内ATP的浓度。为了提取ATP,将10ml的0.6M HClO4加入到细胞沉淀中并混合用磁力搅拌器彻底搅拌10分钟。将混合物以10,000×g离心10分钟以收集上清液。将另外10ml的0.6M HClO4加入到沉淀中,充分混合10分钟,离心后收集上清液。将两部分上清液在25ml容量瓶中混合并用0.6M HClO4补足至25ml。取10毫升所制备的溶液,并用0.8M氢氧化钾将pH调节至7.0。在4℃保持30分钟后,通过过滤从孔中除去晶体KClO4(孔径=0.22μm),然后在应用HPLC柱之前用磷酸盐缓冲液(pH7.0)稀释至25ml。HPLC分析的进样量为10μl。使用80%10mM KH2PO 4(pH7.0)和20%甲醇的混合物作为流动相,流速为1.2ml min-1。紫外检测器的波长设置为260nm,柱温控制在25℃。
表3为重组菌和出发菌胞内腺嘌呤核苷酸(ATP、ADP和AMP)的含量,从表中可以看出,重组菌胞内ATP含量降低,而ADP、AMP含量略微升高。
表3.重组菌和出发菌胞内腺嘌呤核苷酸的含量
a:单位是μmol(g DCW)-1.
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。
序列表
<110> 江南大学
<120> 一种谷氨酸棒杆菌重组菌及其构建方法
<160> 25
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1182
<212> DNA
<213> (人工序列)
<400> 1
atggcagaaa aagtaagttt tgaagaaggg aaattacagg tgcctgataa gcccgtcatt 60
ccttacattg aaggagatgg tgttggtcag gatatttgga agaatgcgca aatcgttttt 120
gataaagcca ttgctaaagt ttatggaggt cacaagcagg ttatttggcg ggaggtttta 180
gctggtaaaa aagcttataa ggaaacaggc aactggctgc ctaatgagac tttagaaatt 240
atcaagacgc atttacttgc tattaaaggt ccattggaaa ctcctgttgg aggtggtatt 300
cgttccttaa atgttgccct gcgtcaagaa ttggatctct ttgcttgcgt gcgtccagtg 360
cgttatttca aaggtgtccc tagtccactt aagcatcctg aaaaaacggc tattactatt 420
tttcgagaaa atactgaaga tatttacgca ggtatcgaat ggaatgcggg tacagcagaa 480
gttcaaaagg tcatcaactt tttacaagat gatatgcagg ttaagaaaat tcgttttcca 540
aaaagcagca gtatagggat taaacctatt tcaattgaag gcagccaacg tttgattcgt 600
gcagctatcg aatatgctct ggccaacaat ctgaccaagg taactttggt tcataaagga 660
aatattcaaa aattcactga aggtggcttt agaaaatggg gctatgaatt agcaaaacgt 720
gagtatgctg ccgaacttgc cagtggtcaa ttggtagttg atgatattat tgctgacaat 780
ttcttgcaac aaattctgct caagcctgag cgttttgatg tagttgcctt aacgaatctc 840
aatggggact atgccagcga tgccttagca gcacaagttg gcggtattgg tatttcgcca 900
ggagctaata ttaactatca aacgggacat gctatttttg aagcaaccca tggaacggct 960
ccagatattg caggtcaaga cttggccaac ccatcttctg ttttattatc aggctgcatg 1020
ctttttgact atattggttg gtcaaaagtc tcagatttaa tcatgaaagc tgttgaaaaa 1080
gctattgcaa atggtcaagt taccattgat tttgccaagg aactaggggt tgaagcattg 1140
acaacctgtc agttttctga agttctattg acttatttat ag 1182
<210> 2
<211> 2217
<212> DNA
<213> (人工序列)
<400> 2
atggctaaga tcatctggac ccgcaccgac gaagcaccgc tgctcgcgac ctactcgctg 60
aagccggtcg tcgaggcatt tgctgctacc gcgggcattg aggtcgagac ccgggacatt 120
tcactcgctg gacgcatcct cgcccagttc ccagagcgcc tcaccgaaga tcagaaggta 180
ggcaacgcac tcgcagaact cggcgagctt gctaagactc ctgaagcaaa catcattaag 240
cttccaaaca tctccgcttc tgttccacag ctcaaggctg ctattaagga actgcaggac 300
cagggctacg acatcccaga actgcctgat aacgccacca ccgacgagga aaaagacatc 360
ctcgcacgct acaacgctgt taagggttcc gctgtgaacc cagtgctgcg tgaaggcaac 420
tctgaccgcc gcgcaccaat cgctgtcaag aactttgtta agaagttccc acaccgcatg 480
ggcgagtggt ctgcagattc caagaccaac gttgcaacca tggatgcaaa cgacttccgc 540
cacaacgaga agtccatcat cctcgacgct gctgatgaag ttcagatcaa gcacatcgca 600
gctgacggca ccgagaccat cctcaaggac agcctcaagc ttcttgaagg cgaagttcta 660
gacggaaccg ttctgtccgc aaaggcactg gacgcattcc ttctcgagca ggtcgctcgc 720
gcaaaggcag aaggtatcct cttctccgca cacctgaagg ccaccatgat gaaggtctcc 780
gacccaatca tcttcggcca cgttgtgcgc gcttacttcg cagacgtttt cgcacagtac 840
ggtgagcagc tgctcgcagc tggcctcaac ggcgaaaacg gcctcgctgc aatcctctcc 900
ggcttggagt ccctggacaa cggcgaagaa atcaaggctg cattcgagaa gggcttggaa 960
gacggcccag acctggccat ggttaactcc gctcgcggca tcaccaacct gcatgtccct 1020
tccgatgtca tcgtggacgc ttccatgcca gcaatgattc gtacctccgg ccacatgtgg 1080
aacaaagacg accaggagca ggacaccctg gcaatcatcc cagactcctc ctacgctggc 1140
gtctaccaga ccgttatcga agactgccgc aagaacggcg cattcgatcc aaccaccatg 1200
ggtaccgtcc ctaacgttgg tctgatggct cagaaggctg aagagtacgg ctcccatgac 1260
aagaccttcc gcatcgaagc agacggtgtg gttcaggttg tttcctccaa cggcgacgtt 1320
ctcatcgagc acgacgttga ggcaaatgac atctggcgtg catgccaggt caaggatgcc 1380
ccaatccagg attgggtaaa gcttgctgtc acccgctccc gtctctccgg aatgcctgca 1440
gtgttctggt tggatccaga gcgcgcacac gaccgcaacc tggcttccct cgttgagaag 1500
tacctggctg accacgacac cgagggcctg gacatccaga tcctctcccc tgttgaggca 1560
acccagctct ccatcgaccg catccgccgt ggcgaggaca ccatctctgt caccggtaac 1620
gttctgcgtg actacaacac cgacctcttc ccaatcctgg agctgggcac ctctgcaaag 1680
atgctgtctg tcgttccttt gatggctggc ggcggactgt tcgagaccgg tgctggtgga 1740
tctgctccta agcacgtcca gcaggttcag gaagaaaacc acctgcgttg ggattccctc 1800
ggtgagttcc tcgcactggc tgagtccttc cgccacgagc tcaacaacaa cggcaacacc 1860
aaggccggcg ttctggctga cgctctggac aaggcaactg agaagctgct gaacgaagag 1920
aagtccccat cccgcaaggt tggcgagatc gacaaccgtg gctcccactt ctggctgacc 1980
aagttctggg ctgacgagct cgctgctcag accgaggacg cagatctggc tgctaccttc 2040
gcaccagtcg cagaagcact gaacacaggc gctgcagaca tcgatgctgc actgctcgca 2100
gttcagggtg gagcaactga ccttggtggc tactactccc ctaacgagga gaagctcacc 2160
aacatcatgc gcccagtcgc acagttcaac gagatcgttg acgcactgaa gaagtaa 2217
<210> 3
<211> 1545
<212> DNA
<213> (人工序列)
<400> 3
gtgagcacaa acacgacccc ctccagctgg acaaacccac tgcgcgaccc gcaggataaa 60
cgactccccc gcatcgctgg cccttccggc atggtgatct tcggtgtcac tggcgacttg 120
gctcgaaaga agctgctccc cgccatttat gatctagcaa accgcggatt gctgccccca 180
ggattctcgt tggtaggtta cggccgccgc gaatggtcca aagaagactt tgaaaaatac 240
gtacgcgatg ccgcaagtgc tggtgctcgt acggaattcc gtgaaaatgt ttgggagcgc 300
ctcgccgagg gtatggaatt tgttcgcggc aactttgatg atgatgcagc tttcgacaac 360
ctcgctgcaa cactcaagcg catcgacaaa acccgcggca ccgccggcaa ctgggcttac 420
tacctgtcca ttccaccaga ttccttcaca gcggtctgcc accagctgga gcgttccggc 480
atggctgaat ccaccgaaga agcatggcgc cgcgtgatca tcgagaagcc tttcggccac 540
aacctcgaat ccgcacacga gctcaaccag ctggtcaacg cagtcttccc agaatcttct 600
gtgttccgca tcgaccacta tttgggcaag gaaacagttc aaaacatcct ggctctgcgt 660
tttgctaacc agctgtttga gccactgtgg aactccaact acgttgacca cgtccagatc 720
accatggctg aagatattgg cttgggtgga cgtgctggtt actacgacgg catcggcgca 780
gcccgcgacg tcatccagaa ccacctgatc cagctcttgg ctctggttgc catggaagaa 840
ccaatttctt tcgtgccagc gcagctgcag gcagaaaaga tcaaggtgct ctctgcgaca 900
aagccgtgct acccattgga taaaacctcc gctcgtggtc agtacgctgc cggttggcag 960
ggctctgagt tagtcaaggg acttcgcgaa gaagatggct tcaaccctga gtccaccact 1020
gagacttttg cggcttgtac cttagagatc acgtctcgtc gctgggctgg tgtgccgttc 1080
tacctgcgca ccggtaagcg tcttggtcgc cgtgttactg agattgccgt ggtgtttaaa 1140
gacgcaccac accagccttt cgacggcgac atgactgtat cccttggcca aaacgccatc 1200
gtgattcgcg tgcagcctga tgaaggtgtg ctcatccgct tcggttccaa ggttccaggt 1260
tctgccatgg aagtccgtga cgtcaacatg gacttctcct actcagaatc cttcactgaa 1320
gaatcacctg aagcatacga gcgcctcatt ttggatgcgc tgttagatga atccagcctc 1380
ttccctacca acgaggaagt ggaactgagc tggaagattc tggatccaat tcttgaagca 1440
tgggatgccg atggagaacc agaggattac ccagcgggta cgtggggtcc aaagagcgct 1500
gatgaaatgc tttcccgcaa cggtcacacc tggcgcaggc cataa 1545
<210> 4
<211> 1179
<212> DNA
<213> (人工序列)
<400> 4
atgaccatcg acctgcagcg ttccacccaa aacctcaccc atgaggaaat cttcgaggca 60
cacgagggcg gaaagctctc cattagttcc actcgtccgc tccgcgacat gcgcgatctt 120
tcccttgctt acacccctgg tgttgctcag gtttgtgaag caatcaagga agatccagag 180
gttgcgcgca cccacacggg cattggaaac accgtcgcgg ttatttccga cggcaccgct 240
gttcttggcc ttggcgatat cggacctcag gcctcccttc ccgtcatgga gggcaaggct 300
cagctgttta gctctttcgc tggcctgaag gctatcccta tcgttttgga cgttcacgat 360
gttgacgctt tggttgagac catcgcagcc atcgcgcctt ctttcggtgc tatcaacttg 420
gaggacatct ccgctcctcg ttgcttcgag gtggagcgcc gcctcatcga gcgtctcgat 480
attccagtta tgcacgatga ccagcacggc accgctgtgg ttatcctcgc tgcgctgcgc 540
aactccctga agctgctgga tcgcaagatc gaagacctca agattgttat ttccggcgca 600
ggcgcagcgg gcgttgcagc tgtagatatg ctgaccaacg ctggagcaac cgacatcgtg 660
gttcttgatt cccgaggcat catccacgac agccgtgagg atctttcccc agttaaggct 720
gctcttgcag agaagaccaa ccctcgtggc atcagcggtg gcatcaatga ggctttcacc 780
ggcgcggacc tgttcattgg cgtgtccggc ggcaacatcg gcgaggacgc tctcaaactc 840
atggccccgg agccaatcct gttcaccctg gcgaacccaa ccccagagat cgatcctgag 900
ctgtctcaga agtacggcgc catcgtcgcg accggccgct ctgacctgcc taaccagatc 960
aacaacgtgc tcgcgttccc aggaattttc gccggcgctc tcgcagccaa ggctaagaag 1020
atcacccccg agatgaagct cgccgctgca gaggcaatcg ccgacatcgc agctgaggac 1080
ctcgaggtcg gccgcatcgt gcctaccgcc ctggatcccc gcgtcgcccc agcagtcaag 1140
gcagctgtcc aggccgtcgc cgaagcgcaa aacgcttaa 1179
<210> 5
<211> 15
<212> DNA
<213> (人工序列)
<400> 5
gaaaggagat atacc 15
<210> 6
<211> 30
<212> DNA
<213> (人工序列)
<400> 6
acgcgtcgac gctgtcctac ggctgtgcag 30
<210> 7
<211> 29
<212> DNA
<213> (人工序列)
<400> 7
acgcgtcgac gcctggcggc agtagcgcg 29
<210> 8
<211> 30
<212> DNA
<213> (人工序列)
<400> 8
cccaagctta tgatgtcttt ggcttcgtcg 30
<210> 9
<211> 31
<212> DNA
<213> (人工序列)
<400> 9
acgcgtcgac gagttcctcg cactggctga g 31
<210> 10
<211> 31
<212> DNA
<213> (人工序列)
<400> 10
acgcgtcgac gaggatgtct ttttcctcgt c 31
<210> 11
<211> 29
<212> DNA
<213> (人工序列)
<400> 11
cggaattcga tcttggcagg cgatgaaac 29
<210> 12
<211> 17
<212> DNA
<213> (人工序列)
<400> 12
atggctaaga tcatctg 17
<210> 13
<211> 16
<212> DNA
<213> (人工序列)
<400> 13
ttacttcttc agtgcg 16
<210> 14
<211> 30
<212> DNA
<213> (人工序列)
<400> 14
cccaagcttg ctgcgtggaa gtgttcacac 30
<210> 15
<211> 31
<212> DNA
<213> (人工序列)
<400> 15
acgcgtcgac tgagccttgc cctccatgac g 31
<210> 16
<211> 31
<212> DNA
<213> (人工序列)
<400> 16
acgcgtcgac ccagagatcg atcctgagct g 31
<210> 17
<211> 29
<212> DNA
<213> (人工序列)
<400> 17
gctctagact gaacacttgt ggcgcggcg 29
<210> 18
<211> 19
<212> DNA
<213> (人工序列)
<400> 18
atgaccatcg acctgcagc 19
<210> 19
<211> 19
<212> DNA
<213> (人工序列)
<400> 19
aaatattggc gcctcgacg 19
<210> 20
<211> 28
<212> DNA
<213> (人工序列)
<400> 20
cgggatcctg aggctttggc tctgcgcg 28
<210> 21
<211> 27
<212> DNA
<213> (人工序列)
<400> 21
gctctagagc tgtgaaggaa tctggtg 27
<210> 22
<211> 28
<212> DNA
<213> (人工序列)
<400> 22
gctctagatt ggtcgccgtg ttactgag 28
<210> 23
<211> 28
<212> DNA
<213> (人工序列)
<400> 23
cccaagcttg ggtgatccaa tgaggagg 28
<210> 24
<211> 32
<212> DNA
<213> (人工序列)
<400> 24
gaaaggagat ataccgtgag cacaaacacg ac 32
<210> 25
<211> 21
<212> DNA
<213> (人工序列)
<400> 25
ttatggcctg cgccaggtgt g 21

Claims (10)

1.一种谷氨酸棒杆菌重组菌,其特征在于,所述重组菌异源表达了NAD+-依赖型异柠檬酸脱氢酶icdSm,并敲除了NADP+-依赖型异柠檬酸脱氢酶icdCg、葡萄糖-6-磷酸脱氢酶zwf和苹果酸酶malE。
2.根据权利要求1所述的谷氨酸棒杆菌重组菌,其特征在于,所述的NAD+-依赖型异柠檬酸脱氢酶来源于变形链球菌Streptococcus mutans。
3.根据权利要求1所述的谷氨酸棒杆菌重组菌,其特征在于,所述NAD+-依赖型异柠檬酸脱氢酶的核苷酸序列如SEQ ID NO.1所示。
4.根据权利要求1所述的谷氨酸棒杆菌重组菌,其特征在于,所述NADP+-依赖型异柠檬酸脱氢酶的核苷酸序列如SEQ ID NO.2所示。
5.根据权利要求1所述的谷氨酸棒杆菌重组菌,其特征在于,所述的葡萄糖-6-磷酸脱氢酶的核苷酸序列如SEQ ID NO.3所示。
6.根据权利要求1所述的谷氨酸棒杆菌重组菌,其特征在于,所述的苹果酸酶的核苷酸序列如SEQ ID NO.4所示。
7.根据权利要求1所述的谷氨酸棒杆菌重组菌,其特征在于,所述重组菌的宿主为谷氨酸棒杆菌C.glutamicum lysCfbr
8.根据权利要求1所述的谷氨酸棒杆菌重组菌,其特征在于,所述重组菌以pK18mobsacB作为表达载体。
9.一种权利要求1~8任一项所述的重组菌的构建方法,其特征在于,包括如下步骤:
(1)分别构建重组自杀型质粒pK18mobsacB-ΔicdCg::icdSm、pK18mobsacB-△zwf和pK18mobsacB-△malE;
(2)重组菌株C.glutamicum lysCfbrΔzwfΔmalEΔicdCg::icdSm的构建:分别将步骤(1)的三种重组自杀型质粒转化到宿主谷氨酸棒杆菌C.glutamicum lysCfbr中,筛选得到所述的重组菌。
10.权利要求1~8任一项所述的重组菌在饲料工业、医药工业或食品工业中的应用。
CN201811074264.6A 2018-09-14 2018-09-14 一种谷氨酸棒杆菌重组菌及其构建方法 Pending CN109182239A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811074264.6A CN109182239A (zh) 2018-09-14 2018-09-14 一种谷氨酸棒杆菌重组菌及其构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811074264.6A CN109182239A (zh) 2018-09-14 2018-09-14 一种谷氨酸棒杆菌重组菌及其构建方法

Publications (1)

Publication Number Publication Date
CN109182239A true CN109182239A (zh) 2019-01-11

Family

ID=64911104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811074264.6A Pending CN109182239A (zh) 2018-09-14 2018-09-14 一种谷氨酸棒杆菌重组菌及其构建方法

Country Status (1)

Country Link
CN (1) CN109182239A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481288A (zh) * 2020-12-03 2021-03-12 江南大学 促进谷氨酸棒杆菌发酵生产目标产物的方法
WO2022143762A1 (zh) * 2020-12-30 2022-07-07 宁夏伊品生物科技股份有限公司 一种改造基因bbd29_14900的重组菌株及其构建方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106190939A (zh) * 2016-07-18 2016-12-07 清华大学 高产透明质酸的重组谷氨酸棒杆菌及其制备方法与应用
CN108441525A (zh) * 2018-04-10 2018-08-24 江南大学 一种赖氨酸产量提高的谷氨酸棒杆菌及其构建方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106190939A (zh) * 2016-07-18 2016-12-07 清华大学 高产透明质酸的重组谷氨酸棒杆菌及其制备方法与应用
CN108441525A (zh) * 2018-04-10 2018-08-24 江南大学 一种赖氨酸产量提高的谷氨酸棒杆菌及其构建方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JENS OLAF KRO¨MER等: "In-Depth Profiling of Lysine-Producing Corynebacterium glutamicum by Combined Analysis of the Transcriptome, Metabolome, and Fluxome", 《JOURNAL OF BACTERIOLOGY》 *
SEIKI TAKENO等: "Engineering of Corynebacterium glutamicum with an NADPH-Generating Glycolytic Pathway for l-Lysine Production", 《APPLIED AND ENVIRONMENTAL MICROBIOLOGY》 *
SIAVASH PARTOW等: "Synthetic rescue couples NADPH generation to metabolite overproduction in Saccharomyces cerevisiae", 《METABOLIC ENGINEERING》 *
XIM,P等: "Corynebacterium glutamicum strain HA chromosome,complete genome", 《GENBANK》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481288A (zh) * 2020-12-03 2021-03-12 江南大学 促进谷氨酸棒杆菌发酵生产目标产物的方法
CN112481288B (zh) * 2020-12-03 2024-01-30 江南大学 促进谷氨酸棒杆菌发酵生产目标产物的方法
WO2022143762A1 (zh) * 2020-12-30 2022-07-07 宁夏伊品生物科技股份有限公司 一种改造基因bbd29_14900的重组菌株及其构建方法与应用

Similar Documents

Publication Publication Date Title
Lee et al. High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain
Becker et al. Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine
JP6961819B2 (ja) L−リジンを生産する組換え菌、その構築方法およびl−リジンの生産方法
KR102113569B1 (ko) 전세포 촉매작용에 의해 1,5-펜탄다이아민을 생산하는 대장균 공정균 및 이의 응용
Heggeset et al. Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol
Yamamoto et al. Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions
Krings et al. Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation
Riedel et al. Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production
Xu et al. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway
JP2021500914A5 (zh)
Youn et al. Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum
March et al. Expression of an anaplerotic enzyme, pyruvate carboxylase, improves recombinant protein production in Escherichia coli
Blombach et al. Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum
BRPI0807802B1 (pt) corynebacteria e método para produzir um produto de fermentação utilizando glicerol
CN109370967B (zh) 一种工程菌及其在酪醇生产中的应用
Porat et al. Disruption of the operon encoding Ehb hydrogenase limits anabolic CO2 assimilation in the archaeon Methanococcus maripaludis
KR102000755B1 (ko) 외부 유전자가 도입된 재조합 미생물 및 상기 미생물을 이용하여 개미산과 이산화탄소로부터 유용물질을 제조하는 방법
Herrera et al. Identification and characterization of the PhhR regulon in Pseudomonas putida
US20210147889A1 (en) Method for enhancing continuous production of a natural compound during exponential growth phase and stationary phase of a microorganism
Zou et al. Improved production of D-pantothenic acid in Escherichia coli by integrated strain engineering and fermentation strategies
Zhang et al. Metabolic engineering of Escherichia coli for ectoine production with a fermentation strategy of supplementing the amino donor
CN107619817B (zh) 生产3-脱氢莽草酸大肠杆菌重组菌株及其构建方法与应用
CN109182239A (zh) 一种谷氨酸棒杆菌重组菌及其构建方法
Pablos et al. Enhanced production of plasmid DNA by engineered Escherichia coli strains
Zhang et al. Metabolic engineering of Escherichia coli for efficient ectoine production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190111