CN109154050B - 用于制造具有奥氏体基体的twip钢板的方法 - Google Patents

用于制造具有奥氏体基体的twip钢板的方法 Download PDF

Info

Publication number
CN109154050B
CN109154050B CN201780030249.9A CN201780030249A CN109154050B CN 109154050 B CN109154050 B CN 109154050B CN 201780030249 A CN201780030249 A CN 201780030249A CN 109154050 B CN109154050 B CN 109154050B
Authority
CN
China
Prior art keywords
annealing
cold rolling
uts
reduction
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780030249.9A
Other languages
English (en)
Other versions
CN109154050A (zh
Inventor
尼古拉斯·沙博尼耶
塞巴斯蒂安·阿兰
玛丽-克里斯蒂娜·泰西耶
热拉尔·佩蒂冈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Publication of CN109154050A publication Critical patent/CN109154050A/zh
Application granted granted Critical
Publication of CN109154050B publication Critical patent/CN109154050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0468Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明涉及用于生产具有奥氏体基体的TWIP钢板的方法。

Description

用于制造具有奥氏体基体的TWIP钢板的方法
本发明涉及用于生产具有奥氏体基体的TWIP钢板的方法。本发明特别适用于制造机动车辆。
为了节省车辆的重量,已知使用高强度钢来制造机动车辆。例如为了制造结构部件,必须改善这样的钢的机械特性。然而,虽然钢的强度提高,高碳钢的延伸率也降低,并因此可成形性也降低。为了克服这些问题,出现了具有良好的可成形性的孪晶诱发塑性钢(TWIP钢)。虽然产品表现出非常好的可成形性,但机械特性(例如极限拉伸应力和屈服应力)也可能不够高而无法满足汽车应用。
专利申请US2006278309公开了热轧奥氏体铁/碳/锰钢板,其强度大于900MPa,其乘积(强度(以MPa计)*断裂延伸率(以%计))大于45000且其化学组成包含(含量以重量表示):0.5%≤C≤0.7%;17%≤Mn≤24%;Si≤3%;Al≤0.050%;S≤0.030%;P≤0.080%;N≤0.1%;以及任选地,一种或更多种元素,例如:Cr≤1%、Mo≤0.40%、Ni≤1%、Cu≤5%、Ti≤0.50%、Nb≤0.50%和V≤0.50%,该组成还包含铁和由熔炼产生的不可避免的杂质,钢的再结晶分数大于75%,钢的析出碳化物的面积分数小于1.5%,并且钢的平均粒度小于18μm。
在该专利申请中,可以在冷轧之后获得强度高于950MPa的冷轧奥氏体铁/碳/锰钢板。钢板的厚度可以通过冷轧而减小,不是通过单一轧制步骤而是通过两个或更多个步骤,每个轧制步骤之后均有退火操作。在最后的轧制-和-退火步骤之前的粒度必须不超过18微米,以免降低最终产品的强度和可变形性。
然而,该奥氏体钢板的强度不够高。实际上,在实施例中,在该发明的范围内的最大强度为1130MPa。
US2006/0179638公开了用于生产钢产品的方法,特别是钢板或钢带,其中钢带或钢板由这样的钢来生产:其包含(以重量%计):C:1.00%;Mn:7.00%至30.00%;Al:1.00%至10.00%;Si:2.50%至8.00%;Al+Si:3.50%至12.00%;B:0.01%;Ni:8.00%;Cu:3.00%;N:0.60%;Nb:0.30%;Ti:0.30%;V:0.30%;P:0.01%;以及作为剩余部分的铁和不可避免的杂质,随后通过在2%至25%的冷成形度下进行的冷成形由所述带或板生产成品钢产品。
然而,通过应用该方法,在程度为2%至25%的冷成形之后获得的抗拉强度(Rm)非常低。实际上,实施例示出在10%(即2至25)的冷成形度下,抗拉强度最大为568MPa。此外,在比较例中,在50%的冷成形度下抗拉强度最大为1051MPa。此外,当冷成形度为30%或50%时,均匀延伸率下降非常快。最后,实施例中使用的钢(被称为轻钢)具有非常低量的碳(0.070%C)和高量的Mn(25.9%Mn)。这种钢非常特殊,原因是加工硬化和机械特性(特别是屈服强度)非常低。因此,这种钢对于机动车工业没有吸引力。
CN102418032公开了用于钢材的制造方法,特别是用于提高孪晶诱发塑性(TWIP)高锰钢板的强度和延伸率乘积的退火制备方法。该方法包括热轧,接着在酸洗之后对热轧板进行2轮至4轮冷轧和热处理,热处理温度为800℃至1000℃且热处理持续时间为10分钟至30分钟。
根据生产要求,如果在酸洗之后对热轧板进行冷轧和热处理的步骤(4)进行三轮冷轧和热处理过程,则生产步骤如下:第一轮冷轧和热处理包括:在室温下将热轧板冷轧至2.5mm至4mm,然后将冷轧板保持在860℃至880℃的设定温度下的加热炉中10分钟至15分钟并对冷轧板进行风冷;随后,第二轮冷轧和热处理包括:将在第一轮中已经冷轧和热处理过的板冷轧至1.0mm至2mm,然后将板保持在880℃至900℃的设定温度下10分钟至15分钟并对板进行风冷;随后,第三轮冷轧和热处理包括:将从第二轮获得的板冷轧至0.8mm至1.5mm,然后将板保持在880℃至950℃的设定温度下10分钟至30分钟并对板进行风冷;由此,经风冷的板为供使用的成品TWIP钢板。
然而,在该专利申请中,一方面,未提到冷轧期间进行的压下率的百分比;另一方面,在一个优选的实施方案中,进行了三轮冷轧和热处理过程,导致长的工艺时间和机械特性降低。实际上,在三轮冷轧和热处理过程之后获得的实施例1的抗拉强度(MPa)仅为980MPa且断裂后延伸率为81%。
EP1878811公开了提供良好的耐延迟开裂性的钢板的制造方法,其包括以下步骤:
-提供钢;
-将所述钢铸造成半成品的形式;
-再加热所述半成品;
-对所述半成品进行热轧直至轧制终了温度以获得板;
-卷取所述板;
-任选地进行冷轧和退火;
-进行至少一次均热处理,其中将所述板在250℃至900℃的温度下在至少15秒的时间t期间均热。
然而,该公开的方法是一种非常特殊的方法,其在结束时包括均热处理以获得良好的耐延迟开裂性。此外,没有提到退火步骤之后的冷轧。唯一提到的冷轧在退火步骤之前进行。此外,未提到冷轧的压下率的百分比。最后,钢组成包含量为低于或等于0.050%(非常低)的Al。由此,发明的目的是通过提供用于制造具有改善的机械特性的TWIP钢板的方法来解决上述缺点。
该目的通过提供根据权利要求1的用于制造TWIP钢板的方法来实现。所述方法还可以包括权利要求2至21的特征。
另一个目的通过提供根据权利要求22的TWIP钢板来实现。所述钢板还可以包括权利要求23的特征。
本发明的其他特征和优点将由本发明的以下详细描述变得明显。
为了说明本发明,将特别地参照以下附图描述非限制性实例的多个实施方案和试验:
图1示出根据本发明的一个实施方案。
图2示出根据本发明的另一个实施方案。
将定义以下术语:
-UTS:极限抗拉强度;
-UTS退火:在再结晶退火之后获得的极限抗拉强度;
-TE:总延伸率;
-TE退火:在再结晶退火之后获得的总延伸率;以及
-CR%:第二冷轧的压下率。
本发明涉及用于生产TWIP钢板的方法,其包括以下步骤:
A.提供具有钢板的板坯,按重量计,所述钢板包含:
0.5<C<1.2%,
13.0≤Mn<25.0%,
S≤0.030%,
P≤0.080%,
N≤0.1%,
Si≤3.0%,
0.051%≤Al≤4.0%,
以及在完全任选的基础上,诸如以下的一种或更多种元素,:
Nb≤0.5%,
B≤0.005%,
Cr≤1.0%,
Mo≤0.40%,
Ni≤1.0%,
Cu≤5.0%,
Ti≤0.5%,
V≤2.5%,
0.06≤Sn≤0.2%,
组成的剩余部分由铁和由加工产生的不可避免的杂质形成;
B.再加热这样的板坯和对其进行热轧;
C.卷取步骤;
D.第一冷轧;
E.再结晶退火,使得获得具有UTS退火的退火钢板;以及
F.以满足以下式A的压下率CR%进行的第二冷轧:
1216.472-0.98795.*UTS退火≤(-0.0008*UTS退火+1.0124)*CR%2+(0.0371*UTS退火-29.583)*CR%。
不希望受任何理论约束,看起来当应用根据本发明的方法时,特别是当第二冷轧的压下率满足式A时,其使得可以获得具有改善的机械特性(特别是较高的强度)的TWIP钢板。
关于钢的化学组成,C在形成显微组织和机械特性中起重要作用。其增加堆垛层错能并增进奥氏体相的稳定性。当与13.0重量%至25.0重量%的Mn含量结合时,该稳定性因0.5%或更高的碳含量而实现。在存在钒碳化物的情况下,高的Mn含量可以增大在奥氏体中钒碳化物(VC)的溶解度。然而,对于高于1.2%的C含量,存在由于例如钒碳化物或钒碳氮化物的过度析出而延性降低的风险。优选地,碳含量为0.4重量%至1.2重量%,更优选0.5重量%至1.0重量%,以获得足够的强度。
Mn也是用于增加强度、用于增加堆垛层错能以及用于稳定奥氏体相的必要元素。如果其含量小于13.0%,则存在马氏体相形成的风险,这非常明显地降低可变形性。此外,当锰含量大于25.0%时,孪晶的形成受到抑制,因此,虽然强度增加,但室温下的延性降低。优选地,锰含量为15.0%至24.0%且更优选17.0%至24.0%,以优化堆垛层错能并防止在变形的作用下形成马氏体。此外,当Mn含量大于24.0%时,通过孪晶变形的模式不如通过完全位错滑移变形的模式有利。
Al是用于钢的脱氧的特别有效的元素。像C一样,其增加堆垛层错能,这降低了形成变形马氏体的风险,从而改善延性和耐延迟开裂性。然而,如果Al在具有高的Mn含量的钢中过量存在,则由于Mn增加了铁水中氮的溶解度,因此Al是不利因素。如果在钢中存在过大量的Al,则与Al结合的N以氮化铝(AlN)的形式析出,氮化铝(AlN)妨碍在热转化期间晶界的迁移并非常显著地增加在连铸中出现裂纹的风险。此外,如将在之后说明的,必须存在足量的N以形成细析出物(实质上为碳氮化物)。优选地,Al含量低于或等于2.0%。当Al含量高于4.0%时,存在孪晶的形成被抑制而降低延性的风险。优选地,Al的量高于0.06%,有利地高于0.1%且更优选高于1.0%。
相应地,氮含量必须为0.1%或更小,以防止凝固期间AlN的析出和体积缺陷(气泡)的形成。此外,考虑到能够以氮化物的形式析出的元素例如钒、铌、钛、铬、钼和硼,氮含量必须不超过0.1%。
任选地,V的量低于或等于2.5%,优选为0.1%至1.0%。优选地,V形成析出物。优选地,在钢中这样的元素的体积分数为0.0001%至0.025%。优选地,钒元素主要位于晶内位置。有利地,钒元素的平均尺寸小于7nm,优选1nm至5nm,且更优选0.2nm至4.0nm。
硅也是用于使钢脱氧和用于固相硬化的有效元素。然而,高于3%的含量,其降低延伸率且倾向于在某些组装过程中形成不期望的氧化物,因此必须将其保持在该限度以下。优选地,硅的含量低于或等于0.6%。
硫和磷是使晶界脆化的杂质。其各自的含量必须不超过0.030%和0.080%,以保持足够的热延性。
可以添加一些硼,最高至0.005%,优选最高至0.001%。该元素在晶界处偏析并增加其内聚力。不旨在受理论约束,据信这导致在通过压制而成形之后的残余应力降低,并导致在由此成形的部件的应力下的更好耐腐蚀性。该元素在奥氏体晶界处偏析并增加其内聚力。硼以例如硼碳化物或硼氮化物的形式析出。
镍可以任选地用于通过固溶硬化来增加钢的强度。然而,出于成本原因等,期望将镍含量限制在最大含量为1.0%或更少且优选低于0.3%。
同样,任选地,以不超过5%的含量添加铜是通过铜金属的析出使钢硬化的一种手段。然而,高于该含量,铜是热轧板中出现表面缺陷的原因。优选地,铜的量低于2.0%。优选地,Cu的量高于0.1%。
钛和铌也是可以任选地用于通过形成析出物来实现硬化和强化的元素。然而,当Nb或Ti含量大于0.50%时,存在过度析出可能导致韧性降低的风险,这是必须避免的。优选地,Ti的量为0.040重量%至0.50重量%或0.030重量%至0.130重量%。优选地,钛含量为0.060重量%至0.40重量%,例如0.060重量%至0.110重量%。优选地,Nb的量高于0.01重量%,且更优选0.070重量%至0.50重量%或0.040重量%至0.220重量%。优选地,铌含量为0.090重量%至0.40重量%,有利地为0.090重量%至0.200重量%。
铬和钼可以用作用于通过固溶强化来增加钢的强度的任选元素。然而,由于铬降低堆垛层错能,因此其含量必须不超过1.0%且优选0.070%至0.6%。优选地,铬含量为0.20%至0.5%。钼可以以0.40%或更小的量,优选以0.14%至0.40%的量添加。
此外,不希望受任何理论约束,看起来钒、钛、铌、铬和钼的析出物可以降低对延迟开裂的敏感度,并且在不降低延性和韧性特性的情况下如此。因此,优选地,在钢中存在呈碳化物、氮化物和碳氮化物形式的选自钛、铌、铬和钼中的至少一种元素。
任选地,锡(Sn)以0.06重量%至0.2重量%的量添加。不希望受任何理论约束,据信由于锡是贵元素并且在高温下自身不形成薄氧化物膜,因此Sn在热浸镀之前的退火中在基体的表面上析出以抑制助氧化剂(pro-oxidant)元素(例如Al、Si、Mn等)扩散到表面中并形成氧化物,由此改善可镀性(galvanizability)。然而,当Sn的添加量小于0.06%时,效果不明显,并且Sn的添加量的增大抑制选择性氧化物的形成;而当Sn的添加量超过0.2%时,添加的Sn导致热脆性而使可热加工性劣化。因此,将Sn的上限限制在0.2%或更小。
钢还可以包含由开发产生的不可避免的杂质。例如,不可避免的杂质可以没有任何限制地包括:O、H、Pb、Co、As、Ge、Ga、Zn和W。例如,每种杂质按重量计的含量低于0.1重量%。
根据本发明,方法包括由具有上述组成的钢制成的半成品例如板坯、薄板坯或带材的提供步骤A,铸造这样的板坯。优选地,将铸造投入坯料加热至高于1000℃,更优选高于1050℃且有利地1100℃至1300℃的温度,或者在不进行中间冷却的情况下,在铸造之后在这样的温度下直接使用。
然后在优选高于890℃,或更优选高于1000℃的温度下进行热轧以获得例如厚度通常为2mm至5mm、或甚至1mm至5mm的热轧带材。为了避免由于缺乏延性而产生的任何开裂问题,轧制终了温度优选高于或等于850℃。
在热轧之后,必须在这样的温度下卷取带材,使得不发生碳化物(基本上为渗碳体(Fe,Mn)3C))的显著析出,所述碳化物的析出将导致某些机械特性降低。卷取步骤C)在低于或等于580℃,优选低于或等于400℃的温度下实现。
进行随后的冷轧操作,接着进行再结晶退火。这些另外的步骤产生比在热轧带材上获得的粒度更小的粒度,并因此产生更高的强度特性。当然,如果期望获得更小厚度(例如厚度为0.2mm至数mm且优选0.4mm至4mm)的产品,则必须进行所述另外的步骤。
在已经以常用方式进行可能的在先酸洗操作之后冷轧通过上述过程获得的热轧产品。
第一冷轧步骤D)以30%至70%,优选40%至60%的压下率进行。
在该轧制步骤之后,晶粒被高度加工硬化,且必须进行再结晶退火操作。该处理具有恢复延性并同时降低强度的效果。优选地,连续地进行该退火。有利地,再结晶退火E)在700℃至900℃(优选750℃至850℃)下例如在10秒至500秒(优选60秒至180秒)期间实现。
根据本发明,在再结晶退火之后获得的钢板的UTS值被称为UTS退火。优选地,在再结晶退火步骤E)之后,退火钢板的UTS退火高于800MPa,优选为800MPa至1400MPa且更优选1000MPa至1400MPa。
优选地,在再结晶退火之后获得的钢板的TE值被称为TE退火。在该优选实施方案中,钢板的TE退火高于10%,优选高于15%且更优选为30%至70%。
然后,以满足式A的压下率实现第二冷轧。
在一个优选的实施方案中,以还满足以下式B的压下率CR%实现第二冷轧步骤F):
Figure BDA0001867357010000081
不希望受任何理论约束,看起来当应用根据本发明的方法时,特别是当第二冷轧的压下率还满足上述式时,其使得可以获得具有进一步改善的机械特性(特别是较高的延伸率)的TWIP钢板。
优选地,以1%至50%,优选1%至25%或26%至50%的压下率实现第二冷轧步骤F)。这使钢厚度减小。此外,根据前述方法制造的钢板可以经由通过经受再轧步骤所引起的应变硬化而具有增加的强度。此外,该步骤诱导高密度的孪晶,由此改善钢板的机械特性。
在第二冷轧之后,可以进行热浸涂步骤G)。优选地,用基于铝的浴或基于锌的浴实现步骤G)。
在一个优选的实施方案中,用基于铝的浴进行热浸涂步骤,所述基于铝的浴包含小于15%的Si、小于5.0%的Fe、任选地0.1%至8.0%的Mg和任选地0.1%至30.0%的Zn,剩余部分为Al。
在另一个优选的实施方案中,用基于锌的浴进行热浸涂步骤,所述基于锌的浴包含0.01%至8.0%的Al、任选地0.2%至8.0%的Mg,剩余部分为Zn。
熔浴还可以包含不可避免的杂质和来自提供锭或来自钢板在熔浴中的通过的残留元素。例如,任选地杂质选自Sr、Sb、Pb、Ti、Ca、Mn、Sn、La、Ce、Cr、Zr或Bi,每种另外的元素按重量计的含量低于0.3重量%。来自提供锭料或来自钢板在熔浴中的通过的残留元素可以是含量最高至5.0重量%,优选3.0重量%的铁。
例如,可以在涂层沉积之后进行退火步骤以获得镀锌扩散退火钢板。
由此获得具有高于1200MPa,优选1200MPa至1600MPa的极限抗拉强度(UTS)的TWIP钢板。优选地,总延伸率(TE)高于10%,更优选高于15%,且更优选为15%至50%。
实施例
在该实施例中,使用具有以下重量组成的TWIP钢板:
钢种 C% Si% Mn% P% Cr% Al% %Cu %V %N
1 0.595 0.205 18.3 0.035 - 0.782 1.7 0.18 0.01
2 0.88 0.508 17.96 0.03 0.109 2.11 0.15 0.093 0.0044
3 0.876 0.502 17.63 0.032 0.108 2.78 0.149 0.384 0.0061
4 1.04 0.505 17.69 0.034 0.108 2.8 0.147 0.447 0.0069
首先,在1200℃的温度下对样品进行加热和热轧。将热轧的完工温度设定为890℃,并在热轧之后在400℃下进行卷取。然后,以50%的冷轧压下率实现第一冷轧。其后,在180秒期间在750℃下进行再结晶退火。确定在再结晶退火步骤之后获得的UTS退火和TE退火
随后,以不同的冷轧压下率实现第二冷轧。结果示于下表中:
Figure BDA0001867357010000091
*根据本发明的实施例;ND=未进行
结果示出,当应用根据本发明的方法时,特别是当满足式A时,TWIP钢板的机械特性得以高度改善。
图1示出对于试验1至8,在第二冷轧之后获得的UTS的值。对于试验2至8,满足式A意味着UTS得以高度改善。
图2示出对于试验3至8,在第二冷轧之后获得的TE的值。对于试验3、4、5和7,进一步满足式B,这意味着UTS和TE均得以高度改善。

Claims (23)

1.一种用于生产TWIP钢板的方法,包括以下步骤:
A.提供板坯,按重量计,所述板坯具有:
0.5<C<1.2%,
13.0≤Mn<25.0%,
S≤0.030%,
P≤0.080%,
N≤0.1%,
Si≤3.0%,
0.051%≤Al≤4.0%,
0.1≤V≤2.5%,
以及在完全任选的基础上,具有以下的一种或更多种元素:
Nb≤0.5%,
B≤0.005%,
Cr≤1.0%,
Mo≤0.40%,
Ni≤1.0%,
Cu≤5.0%,
Ti≤0.5%,
0.06≤Sn≤0.2%,
组成的剩余部分由铁和由加工产生的不可避免的杂质形成;
B.再加热这样的板坯和对其进行热轧;
C.卷取步骤;
D.第一冷轧;
E.再结晶退火,使得获得具有UTS退火的退火钢板,其中所述UTS退火指在所述再结晶退火之后获得的极限抗拉强度;以及
F.以满足以下式的压下率CR%进行的第二冷轧:
1216.472-0.98795*UTS退火≤(-0.0008*UTS退火+1.0124)*CR%2+(0.0371*UTS退火-29.583)*CR%。
2.根据权利要求1所述的方法,其中在所述板坯中Al的量高于0.06%并且等于或小于4.0%。
3.根据权利要求1或2所述的方法,其中所述再加热在高于1000℃的温度下进行并且终轧温度为至少850℃。
4.根据权利要求1至2中任一项所述的方法,其中卷取温度在低于或等于580℃的温度下实现。
5.根据权利要求1至2中任一项所述的方法,其中第一冷轧步骤D)以30%至70%的压下率实现。
6.根据权利要求5所述的方法,其中所述第一冷轧步骤D)以40%至60%的压下率实现。
7.根据权利要求1至2中任一项所述的方法,其中再结晶退火E)在700℃至900℃下实现。
8.根据权利要求1至2中任一项所述的方法,其中在所述再结晶退火之后获得的所述UTS退火大于800MPa。
9.根据权利要求8所述的方法,其中所述UTS退火为800MPa至1400MPa。
10.根据权利要求9所述的方法,其中所述UTS退火为1000MPa至1400MPa。
11.根据权利要求1至2中任一项所述的方法,其中在所述再结晶退火之后获得的总延伸率TE%退火大于10%。
12.根据权利要求11所述的方法,其中所述TE%退火大于15%。
13.根据权利要求12所述的方法,其中所述TE%退火为30%至70%。
14.根据权利要求1至2中任一项所述的方法,其中所述第二冷轧步骤F)以还满足以下式的压下率实现:
Figure FDA0002772218940000031
其中TE%退火是所述再结晶退火之后获得的总延伸率。
15.根据权利要求1至2中任一项所述的方法,其中所述第二冷轧步骤以1%至50%的压下率实现。
16.根据权利要求15所述的方法,其中所述第二冷轧以1%至25%的压下率实现。
17.根据权利要求16所述的方法,其中所述第二冷轧以26%至50%的压下率实现。
18.根据权利要求1至2中任一项所述的方法,其中在所述第二冷轧步骤F)之后进行热浸涂步骤G)。
19.根据权利要求18所述的方法,其中所述热浸涂用基于铝的浴或基于锌的浴进行。
20.根据权利要求19所述的方法,其中所述基于铝的浴具有小于15%的Si、小于5.0%的Fe、任选的0.1%至8.0%的Mg和任选的0.1%至30.0%的Zn,剩余部分为Al。
21.根据权利要求20所述的方法,其中所述基于锌的浴具有0.01%至8.0%的Al、任选的0.2%至8.0%的Mg,剩余部分为Zn。
22.一种能够由根据权利要求1至21中任一项所述的方法获得的TWIP钢板,所述TWIP钢板的极限抗拉强度(UTS)大于1200MPa。
23.根据权利要求22所述的TWIP钢板,所述TWIP钢板的总延伸率(TE)大于10%。
CN201780030249.9A 2016-05-24 2017-05-18 用于制造具有奥氏体基体的twip钢板的方法 Active CN109154050B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IBPCT/IB2016/000702 2016-05-24
IB2016000702 2016-05-24
PCT/IB2017/000591 WO2017203341A1 (en) 2016-05-24 2017-05-18 Method for the manufacture of twip steel sheet having an austenitic matrix

Publications (2)

Publication Number Publication Date
CN109154050A CN109154050A (zh) 2019-01-04
CN109154050B true CN109154050B (zh) 2021-04-06

Family

ID=56464239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780030249.9A Active CN109154050B (zh) 2016-05-24 2017-05-18 用于制造具有奥氏体基体的twip钢板的方法

Country Status (13)

Country Link
US (1) US11414721B2 (zh)
EP (1) EP3464661A1 (zh)
JP (1) JP6682661B2 (zh)
KR (2) KR20180128977A (zh)
CN (1) CN109154050B (zh)
BR (1) BR112018071629B1 (zh)
CA (1) CA3025469C (zh)
MA (1) MA45114A (zh)
MX (1) MX2018014323A (zh)
RU (1) RU2705826C1 (zh)
UA (1) UA121439C2 (zh)
WO (1) WO2017203341A1 (zh)
ZA (1) ZA201806773B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621709B (zh) * 2020-07-06 2021-08-24 中国科学院合肥物质科学研究院 一种超高强塑积孪生诱发塑性钢及其制备和性能调控方法
CN112281057A (zh) * 2020-10-14 2021-01-29 东北大学 一种具有不同晶粒尺寸和孪晶含量的twip钢板及其制备方法
CN114703417B (zh) * 2022-04-11 2022-12-02 常州大学 一种基于twip效应和微合金析出制备超细晶高强韧中锰钢的方法
CN116043126B (zh) * 2023-01-09 2024-06-18 鞍钢股份有限公司 一种高强高韧高熵钢及制造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235428A (ja) 1987-03-24 1988-09-30 Nippon Mining Co Ltd 非磁性材料の製造方法
DE69226946T2 (de) * 1991-12-30 1999-05-12 Po Hang Iron & Steel Austenitischer manganstahlblech mit hoher verformbarkeit, festichkeit und schweissbarkeit und verfahren
DE10259230B4 (de) 2002-12-17 2005-04-14 Thyssenkrupp Stahl Ag Verfahren zum Herstellen eines Stahlprodukts
FR2857980B1 (fr) * 2003-07-22 2006-01-13 Usinor Procede de fabrication de toles d'acier austenitique fer-carbone-manganese, a haute resistance, excellente tenacite et aptitude a la mise en forme a froid, et toles ainsi produites
FR2878257B1 (fr) 2004-11-24 2007-01-12 Usinor Sa Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite
FR2881144B1 (fr) 2005-01-21 2007-04-06 Usinor Sa Procede de fabrication de toles d'acier austenitique fer-carbone-manganese a haute resistance a la fissuration differee, et toles ainsi produites
EP1878811A1 (en) * 2006-07-11 2008-01-16 ARCELOR France Process for manufacturing iron-carbon-manganese austenitic steel sheet with excellent resistance to delayed cracking, and sheet thus produced
KR100851158B1 (ko) 2006-12-27 2008-08-08 주식회사 포스코 충돌특성이 우수한 고망간형 고강도 강판 및 그 제조방법
KR20090070502A (ko) * 2007-12-27 2009-07-01 주식회사 포스코 가공성이 우수한 고강도 고망간강 및 고망간 도금강판의제조방법
KR100985286B1 (ko) * 2007-12-28 2010-10-04 주식회사 포스코 내지연파괴 특성이 우수한 고강도 고망간강 및 제조방법
CN102439188A (zh) * 2009-04-28 2012-05-02 现代制铁株式会社 具有高强度和高延展性的高锰氮钢板及其制造方法
WO2011154153A1 (en) 2010-06-10 2011-12-15 Tata Steel Ijmuiden Bv Method of producing an austenitic steel
ES2455222T5 (es) 2010-07-02 2018-03-05 Thyssenkrupp Steel Europe Ag Acero de resistencia superior, conformable en frío y producto plano de acero compuesto de un acero de este tipo
WO2012052626A1 (fr) * 2010-10-21 2012-04-26 Arcelormittal Investigacion Y Desarrollo, S.L. Tole d'acier laminee a chaud ou a froid, don procede de fabrication et son utilisation dans l'industrie automobile
KR20120065464A (ko) * 2010-12-13 2012-06-21 주식회사 포스코 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판 및 그의 제조방법
KR20120075260A (ko) 2010-12-28 2012-07-06 주식회사 포스코 도금밀착성이 우수한 용융도금강판 및 그 제조방법
DE102011051731B4 (de) * 2011-07-11 2013-01-24 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts
CN102418032A (zh) 2011-12-09 2012-04-18 北京科技大学 一种增强孪晶诱导塑性高锰钢板强塑积的退火制备工艺
JP6377745B2 (ja) 2013-08-14 2018-08-22 ポスコPosco 超高強度鋼板及びその製造方法
KR102256921B1 (ko) * 2013-10-02 2021-05-27 더 나노스틸 컴퍼니, 인코포레이티드 첨단 고강도 금속 합금의 제조를 위한 재결정화, 미세화, 및 강화 메커니즘
KR101746996B1 (ko) * 2015-12-24 2017-06-28 주식회사 포스코 도금 밀착성이 우수한 고망간 용융 알루미늄계 도금강판
WO2017203310A1 (en) 2016-05-24 2017-11-30 Arcelormittal Method for producing a twip steel sheet having an austenitic microstructure
WO2017203314A1 (en) 2016-05-24 2017-11-30 Arcelormittal Twip steel sheet having an austenitic matrix

Also Published As

Publication number Publication date
KR20180128977A (ko) 2018-12-04
RU2705826C1 (ru) 2019-11-12
CA3025469C (en) 2021-12-28
WO2017203341A1 (en) 2017-11-30
JP2019520477A (ja) 2019-07-18
JP6682661B2 (ja) 2020-04-15
BR112018071629B1 (pt) 2022-12-27
US20190218638A1 (en) 2019-07-18
CA3025469A1 (en) 2017-11-30
BR112018071629A2 (pt) 2019-02-19
EP3464661A1 (en) 2019-04-10
MA45114A (fr) 2019-04-10
US11414721B2 (en) 2022-08-16
KR102367204B1 (ko) 2022-02-23
KR20190130681A (ko) 2019-11-22
ZA201806773B (en) 2019-06-26
MX2018014323A (es) 2019-02-25
CN109154050A (zh) 2019-01-04
UA121439C2 (uk) 2020-05-25

Similar Documents

Publication Publication Date Title
CN109154051B (zh) 具有奥氏体基体的twip钢板
JP7051974B2 (ja) オーステナイト微細構造を有するtwip鋼板の製造方法
JP2005126733A (ja) 高温加工性にすぐれた熱間プレス用鋼板及び自動車用部材
CN114686777A (zh) 具有良好耐老化性的扁钢产品及其制造方法
EP3530771B1 (en) Ultra-high-strength steel sheet having excellent hole expandability and yield ratio and method for preparing same
CN109154050B (zh) 用于制造具有奥氏体基体的twip钢板的方法
CN109154046B (zh) 具有奥氏体基体的twip钢板
JP4367205B2 (ja) 鋼板の歪時効処理方法および高強度構造部材の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant