CN109156810A - 一种基于酯化大豆多糖的纳米乳液及其制备方法 - Google Patents

一种基于酯化大豆多糖的纳米乳液及其制备方法 Download PDF

Info

Publication number
CN109156810A
CN109156810A CN201810862675.5A CN201810862675A CN109156810A CN 109156810 A CN109156810 A CN 109156810A CN 201810862675 A CN201810862675 A CN 201810862675A CN 109156810 A CN109156810 A CN 109156810A
Authority
CN
China
Prior art keywords
soybean polyoses
esterification
preparation
nanoemulsions
esterification soybean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810862675.5A
Other languages
English (en)
Inventor
齐军茹
赵如霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810862675.5A priority Critical patent/CN109156810A/zh
Publication of CN109156810A publication Critical patent/CN109156810A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/068Microemulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • A61K8/922Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof of vegetable origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Birds (AREA)
  • Dispersion Chemistry (AREA)
  • Nutrition Science (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dermatology (AREA)
  • Colloid Chemistry (AREA)

Abstract

本发明属于乳液制备技术领域,公开了一种基于酯化大豆多糖的纳米乳液及其制备方法。将大豆多糖溶液经超声处理后加入辛烯基琥珀酸酐,在pH为8.0~9.0条件下进行酯化反应,干燥得到酯化大豆多糖;将所得酯化大豆多糖溶解于去离子水中,得到酯化大豆多糖溶液,搅拌条件下加入植物油,得到混合液;将所得混合液在10000~15000rpm条件下高速剪切3~5min,然后在300~500bar压力下高压微射流均质1~3次,得到基于酯化大豆多糖的纳米乳液。本发明所得酯化大豆多糖提高了大豆多糖的乳化性能和应用范围;并通过高压微射流均质处理,使乳液达到乳化稳定性更高的纳米级别。

Description

一种基于酯化大豆多糖的纳米乳液及其制备方法
技术领域
本发明属于乳液制备技术领域,具体涉及一种基于酯化大豆多糖的纳米乳液及其制备方法。
背景技术
纳米乳液是一种乳液液滴粒径在20-500nm并呈现动力学稳定的胶体分散体系。也被称为细乳液,超细乳液,不稳定的微乳液和亚微米乳液。比普通的O/W乳液具有粒径小稳定性高等优点。经常应用于个人护理品、化妆品领域与纳米功能性食品的生产。高能乳化法是制备纳米乳液最常用的一种方法,在一定压力下,通过高速剪切的作用使分散相以细小的液滴分散在连续相中。高压微射流纳米均质机是一种能在短时间内实现高速撞击、剪切、气蚀、瞬间压降等作用达到乳液的细化、均质,获得超精细的纳米乳液的仪器。
乳化剂是指能够改善乳化体系中各个构成相之间的界面张力,从而形成均匀分散体或乳化体的一种表面活性成分。在乳液的形成中具有决定性作用。具有乳化性的多糖大多具有相似的性质:高度分支化,高分子量,具有亲水的碳水化合物骨架及疏水性的蛋白质成分或非极性基团。辛烯基琥珀酸淀粉酯(OSA-Starch)是由于疏水基团的引入,使得改性淀粉具有乳化活性,常作为一种改性多糖可应用于水包油乳液中。大豆可溶性多糖(SoySoluble Polysaccharides,SSPS)是从大豆分离蛋白生产的副产品中提取的生物高聚物,包含一个带负电荷的主要由鼠李糖半乳糖醛酸聚糖高度分支化的主链、中性的支链以及少量的蛋白质分子,因此具有乳化性,已被证明能够稳定水包油乳剂,且其乳液稳定不受pH、离子强度的影响,但由于其蛋白成分含量太低,其乳化稳定性较差。已有研究表明,以SSPS作为乳化剂的乳液在储藏过程中出现分层现象。
目前研究表明,对于多糖类为乳化剂稳定的乳液,多糖种类很少,且其在保存后的长期稳定性还不令人满意。
发明内容
针对以上现有技术存在的缺点和不足之处,本发明的首要目的在于提供一种基于酯化大豆多糖的纳米乳液的制备方法。
本发明的另一目的在于提供一种通过上述方法制备得到的基于酯化大豆多糖的纳米乳液。
本发明目的通过以下技术方案实现:
一种基于酯化大豆多糖的纳米乳液的制备方法,包括如下制备步骤:
(1)将大豆多糖溶液经超声处理后加入辛烯基琥珀酸酐,在pH为8.0~9.0条件下进行酯化反应,干燥得到酯化大豆多糖;
(2)将步骤(1)所得酯化大豆多糖溶解于去离子水中,得到酯化大豆多糖溶液,搅拌条件下加入植物油,得到混合液;
(3)将步骤(2)中所得混合液在10000~15000rpm条件下高速剪切3~5min,然后在300~500bar压力下高压微射流均质1~3次,得到基于酯化大豆多糖的纳米乳液。
优选地,步骤(1)中所述超声处理的条件为:频率30~50kHz,温度30~40℃,时间为10~40min。
优选地,步骤(1)中所述辛烯基琥珀酸酐与大豆多糖加入的质量比为1:(7~8)。
优选地,步骤(1)中所述酯化反应的时间为30~40min。
优选地,步骤(1)中所述干燥的方法为喷雾干燥或冷冻干燥。
优选地,步骤(2)中所述溶解于去离子水的条件为:40~50℃水浴条件下搅拌加热1~2h至完全溶解。
优选地,步骤(2)中所述酯化大豆多糖溶液的质量浓度为2%~6%。
优选地,步骤(2)中所述植物油选自大豆油、玉米油或色拉油。
优选地,步骤(2)中所述植物油的加入量为混合液质量的20%~30%。
一种基于酯化大豆多糖的纳米乳液,通过上述方法制备得到。
本发明的原理为:超声处理大豆多糖,使大豆多糖结构链在溶液中展开,有利于酸酐渗透到多糖结构中,强化了酯化反应的发生。通过化学修饰,将辛烯基琥珀酸酐(OctenylSuccinic Anhydride,OSA)与大豆多糖(SSPS)进行酯化反应,生成酯化大豆多糖OSA-SSPS,引入疏水性的OSA基团,从而增加乳化性及乳化稳定性。另一方面,酯化大豆多糖粒径的增大使得其在乳液中的空间位阻作用增强,形成较厚的空间稳定层。并通过高压微射流处理后,OSA-SSPS乳化的乳液粒径范围为100~300nm之间,使得乳液的储藏效果大大提升。
本发明的制备方法及所得到的产物具有如下优点及有益效果:
(1)本发明所得酯化大豆多糖(OSA-SSPS)的乳化性能明显优于原来的SSPS,提高了SSPS的乳化性能和应用范围;
(2)本发明对以酯化大豆多糖乳化的乳液进行高压微射流均质处理,使乳液达到乳化稳定性更高的纳米级别;
(3)本发明的制备方法不添加有毒有害试剂,绿色安全。
附图说明
图1为本发明实施例3以及对比例1~2所得的纳米乳液的粒径分布图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
以下实施例中所使用的可溶性大豆多糖购于福建省泉州市味博食品有限公司。高压微射流纳米均质机型号为Microfluidizer M-110EH。粒径分布利用Mastersizer 3000微米粒度仪测出。
实施例1
(1)制备大豆多糖溶液,将溶液放入超声波清洗器中,控制超声波频率为30kHz进行30℃循环水浴10min,将OSA添加到SSPS溶液中,以OSA:SSPS为1:7的质量比例进行酯化反应,反应pH为8.0,反应时间为30min,冷冻干燥得到酯化大豆多糖。
(2)将酯化大豆多糖加入到去离子水中,40℃水浴条件下加热2h至完全溶解,得到40ml质量分数为2%的酯化大豆多糖溶液;然后边搅拌边在酯化大豆多糖溶液中加入大豆油,得到大豆油的最终质量浓度为20%的混合液。
(3)将混合液在高速剪切机下以10000rpm转速剪切2min,然后在高压微射流纳米均质机中300bar压力下均质3次,得到基于酯化大豆多糖的纳米乳液。所得纳米乳液的粒径为292nm。
实施例2
(1)制备大豆多糖溶液,将溶液放入超声波清洗器中,控制超声波频率为40kHz进行35℃循环水浴20min,将OSA添加到SSPS溶液中,以OSA:SSPS为1:7.5的质量比例进行酯化反应,反应pH为8.5,反应时间为35min,冷冻干燥得到酯化大豆多糖。
(2)将酯化大豆多糖加入到去离子水中,45℃水浴条件下加热1.5h至完全溶解,得到40ml质量分数为3%的酯化大豆多糖溶液;然后边搅拌边在酯化大豆多糖溶液中加入大豆油,得到大豆油的最终质量浓度为25%的混合液。
(3)将混合液在高速剪切机下以13000rpm转速剪切4min,然后在高压微射流纳米均质机中400bar压力下均质2次,得到基于酯化大豆多糖的纳米乳液。所得纳米乳液的粒径为266nm。
实施例3
(1)制备大豆多糖溶液,将溶液放入超声波清洗器中,控制超声波频率为40kHz进行40℃循环水浴30min,将OSA添加到SSPS溶液中,以OSA:SSPS为1:8的质量比例进行酯化反应,反应pH为9.0,反应时间为40min,冷冻干燥得到酯化大豆多糖。
(2)将酯化大豆多糖加入到去离子水中,40℃水浴条件下加热1h至完全溶解,得到40ml质量分数为4%的酯化大豆多糖溶液;然后边搅拌边在酯化大豆多糖溶液中加入大豆油,得到大豆油的最终质量浓度为30%的混合液。
(3)将混合液在高速剪切机下以15000rpm转速剪切5min,然后在高压微射流纳米均质机中500bar压力下均质1次,得到基于酯化大豆多糖的纳米乳液。所得纳米乳液的粒径为209nm。所得纳米乳液的粒径分布图如图1所示。
实施例4
(1)制备大豆多糖溶液,将溶液放入超声波清洗器中,控制超声波频率为50kHz控制温度在进行30℃循环水浴40min,将OSA添加到SSPS溶液中,以OSA:SSPS为1:7的质量比例进行酯化反应,反应pH为8.5,反应时间为35min,喷雾干燥得到酯化大豆多糖。
(2)将酯化大豆多糖加入到去离子水中,50℃水浴条件下加热1h至完全溶解,得到40ml质量分数为6%的酯化大豆多糖溶液;然后边搅拌边在酯化大豆多糖溶液中加入大豆油,得到大豆油的最终质量浓度为30%的混合液。
(3)将混合液在高速剪切机下以15000rpm转速剪切5min,然后在高压微射流纳米均质机中300bar压力下均质3次,得到基于酯化大豆多糖的纳米乳液。所得纳米乳液的粒径为174nm。
对比例1
(1)将辛烯基琥珀酸淀粉酯(OSA-Starch)加入到去离子水中,40℃水浴条件下加热1h至完全溶解,得到40ml质量分数为4%的酯化淀粉溶液;然后边搅拌边在酯化淀粉溶液中加入大豆油,得到大豆油的最终质量浓度为25%的混合液。
(2)将混合液在高速剪切机下以13000rpm转速剪切4min,然后在高压微射流纳米均质机中400bar压力下均质2次,得到基于酯化淀粉的纳米乳液。所得纳米乳液的粒径为256nm。所得纳米乳液的粒径分布图如图1所示。
对比例2
(1)将水溶性大豆多糖加入到去离子水中,40℃水浴条件下加热1h至完全溶解,得到40ml质量分数为4%的大豆多糖溶液;然后边搅拌边在大豆多糖溶液中加入大豆油,得到大豆油的最终质量浓度为25%的混合液。
(2)将混合液在高速剪切机下以13000rpm转速剪切4min,然后在高压微射流纳米均质机中400bar压力下均质2次,得到基于大豆多糖的纳米乳液。所得纳米乳液的粒径为1725nm。所得纳米乳液的粒径分布图如图1所示。
由以上实施例及对比例的结果可以看出,本发明所得基于酯化大豆多糖的纳米乳液相比酯化淀粉的纳米乳液及未酯化的大豆多糖纳米乳液具有更小的粒径,具有更好的乳化稳定性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种基于酯化大豆多糖的纳米乳液的制备方法,其特征在于包括如下制备步骤:
(1)将大豆多糖溶液经超声处理后加入辛烯基琥珀酸酐,在pH为8.0~9.0条件下进行酯化反应,干燥得到酯化大豆多糖;
(2)将步骤(1)所得酯化大豆多糖溶解于去离子水中,得到酯化大豆多糖溶液,搅拌条件下加入植物油,得到混合液;
(3)将步骤(2)中所得混合液在10000~15000rpm条件下高速剪切3~5min,然后在300~500bar压力下高压微射流均质1~3次,得到基于酯化大豆多糖的纳米乳液。
2.根据权利要求1所述的一种基于酯化大豆多糖的纳米乳液的制备方法,其特征在于:步骤(1)中所述超声处理的条件为:频率30~50kHz,温度30~40℃,时间为10~40min。
3.根据权利要求1所述的一种基于酯化大豆多糖的纳米乳液的制备方法,其特征在于:步骤(1)中所述辛烯基琥珀酸酐与大豆多糖加入的质量比为1:(7~8)。
4.根据权利要求1所述的一种基于酯化大豆多糖的纳米乳液的制备方法,其特征在于:步骤(1)中所述酯化反应的时间为30~40min。
5.根据权利要求1所述的一种基于酯化大豆多糖的纳米乳液的制备方法,其特征在于:步骤(1)中所述干燥的方法为喷雾干燥或冷冻干燥。
6.根据权利要求1所述的一种基于酯化大豆多糖的纳米乳液的制备方法,其特征在于步骤(2)中所述溶解于去离子水的条件为:40~50℃水浴条件下搅拌加热1~2h至完全溶解。
7.根据权利要求1所述的一种基于酯化大豆多糖的纳米乳液的制备方法,其特征在于:步骤(2)中所述酯化大豆多糖溶液的质量浓度为2%~6%。
8.根据权利要求1所述的一种基于酯化大豆多糖的纳米乳液的制备方法,其特征在于:步骤(2)中所述植物油选自大豆油、玉米油或色拉油。
9.根据权利要求1所述的一种基于酯化大豆多糖的纳米乳液的制备方法,其特征在于:步骤(2)中所述植物油的加入量为混合液质量的20%~30%。
10.一种基于酯化大豆多糖的纳米乳液,其特征在于:通过权利要求1~9任一项所述的方法制备得到。
CN201810862675.5A 2018-08-01 2018-08-01 一种基于酯化大豆多糖的纳米乳液及其制备方法 Pending CN109156810A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810862675.5A CN109156810A (zh) 2018-08-01 2018-08-01 一种基于酯化大豆多糖的纳米乳液及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810862675.5A CN109156810A (zh) 2018-08-01 2018-08-01 一种基于酯化大豆多糖的纳米乳液及其制备方法

Publications (1)

Publication Number Publication Date
CN109156810A true CN109156810A (zh) 2019-01-08

Family

ID=64898581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810862675.5A Pending CN109156810A (zh) 2018-08-01 2018-08-01 一种基于酯化大豆多糖的纳米乳液及其制备方法

Country Status (1)

Country Link
CN (1) CN109156810A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111264838A (zh) * 2020-03-25 2020-06-12 江西师范大学 鱼明胶乳液及其制备方法
CN114947109A (zh) * 2021-12-14 2022-08-30 沈阳农业大学 一种辛烯基琥珀酸环糊精酯–大蒜素包合物的制备及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104395347A (zh) * 2012-06-21 2015-03-04 不二制油株式会社 豆科种子多糖类琥珀酸衍生物酯及其制造方法
CN104872498A (zh) * 2015-05-15 2015-09-02 华南理工大学 一种植物蛋白/大豆多糖纳米乳液及其制备方法
CN105601758A (zh) * 2016-03-22 2016-05-25 中南林业科技大学 一种酯化大米淀粉纳米晶的制备方法
CN107535621A (zh) * 2017-07-19 2018-01-05 华南理工大学 一种基于可溶性大豆多糖的橙油油粉及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104395347A (zh) * 2012-06-21 2015-03-04 不二制油株式会社 豆科种子多糖类琥珀酸衍生物酯及其制造方法
CN104872498A (zh) * 2015-05-15 2015-09-02 华南理工大学 一种植物蛋白/大豆多糖纳米乳液及其制备方法
CN105601758A (zh) * 2016-03-22 2016-05-25 中南林业科技大学 一种酯化大米淀粉纳米晶的制备方法
CN107535621A (zh) * 2017-07-19 2018-01-05 华南理工大学 一种基于可溶性大豆多糖的橙油油粉及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘倩茹,等: "辛烯基琥珀酸酯化大豆多糖及其乳化性能研究", 《现代食品科技》 *
康波,等: "纳米乳液的制备及稳定性研究进展", 《中国食品添加剂》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111264838A (zh) * 2020-03-25 2020-06-12 江西师范大学 鱼明胶乳液及其制备方法
CN111264838B (zh) * 2020-03-25 2023-03-10 江西师范大学 鱼明胶乳液及其制备方法
CN114947109A (zh) * 2021-12-14 2022-08-30 沈阳农业大学 一种辛烯基琥珀酸环糊精酯–大蒜素包合物的制备及其应用

Similar Documents

Publication Publication Date Title
Jafari et al. Rheological behavior and stability of D-limonene emulsions made by a novel hydrocolloid (Angum gum) compared with Arabic gum
Jafari et al. Encapsulation of nanoparticles of d-limonene by spray drying: role of emulsifiers and emulsifying techniques
Jafari et al. Effectiveness of encapsulating biopolymers to produce sub-micron emulsions by high energy emulsification techniques
Silva et al. Ultrasound-assisted formation of emulsions stabilized by biopolymers
Naji-Tabasi et al. New studies on basil (Ocimum bacilicum L.) seed gum: Part II—Emulsifying and foaming characterization
Silva et al. Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers
Fernández-Ávila et al. Ultra-high pressure homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions
Gharsallaoui et al. Pea (Pisum sativum, L.) protein isolate stabilized emulsions: a novel system for microencapsulation of lipophilic ingredients by spray drying
Benjamin et al. Multilayer emulsions as delivery systems for controlled release of volatile compounds using pH and salt triggers
CN108752603A (zh) 一种淀粉基Pickering乳液凝胶的制备方法
Nilsson et al. Adsorption of hydrophobically modified anionic starch at oppositely charged oil/water interfaces
Sanchez et al. Design of liquid emulsions to structure spray dried particles
Souza et al. The effect of essential oil chemical structures on Pickering emulsion stabilized with cellulose nanofibrils
Silva et al. Sonication technique to produce emulsions: The impact of ultrasonic power and gelatin concentration
Qiao et al. Stability and rheological behaviors of different oil/water emulsions stabilized by natural silk fibroin
CN108634169B (zh) 一种叶黄素纳米乳液的制备方法
Li et al. Competitive adsorption between sugar beet pectin (SBP) and hydroxypropyl methylcellulose (HPMC) at the oil/water interface
CN109156810A (zh) 一种基于酯化大豆多糖的纳米乳液及其制备方法
CN112806575B (zh) 一种水包油包水型Pickering乳液的制备及其应用
Chen et al. One-pot ultrasonic cavitational emulsification of phytosterols oleogel-based flavor emulsions and oil powder stabilized by natural saponin
Paramita et al. High‐oil‐load encapsulation of medium‐chain triglycerides and d‐limonene mixture in modified starch by spray drying
Foerster et al. Reduction of surface fat formation on spray-dried milk powders through emulsion stabilization with λ-carrageenan
Artiga-Artigas et al. Factors affecting the formation of highly concentrated emulsions and nanoemulsions
Zhang et al. Edible oil powders based on spray-dried Pickering emulsion stabilized by soy protein/cellulose nanofibrils
Santos et al. A comparison of microfluidization and sonication to obtain lemongrass submicron emulsions. Effect of diutan gum concentration as stabilizer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190108