CN109145421B - 一种应用于分布参数系统的时空模糊建模方法 - Google Patents

一种应用于分布参数系统的时空模糊建模方法 Download PDF

Info

Publication number
CN109145421B
CN109145421B CN201810898270.7A CN201810898270A CN109145421B CN 109145421 B CN109145421 B CN 109145421B CN 201810898270 A CN201810898270 A CN 201810898270A CN 109145421 B CN109145421 B CN 109145421B
Authority
CN
China
Prior art keywords
fuzzy
time
model
space
spatial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810898270.7A
Other languages
English (en)
Other versions
CN109145421A (zh
Inventor
陆新江
胡特特
尹峰
崔祥波
何平忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201810898270.7A priority Critical patent/CN109145421B/zh
Publication of CN109145421A publication Critical patent/CN109145421A/zh
Application granted granted Critical
Publication of CN109145421B publication Critical patent/CN109145421B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/02Computing arrangements based on specific mathematical models using fuzzy logic

Abstract

本发明公开了一种应用于分布参数系统的时空模糊建模方法,用于加热过程温度场的建模分析,包括:选择样本点,并建立样本点各自随时间变化的模糊模型,以预测系统内未知时刻的输出;通过未知空间点与样本点之间的联系,建立分布参数系统的空间模糊模型,并优化模型中的参数以预测到系统内未知空间位置的输出;整合所述时间模糊模型和所述空间模糊模型形成时空模糊模型。本发明利用模糊逻辑原理,在不需要建立数学模型的情况下,可以建立系统的模型,且获得良好的建模精度;针对分布参数系统的状态与空间信息有关的特点,考虑了空间信息,使分布参数系统的模型建立得到了明显的改善;并且具有很好的鲁棒性。

Description

一种应用于分布参数系统的时空模糊建模方法
技术领域
本发明涉及工业过程建模领域,涉及一种应用于分布参数系统的时空模糊建模方法。
背景技术
分布参数系统最明显的特征是系统的输入、输出及参数不仅随着时间变化,也随着空间变化,且其参数在时间与空间上是耦合的。分布参数系统通常采用非线性偏微分方程表示。大多数的工业生产制造过程中,例如热工、化工、航天、航空等,其电磁场、温度场等物理场以及蒸馏过程、搅拌反应,都属于分布参数系统。因此,建立一个高精度的分布参数系统模型十分重要。
传统的分布参数系统建模方法是将偏微分方程转化为常微分方程。但是采用这种方法通常会得到较高的模型阶数,给后续的控制器设计带来极大的挑战。并且该方法只适用于数学模型和参数完全已知的情况。而在实际的工业过程中,参数的不确定性以及复杂的非线性情况使得传统的方法的建模精度变差。
近年来发展的数据建模方法,由于其仅依赖于采集的数据,被广泛的应用于工业建模。但是,由于在建模过程中只包含时间信息,没有充分考虑系统的空间分布特性,在本质上不具有建立分布参数系统模型的能力。
发明内容
为了克服传统的建模方法在分布参数系统建模过程中的不足,并提高建模精度,本发明提供了一种应用于分布参数系统的时空模糊建模方法。
本发明采用以下技术方案:
一种应用于分布参数系统的时空模糊建模方法,用于加热过程温度场的建模分析,所述方法包括:
S1、建立时间模糊模型;
S2、建立空间模糊模型;
S3、整合所述时间模糊模型和所述空间模糊模型形成时空模糊模型。
进一步,所述方法还包括:
从分布参数系统中收集数据作为数据集
Figure BDA0001758753180000021
其中,u(t)是所述分布参数系统的输入,xi是第i个传感器的空间位置,tj是第j个时刻,y(xi,tj)为第i个传感器的空间位置点在第j个时刻的温度,n和L分别是传感器的数量和采样时间;
选取n个空间位置点的前l个时刻的温度为训练样本点去建立模型。
进一步,所述步骤S1包括:
将传感器i所在位置点xi的所述时间模糊模型建模描述如下:
第s条模糊规则为:
RS:如果z1(t)是Ms1,z2(t)是Ms2,...,zq(t)是Msq
那么有y(xi,t)=Asy(xi,t-1)+Bsu(t)
其中,i=1,2,...,n;s=1,2,...,r;z(t)=[z1(t),z2(t),...,zq(t)]是前件变量;Ms1、Ms2、...、Msq分别为对应于所述前件变量z1(t)、z2(t)、...、zq(t)在第s条模糊规则的模糊集;r是时间上的模糊规则数;q是前件变量的维度;u(t)是输入向量;y(xi,t)表示每个模糊规则的输出;As和Bs通过最小二乘法求得;
所述时间模糊模型的输出表示为:
Figure BDA0001758753180000022
其中,i=1,2,...,n;s=1,2,...,r;
μs(z(t))是参数归一化后的第s条模糊规则下面的隶属度;
Figure BDA0001758753180000023
其中,υS(z(t))是第s条模糊规则下面的隶属度;
Figure BDA0001758753180000024
其中,隶属度函数
Figure BDA0001758753180000025
其中,zsj和σsj是所述隶属度函数的中心和方差。
进一步,所述隶属度函数的方差定义为:
Figure BDA0001758753180000031
其中,usk第s类中第k个数据的隶属度,且usk∈[0,1],csj为第s个聚类中心的第j个分量。
进一步,所述步骤S2包括:
在空间位置点xi的空间动态作用下,空间模糊模型建模过程如下:
第i条模糊规则为:
Rsi:如果输入x是xi
则有y(x,t)=y(xi,t)
其中,i=1,2,...,n;n是空间上的模糊规则数;xi表示模糊单点集;y(x,t)是模糊输出;
选用径向基函数作为空间隶属函数:
Figure BDA0001758753180000032
其中,i=1,2,...,n;xi是传感器i的位置点;σi是宽度。
进一步,所述方法还包括:
通过梯度下降法,利用模型误差去优化参数σ。
进一步,所述优化过程包括:
将误差性能指标函数定义为:
Figure BDA0001758753180000033
其中,y(x,t)是位置x在t时刻的真实输出,
Figure BDA0001758753180000034
是所述时空模糊模型输出;
根据梯度下降法,依据下式不断优化参数σ:
Figure BDA0001758753180000035
其中,i=1,...,n,j为迭代次数,η∈(0,1)是学习率;
Figure BDA0001758753180000036
当误差E(x,t)在限定的误差ε之内时,此时的σ即为最优值。
进一步,所述步骤S3包括:
将所述时间模糊模型的输出以及所述空间隶属函数进行整合得到所述分布参数系统的时空模糊模型为:
Figure BDA0001758753180000041
本发明的优点和有益效果在于:
本发明提供的用于分布参数系统的时空模糊建模方法,利用模糊逻辑原理,在不需要建立数学模型的情况下,可以建立系统的模型,且获得良好的建模精度;所述建模方法针对分布参数系统的状态与空间信息有关的特点,考虑了空间信息,使分布参数系统的模型建立得到了明显的改善;并且所述建模方法具有很好的鲁棒性。
附图说明
图1(a)为本发明的空间模糊关系示意图;
图1(b)为本发明的时间模糊关系示意图;
图2为本发明的应用于分布参数系统的时空模糊建模方法的流程示意图;
图3为本发明的第550个时刻的时空模糊模型输出示意图;
图4为本发明图3中时空模糊模型输出的相对误差示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
加热过程的温度场是一个复杂的分布参数系统,而复杂的分布参数系统的时空动态包括两个部分:空间动态和时间动态,这给建立分布参数系统模型带来较大的挑战,非线性的空间动态表现为空间点之间复杂的相关关系,非线性的时间动态表现为各时刻之间的复杂的关系,为了解决这个问题,本发明提出用空间模糊隶属函数和时间模糊隶属函数去表示非线性的时空动态,如图1所示。它将确保在时空模糊模型中,空间信息和时刻上的相关关系是固定的。
在空间模糊隶属函数和时间模糊模型的概念基础上,本发明提出了一种针对复杂的分布参数系统的时空模糊建模方法,如图2所示。
首先,选择样本点,并建立样本点各自随时间变化的模糊模型,以预测系统内未知时刻的输出;
其次,通过未知空间点与样本点之间的联系,建立分布参数系统的空间模糊模型,并优化模型中的参数以预测到系统内未知空间位置的输出;
再次,整合所述时间模糊模型和所述空间模糊模型形成时空模糊模型。
下面对本发明的时空模糊建模方法过程做进一步详细的阐述。
采集实验数据
Figure BDA0001758753180000051
其中u(t)为系统输入,xi为第i个传感器的空间位置,tj为第j个时刻的温度,y(xi,tj)为第i个传感器的空间位置点在第j个时刻的温度,并且n和L分别是传感器的数量和采样时间。从中选取n个空间位置点的前l个时刻的温度为训练样本点去建立模型,从而可预测未知的空间点未知时刻的温度。在空间模糊模型中嵌入了时间模糊模型,整体如下:
模糊原则:
模糊规则1.如果输入x是x1
又如果z1(t)是M11,z2(t)是M12,...,zq(t)是M1q
则有y(x1,t)=A1y(x1,t-1)+B1u(t)
Figure BDA0001758753180000052
如果z1(t)是Mr1,z2(t)是Mr2,...,zq(t)是Mrq
则有y(x1,t)=Ary(x1,t-1)+Bru(t)
则有:y(x,t)=y(x1,t),
Figure BDA0001758753180000053
模糊规则n.如果输入x是xn
又如果z1(t)是M11,z2(t)是M12,...,zq(t)是M1q
则有y(xn,t)=A1y(xn,t-1)+B1u(t)
Figure BDA0001758753180000054
如果z1(t)是Mr1,z2(t)是Mr2,...,zq(t)是Mrq
则有y(xn,t)=Ary(xn,t-1)+Bru(t)
则有:y(x,t)=y(xn,t)。
时空模糊建模的具体过程如下:
1)建立时间模糊模型
A.建立模型
为了预测空间点未知时刻的温度,选取参照点前1个时刻的温度建立各参照点随时间变化的模型,则可得到各参照点在未知时刻的温度。传感器i所在位置点xi的所述时间模糊模型建模描述如下:
第s条模糊原则为:
Rs:如果z1(t)是Ms1,z2(t)是Ms2,...,zq(t)是Msq
那么有y(xi,t)=Asy(xi,t-1)+Bsu(t)
其中,i=1,2,...,n;s=1,2,...,r;z(t)=[z1(t),z2(t),...,zq(t)]是前件变量;Ms1、Ms2、...、Msq分别为对应于所述前件变量z1(t)、z2(t)、...、zq(t)在第s条模糊规则的模糊集;r是时间上的模糊规则数;q是前件变量的维度;u(t)是输入向量;y(xi,t)表示每个模糊规则的输出;As和Bs通过最小二乘法求得;
所述时间模糊模型的输出表示为:
Figure BDA0001758753180000061
其中,i=1,2,...,n;s=1,2,...,r;
μs(z(t))是参数归一化后的第s条模糊规则下面的隶属度;
Figure BDA0001758753180000062
其中,υs(z(t))是第s条模糊规则下面的隶属度;
Figure BDA0001758753180000063
其中,隶属度函数
Figure BDA0001758753180000064
其中,zsj和σsj是所述隶属度函数的中心和方差。
B.计算前提条件
利用模糊C均值聚类(FCM)对时间模糊模型的前端参数进行离线识别。将采样点的输出通过FCM划分成若干个分区,然后最小化:
Figure BDA0001758753180000071
其中,U是未知的模糊划分矩阵,V=[c1,...,cr]是未知的聚类中心矩阵,usk∈[0,1]是第s类中的第k个数据的隶属度,w∈[1,∞)是聚类划分模糊度,dsk是第s类的中心与第k个数据的欧式距离。
对目标函数J(U,V)使用交替优化(AO)方案进行优化,其中U和V通过其他变量而计算出来变成新
Figure BDA0001758753180000072
Figure BDA0001758753180000073
下面两个更新式是通过目标函数导出来的:
Figure BDA0001758753180000074
Figure BDA0001758753180000075
高斯隶属度函数的方差定义为:
Figure BDA0001758753180000076
其中,usk第s类中第k个数据的隶属度,且usk∈[0,1],csj为第s个聚类中心的第j个分量。
2)建立空间模糊模型
A.建立模型
在空间中选取n个空间点做样本参照点,建立时空模糊模型。从而可以根据未知点与参照点之间的距离远近大小预测出未知点的温度。在空间位置点xi的空间动态作用下,空间模糊建模过程如下:
第i条模糊规则为:
Rsi:如果输入x是xi
则有y(x,t)=y(xi,t)
其中,i=1,2,...,n;n是空间上的模糊规则数;xi表示模糊单点集;y(x,t)是模糊输出;
选用径向基函数作为空间隶属函数:
Figure BDA0001758753180000081
其中,i=1,2,...,n;xi是传感器i的位置点;σi是宽度。
B.优化参数
通过梯度下降法,利用模型误差去优化参数σ,误差性能指标函数定义为:
Figure BDA0001758753180000082
其中,y(x,t)是位置x在t时刻的真实输出,
Figure BDA0001758753180000083
是所述时空模糊模型输出;
根据梯度下降法,依据下式不断优化参数σ:
Figure BDA0001758753180000084
其中,i=1,...,n,j为迭代次数,η∈(0,1)是学习率;
Figure BDA0001758753180000085
当误差E(x,t)在限定的误差ε之内时,此时的σ即为最优值。
3)时空模糊模型
将所述时间模糊模型的输出以及所述空间隶属函数进行整合得到所述分布参数系统的时空模糊模型为:
Figure BDA0001758753180000086
考虑一锻件在加热炉中的加热过程,该加热炉的加热额定温度为1000℃,最高温度超过1100℃,温度过冲≤5℃,炉温均匀性为±5℃,四个加热器(h1~h4)分别在炉膛的上、下、左、右部,选用铝锭作为被加热件,12个温度传感器均匀布置在铝锭表面。将加热温度设定为700℃,四个加热器输出信号的幅值统一设定为80%(在实际的加热过程中该值会有波动)。由于温度变化缓慢,时间采样间隔设定为1s,共采集793组输入信号与12个传感器的温度数据。用8个传感器采集的前450个时刻的数据作为训练集建立模型,后343个时刻的数据验证模型,剩余的4个传感器采集到所有数据(793组)用于评价模型性能。在第550个时刻的模型输出以及其相对误差分别如图3和4所示。从这些图明显可以看出,该方法可以很好的建立时变的分布参数系统的模型。
本发明提供的用于分布参数系统的时空模糊建模方法,利用模糊逻辑原理,在不需要建立数学模型的情况下,可以建立系统的模型,且获得良好的建模精度;所述建模方法针对分布参数系统的状态与空间信息有关的特点,考虑了空间信息,使分布参数系统的模型建立得到了明显的改善;并且所述建模方法具有很好的鲁棒性。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种应用于分布参数系统的时空模糊建模方法,用于加热过程温度场的建模分析,其特征在于,所述方法包括:
S1、建立时间模糊模型;
S2、建立空间模糊模型;
S3、整合所述时间模糊模型和所述空间模糊模型形成时空模糊模型;
所述步骤S1包括:
将传感器i所在位置点xi的所述时间模糊模型建模描述如下:
第s条模糊规则为:
Rs:如果z1(t)是Ms1,z2(t)是Ms2,…,zq(t)是Msq
那么有y(xi,t)=Asy(xi,t-1)+Bsu(t)
其中,i=1,2,…,n;n为传感器的数量;s=1,2,…,r;z(t)=[z1(t),z2(t),...,zq(t)]是前件变量;Ms1、Ms2、…、Msq分别为对应于所述前件变量z1(t)、z2(t)、...、zq(t)在第s条模糊规则的模糊集;r是时间上的模糊规则数;q是前件变量的维度;u(t)是输入向量;t为时间;y(xi,t)表示每个模糊规则的输出;As和Bs通过最小二乘法求得;
所述时间模糊模型的输出表示为:
Figure FDA0002354356790000011
其中,i=1,2,…,n;s=1,2,…,r;
μs(z(t))是参数归一化后的第s条模糊规则下面的隶属度;
Figure FDA0002354356790000012
其中,υs(z(t))是第s条模糊规则下面的隶属度;
Figure FDA0002354356790000013
其中,隶属度函数
Figure FDA0002354356790000021
其中,zsj和σsj是所述隶属度函数的中心和方差。
2.如权利要求1所述的方法,其特征在于,所述方法还包括:
从分布参数系统中收集数据作为数据集
Figure FDA0002354356790000022
其中,u(t)是所述分布参数系统的输入,xi是第i个传感器的空间位置,tj是第j个时刻,y(xi,tj)为第i个传感器的空间位置点在第j个时刻的温度,n和L分别是传感器的数量和采样时间;
选取n个空间位置点的前l个时刻的温度为训练样本点去建立模型。
3.如权利要求1所述的方法,其特征在于,所述隶属度函数的方差定义为:
Figure FDA0002354356790000023
其中,usk第s类中第k个数据的隶属度,且usk∈[0,1],csj为第s个聚类中心的第j个分量。
4.如权利要求1所述的方法,其特征在于,所述步骤S2包括:
在空间位置点xi的空间动态作用下,空间模糊模型建模过程如下:
第i条模糊规则为:
Rsi:如果输入x是xi
则有y(x,t)=y(xi,t)
其中,i=1,2,...,n;n是空间上的模糊规则数;xi表示模糊单点集;y(x,t)是模糊输出;
选用径向基函数作为空间隶属函数:
Figure FDA0002354356790000024
其中,i=1,2,...,n;xi是传感器i的位置点;σi是宽度。
5.如权利要求4所述的方法,其特征在于,所述方法还包括:
通过梯度下降法,利用模型误差去优化参数σ。
6.如权利要求5所述的方法,其特征在于,所述优化过程包括:
将误差性能指标函数定义为:
Figure FDA0002354356790000031
其中,y(x,t)是位置x在t时刻的真实输出,
Figure FDA0002354356790000032
是所述时空模糊模型输出;
根据所述梯度下降法,依据下式不断优化参数σ:
Figure FDA0002354356790000033
其中,i=1,...,n,j为迭代次数,η∈(0,1)是学习率;
Figure FDA0002354356790000034
当误差E(x,t)在限定的误差ε之内时,此时的σ即为最优值。
7.如权利要求4所述的方法,其特征在于,所述步骤S3包括:
将所述时间模糊模型的输出以及所述空间隶属函数进行整合得到所述分布参数系统的时空模糊模型为:
Figure FDA0002354356790000035
CN201810898270.7A 2018-08-08 2018-08-08 一种应用于分布参数系统的时空模糊建模方法 Active CN109145421B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810898270.7A CN109145421B (zh) 2018-08-08 2018-08-08 一种应用于分布参数系统的时空模糊建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810898270.7A CN109145421B (zh) 2018-08-08 2018-08-08 一种应用于分布参数系统的时空模糊建模方法

Publications (2)

Publication Number Publication Date
CN109145421A CN109145421A (zh) 2019-01-04
CN109145421B true CN109145421B (zh) 2020-04-21

Family

ID=64792229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810898270.7A Active CN109145421B (zh) 2018-08-08 2018-08-08 一种应用于分布参数系统的时空模糊建模方法

Country Status (1)

Country Link
CN (1) CN109145421B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110045606B (zh) * 2019-03-25 2021-07-27 中南大学 一种用于分布式参数系统在线建模的增量时空学习方法
CN112016242B (zh) * 2020-07-23 2023-09-05 武汉数字化设计与制造创新中心有限公司 一种基于数据驱动的分布参数热过程温度预测方法
CN113486597B (zh) * 2021-07-27 2022-10-11 中南大学 用于温度场的低阶时空建模方法
CN114879777B (zh) * 2022-06-24 2022-11-01 重庆大学 复合材料热固化成型模具温度场的预测控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195373A (ja) * 1987-10-08 1989-04-13 Mitsubishi Electric Corp パタン尤度計算方式
CN101655688A (zh) * 2009-07-21 2010-02-24 中南大学 一种应用于分布参数系统的三域模糊pid控制方法
CN103748987B (zh) * 2009-07-14 2011-01-12 北京理工大学 一种基于模糊神经网络的攻击知识的自动更新方法
CN104281057A (zh) * 2014-09-22 2015-01-14 国家电网公司 一种应用于变压器冷却系统的复合pid模糊控制方法
CN104483835A (zh) * 2014-11-06 2015-04-01 中国运载火箭技术研究院 一种基于t-s模糊模型的柔性航天器多目标综合控制方法
CN106094513A (zh) * 2016-05-31 2016-11-09 广东工业大学 在线模糊最小二乘支持向量机的烧结过程动力学建模算法
CN107065902A (zh) * 2017-01-18 2017-08-18 中南大学 基于非线性模型的无人机姿态模糊自适应预测控制方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195373A (ja) * 1987-10-08 1989-04-13 Mitsubishi Electric Corp パタン尤度計算方式
CN103748987B (zh) * 2009-07-14 2011-01-12 北京理工大学 一种基于模糊神经网络的攻击知识的自动更新方法
CN101655688A (zh) * 2009-07-21 2010-02-24 中南大学 一种应用于分布参数系统的三域模糊pid控制方法
CN104281057A (zh) * 2014-09-22 2015-01-14 国家电网公司 一种应用于变压器冷却系统的复合pid模糊控制方法
CN104483835A (zh) * 2014-11-06 2015-04-01 中国运载火箭技术研究院 一种基于t-s模糊模型的柔性航天器多目标综合控制方法
CN106094513A (zh) * 2016-05-31 2016-11-09 广东工业大学 在线模糊最小二乘支持向量机的烧结过程动力学建模算法
CN107065902A (zh) * 2017-01-18 2017-08-18 中南大学 基于非线性模型的无人机姿态模糊自适应预测控制方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Novel Spatiotemporal LS-SVM Method for Complex Distributed Parameter Systems With Applications to Curing Thermal Process;Xinjiang Lu 等;《IEEE Transactions on Industrial Informatics》;20160422;第1156 – 1165页 *
分布参数系统的非线性时空分离建模和预测控制策略研究;郑迪;《中国优秀硕士学位论文全文数据库(信息科技辑)》;20111230;第I140-21页 *

Also Published As

Publication number Publication date
CN109145421A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
CN109145421B (zh) 一种应用于分布参数系统的时空模糊建模方法
CN108920888B (zh) 一种基于深度神经网络的连续搅拌釜式反应过程辨识方法
CN108732931B (zh) 一种基于jit-rvm的多模态间歇过程建模方法
WO2017088208A1 (zh) 一种由数据差异驱动的间歇过程自学习动态优化方法
CN101799888B (zh) 基于仿生智能蚁群算法的工业软测量方法
CN109992921B (zh) 一种燃煤电厂锅炉热效率的在线软测量方法及系统
Chu et al. Final quality prediction method for new batch processes based on improved JYKPLS process transfer model
CN111914492B (zh) 一种基于进化优化的半监督学习工业过程软测量建模方法
Tian et al. TS fuzzy neural network predictive control for burning zone temperature in rotary kiln with improved hierarchical genetic algorithm
CN107832789B (zh) 基于平均影响值数据变换的特征加权k近邻故障诊断方法
Elfelly et al. A new approach for multimodel identification of complex systems based on both neural and fuzzy clustering algorithms
CN113031553B (zh) 一种基于自动聚类结合偏最小二乘的间歇过程质量预测方法
Chou et al. Physically consistent soft-sensor development using sequence-to-sequence neural networks
CN112859898A (zh) 一种基于双通道双向神经网络的飞行器轨迹预测方法
CN104050380A (zh) 一种基于Adaboost-PLS-ELM的LF炉终点温度预报方法
Hu et al. Weighted kernel fuzzy C-means-based broad learning model for time-series prediction of carbon efficiency in iron ore sintering process
CN112733435A (zh) 一种基于多模型融合的整车尺寸匹配偏差预测方法
CN110221540B (zh) 基于Hammerstein模型的连续搅拌反应器系统控制方法
CN106547899B (zh) 一种基于多尺度时变聚类中心变化的间歇过程时段划分的方法
CN110794676A (zh) 基于Hammerstein-Wiener模型的CSTR过程非线性控制方法
CN115206455B (zh) 基于深度神经网络的稀土元素组分含量预测方法及系统
CN106202918B (zh) 一种高炉铁水硅含量在线估计方法及系统
CN112381145A (zh) 基于最近相关谱聚类的高斯过程回归多模型融合建模方法
Cui et al. KPCA-ESN soft-sensor model of polymerization process optimized by biogeography-based optimization algorithm
CN113191082B (zh) 基于机器学习的模型参数获取方法、系统及可读介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant