CN109136968B - 一种电解水产氢用碳量子点膜/Ru纳米晶及其制备方法 - Google Patents

一种电解水产氢用碳量子点膜/Ru纳米晶及其制备方法 Download PDF

Info

Publication number
CN109136968B
CN109136968B CN201811275705.9A CN201811275705A CN109136968B CN 109136968 B CN109136968 B CN 109136968B CN 201811275705 A CN201811275705 A CN 201811275705A CN 109136968 B CN109136968 B CN 109136968B
Authority
CN
China
Prior art keywords
quantum dot
carbon quantum
dot film
nanocrystal
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811275705.9A
Other languages
English (en)
Other versions
CN109136968A (zh
Inventor
陈志民
刘源
李卫东
刘仲毅
孟迪
陈永
方明明
陈加福
付建伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201811275705.9A priority Critical patent/CN109136968B/zh
Publication of CN109136968A publication Critical patent/CN109136968A/zh
Application granted granted Critical
Publication of CN109136968B publication Critical patent/CN109136968B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明属于新材料制备领域,特别涉及一种电解水产氢用碳量子点膜/Ru纳米晶及其制备方法。首先以大蒜为原料制备自交联的碳量子点膜,然后在水热的条件下将其与Ru量子点复合制备碳量子点膜/Ru纳米晶复合材料。该纳米材料具有独特的膜状结构、良好的稳定性以及高效的全pH电解水产氢等优点。

Description

一种电解水产氢用碳量子点膜/Ru纳米晶及其制备方法
技术领域
本发明属于新材料制备技术领域,特别涉及一种电解水产氢用碳量子点膜/Ru纳米晶及其制备方法。
背景技术
随着现代社会的不断发展,不可再生能源的大量消耗,能源危机日益加剧。同时化石燃料的消耗还导致了严重的环境问题,因此寻找清洁高效的可再生能源越来越受到人们的关注。
氢能源作为一种可再生的清洁能源,被认为是未来应对能源紧缺问题最有效的手段。电催化水裂解制氢是目前最具发展前景的制氢技术之一。现有的技术中,贵金属Pt是最有效的电解水制氢催化剂,但是金属Pt的储量稀少、价格昂贵,而且长时间反应过程中Pt的稳定性较差,这些因素都限制这种催化剂的大规模生产和应用。
电解水产氢常用的电解质有酸性、碱性、中性溶液。碱性电解液因其对设备要求低,安全性高而受到广泛的关注。然而除氯碱和水碱电解槽外,还有质子交换膜电解槽和微生物电解槽等其他类型的电解槽用于水的分解。由于使用环境的不同,在全pH范围内具有良好电催化性能的催化剂具有很大的吸引力。不幸的是,由于中性溶液的导电性较差,这大大限制了催化剂的活性。目前报道的催化剂在中性介质中的性能大都不理想。
发明内容
为了解决上述问题,本发明提供了一种电解水产氢用碳量子点膜/Ru纳米晶及其制备方法。其具有以下优点:①电解水产氢时该催化剂催化性能高效稳定;②该催化剂可在全pH范围内电解水产氢;③和贵金属Pt催化剂相比价格相对低廉,更容易大规模生产和应用。
一种电解水产氢用碳量子点膜/Ru纳米晶及其制备方法,其特征在于,该碳量子点膜/Ru纳米晶为膜状的碳量子点和Ru纳米晶的复合。
一种电解水产氢用碳量子点膜/Ru纳米晶及其制备方法,其具体制备工艺过程为:
1)Ru纳米晶的制备:称取一定量的十八胺,120℃下熔解为液体,于Ar气氛围中用型号为MS-H-Pro的加热型磁力搅拌器在500转/分转速下加入一定量的RuCl3混合均匀,该过程中RuCl3与十八胺质量比保持在1∶(100-200)范围内,然后按照质量比为叔丁基胺硼烷(TBAB)∶RuCl3=(1-2)∶1的配比加入TBAB,升温至240℃,调节转速为100转/分,反应30min,反应结束后用一定量体积比为乙醇∶正己烷=5∶1的混合液洗涤3次,离心真空干燥后,得到Ru纳米晶。
2)碳量子点膜的制备:称取一定量的大蒜,捣碎加入到水热反应釜中,在180-200℃范围内水热处理6-8h,然后用孔径为100-500nm的滤纸过滤得到黄褐色溶液,将此溶液用型号为湘仪H1850的离心机在8000-12000转/分的转速下离心10-30min,将得到的上清液用规格为1000-3000Da透析袋透析24-36h,最后将透析袋中的溶液经烘干处理,即可得到褐色碳量子点膜粉末。
3)碳量子点膜/Ru纳米晶的制备:称取一定质量步骤1)中制备的浓度为1mg/mL的Ru纳米晶的己烷溶液,称取一定量步骤2)中浓度为0.4-2 mg/mL的碳量子乙醇溶液,然后将Ru纳米晶的己烷溶液滴加到碳量子点膜的乙醇溶液中,超声分散均匀,其中,碳量子点膜和Ru纳米晶质量比为(2-10)∶1,乙醇和己烷的体积比为(5-10)∶1,接着将上述混合溶液转移至水热反应釜中在180-240℃范围内水热处理6-8h,然后用型号为湘仪H1850的离心机在8000-10000转/分的转速范围内离心10-20min,再经真空干燥,得到黑褐色碳量子点膜/Ru纳米晶粉末。
4)碳量子点膜/Ru纳米晶的热处理:将步骤3)中得到的碳量子点膜/Ru纳米晶粉末用管式炉于Ar气气氛下在800-1000℃范围内焙烧4-8h,即可得到可用于催化测试的黑色碳量子点膜/Ru纳米晶粉末。
一种电解水产氢用碳量子点膜/Ru纳米晶及其制备方法,其和传统的电解水催化剂相比具有以下优势:
1)制备的碳量子点膜/Ru纳米晶在全pH条件下表现出优异的催化活性。
2)制备的碳量子点膜/Ru纳米晶在全pH条件下表现出优异的催化稳定性。
3)制备的碳量子点膜/Ru纳米晶和Pt催化剂相比价格相对低廉。
一种电解水产氢用碳量子点膜/Ru纳米晶及其制备方法,其所有实施例的电催化产氢性能通过如下方法进行测试:
1)工作电极的制备:先将待测的实施例和对比例样品于真空烘箱中在60 ℃下干燥10 h,然后称取3 mg样品加入500μL无水乙醇中,再加入50μL杜邦公司的浓度为5wt %Nafion溶液,超声30 min,最后用移液枪量取15 μL悬浊液滴在直径为5 mm的玻碳电极上,室温下干燥备用。
2)催化性能测试:在25~28℃的环境中,利用美国Pine公司型号为AFMSRCE的圆盘电极,采用三电极体系进行循环伏安测试,三电极体系分为工作电极、参比电极和对电极,其中饱和甘汞电极为参比电极,铂丝电极作为对电极,采用的电解液分别为0.5mol/L的H2SO4溶液,1 mol/L的磷酸盐缓冲溶液(PBS)和1mol/L的KOH溶液。测试时,圆盘电极转速为1600 转/分/min,线性扫描速率为5 mv/s,测试的电流密度为10mA/cm2,不同电解质中循环伏安测试10000圈的电压范围分别为:0.5mol/L的H2SO4溶液(0至-0.4 V),1mol/L的PBS溶液(-0.4V至-0.8 V),1mol/L的KOH溶液(-0.8V至-1.2 V)。
附图说明
图1为本发明制备的碳量子点膜/Ru纳米晶的透射电子显微镜照片。
具体实施方式
下面通过具体实施示例进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
实施例1:
1)Ru纳米晶的制备:称取8g十八胺,120℃下熔解为液体,于Ar气氛围中用型号为MS-H-Pro的加热型磁力搅拌器在500转/分转速下加入0.05gRuCl3和0.044gTBAB混合均匀,升温至240℃,调节转速为100转/分,反应30min,然后加入60ml体积比为乙醇∶正己烷=5∶1的混合液洗涤3次,然后用型号为湘仪H1850的离心机在9000转/分转速下离心10min,60℃下真空干燥,得到Ru纳米晶黑色粉末。
2)碳量子点膜的制备:称取10g大蒜,捣碎后加入到容量为300mL的水热反应釜中,加入200mL去离子水在180℃下水热处理8h,冷却至室温后用孔径为500nm的滤纸过滤得到黄褐色溶液,将此溶液用离心机在9000转/分的转速下离心10min,将得到的上清液用规格为1000Da的透析袋透析24h,最后将透析袋中的溶液在60℃烘干36h,即可得到褐色碳量子点膜粉末。
3)碳量子点膜/Ru纳米晶的制备:取10mL步骤1)中制备的浓度为1mg/mL的Ru纳米晶的己烷溶液,取40mL步骤2)中浓度为1.25mg/mL的碳量子乙醇溶液,然后将Ru纳米晶的己烷溶液滴加到碳量子点膜的乙醇溶液中,超声30min至分散均匀,接着将上述混合溶液转移至容量为100m的水热反应釜中在200℃下水热处理8h,自然冷却至室温后将产物用型号为湘仪H1850的离心机在10000转/分的转速下离心10min,将得到的沉淀在60℃真空干燥8h,得到黑褐色碳量子点膜/Ru纳米晶粉末。
4)碳量子点膜/Ru纳米晶的热处理:将步骤3)中得到的碳量子点膜/Ru纳米晶粉末用管式炉于Ar气气氛下在900℃范围内焙烧6h,即可得到可用于催化测试的黑色碳量子点膜/Ru纳米晶粉末。
实施例2:
1)Ru纳米晶的制备:按照实施例1进行。
2)碳量子点膜的制备:按照实施例1进行。
3)碳量子点膜/Ru纳米晶的制备:按照实施例1进行。
4)碳量子点膜/Ru纳米晶的热处理:将步骤3)中得到的碳量子点膜/Ru纳米晶粉末用管式炉于Ar气气氛下在800℃范围内焙烧6h,即可得到可用于催化测试的黑色碳量子点膜/Ru纳米晶粉末。
实施例3:
1)Ru纳米晶的制备:按照实施例1进行。
2)碳量子点膜的制备:按照实施例1进行。
3)碳量子点膜/Ru纳米晶的制备:按照实施例1进行。
4)碳量子点膜/Ru纳米晶的热处理:将步骤3)中得到的碳量子点膜/Ru纳米晶粉末用管式炉于Ar气气氛下在1000℃范围内焙烧6h,即可得到可用于催化测试的黑色碳量子点膜/Ru纳米晶粉末。
实施例4:
1)Ru纳米晶的制备:按照实施例1进行。
2)碳量子点膜的制备:按照实施例1进行。
3)碳量子点膜/Ru纳米晶的制备:碳量子点膜/Ru纳米晶的制备:取10mL步骤1)中制备的浓度为1mg/mL的Ru纳米晶的己烷溶液,取40mL步骤2)中浓度为0.5mg/mL的碳量子乙醇溶液,然后将Ru纳米晶的己烷溶液滴加到碳量子点膜的乙醇溶液中,超声30min至分散均匀,接着将上述混合溶液转移至容量为100mL的水热反应釜中在200℃下水热处理6h,自然冷却至室温后将产物用型号为湘仪H1850的离心机在10000转/分的转速下离心10min,将得到的沉淀在60℃真空干燥8h,得到黑褐色碳量子点膜/Ru纳米晶粉末。
4)碳量子点膜/Ru纳米晶的热处理:按照实施例1进行。
实施例5:
1)Ru纳米晶的制备:按照实施例1进行。
2)碳量子点膜的制备:按照实施例1进行。
3)碳量子点膜/Ru纳米晶的制备:碳量子点膜/Ru纳米晶的制备:取10mL步骤1)中制备的浓度为1mg/mL的Ru纳米晶的己烷溶液,取40mL步骤2)中浓度为2.5mg/mL的碳量子乙醇溶液,然后将Ru纳米晶的己烷溶液滴加到碳量子点膜的乙醇溶液中,超声30min至分散均匀,接着将上述混合溶液转移至容量为100mL的水热反应釜中在200℃下水热处理6h,自然冷却至室温后将产物用型号为湘仪H1850的离心机在10000转/分的转速下离心10min,将得到的沉淀在60℃真空干燥8h,得到黑褐色碳量子点膜/Ru纳米晶粉末。
4)碳量子点膜/Ru纳米晶的热处理:按照实施例1进行。
对比例1:
碳量子点膜的制备:按照是实施例1步骤2)进行。
对比例2:
Ru纳米晶的制备:按照实施例1步骤1)进行。
实施例和对比例在10mA/cm2的电流密度下于不同电解质溶液中的过电位如表1所示
Figure DEST_PATH_IMAGE001
上述实例表明:以碳量子点膜/Ru纳米晶(实施例1、2、3、4、5)作为电解水产氢催化剂时和对比例1(纯的Ru纳米颗粒)相比,其在使用少量贵金属的条件下仍然可呈现出较低的过电位。特别是实施例1,其在全pH值范围内的催化过电位均低于对比例1,呈现出了优异的电解水产氢催化性能。所有的实施例和对比例2(纯碳量子点)相比,其过电位显著降低。该结果说明,碳量子点膜/Ru纳米晶的复合结构的确有力于降低电解水产氢过程中的过电位,提高在催化剂Ru在全pH范围内的产氢性能。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (1)

1.一种电解水产氢用碳量子点膜/Ru纳米晶的制备方法,其制备过程包括下述步骤:①Ru纳米晶的制备:称取一定量的十八胺,120℃下熔解为液体,于Ar气氛围中用型号为MS-H-Pro+的加热型磁力搅拌器在500转/分转速下加入一定量的RuCl3混合均匀,该过程中RuCl3与十八胺质量比保持在1∶(100-200)范围内,然后按照质量比为叔丁基胺硼烷(TBAB)∶RuCl3=(1-2)∶1的配比加入叔丁基胺硼烷(TBAB),升温至240℃,调节转速为100转/分,反应30min,反应结束后用一定量体积比为乙醇∶正己烷=5∶1的混合溶液洗涤3次,离心真空干燥后,得到Ru纳米晶;②碳量子点膜的制备:称取一定量的大蒜,捣碎加入到水热反应釜中,在180-200℃范围内水热处理6-8h,然后用孔径为100-500nm的滤纸过滤得到黄褐色溶液,将此溶液用用型号为湘仪H1850的离心机在8000-12000转/分的转速下离心10-30min,将得到的上清液用规格为1000-3000Da透析袋透析24-36h,最后将透析袋中的溶液经烘干处理,即可得到褐色碳量子点膜粉末;③碳量子点膜/Ru纳米晶的制备:称取一定质量步骤①中制备的浓度为1mg/mL的Ru纳米晶的己烷溶液,称取一定量步骤②中浓度为0.4-2mg/mL的碳量子点膜的乙醇溶液,然后将Ru纳米晶的己烷溶液滴加到碳量子点膜的乙醇溶液中,超声分散均匀,其中,碳量子点膜和Ru纳米晶质量比为(2-10)∶1,乙醇和己烷的体积比为(5-10)∶1,接着将上述混合溶液转移至水热反应釜中在180-240℃范围内水热处理6-8h,然后用型号为湘仪H1850的离心机在8000-10000转/分的转速范围内离心10-20min,再经真空干燥,得到黑褐色碳量子点膜/Ru纳米晶粉末;④碳量子点膜/Ru纳米晶的热处理:将步骤③中得到的碳量子点膜/Ru纳米晶粉末用管式炉于Ar气气氛下在800-1000℃范围内焙烧4-8h,即可得到可用于催化测试的黑色碳量子点膜/Ru纳米晶粉末。
CN201811275705.9A 2018-10-30 2018-10-30 一种电解水产氢用碳量子点膜/Ru纳米晶及其制备方法 Active CN109136968B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811275705.9A CN109136968B (zh) 2018-10-30 2018-10-30 一种电解水产氢用碳量子点膜/Ru纳米晶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811275705.9A CN109136968B (zh) 2018-10-30 2018-10-30 一种电解水产氢用碳量子点膜/Ru纳米晶及其制备方法

Publications (2)

Publication Number Publication Date
CN109136968A CN109136968A (zh) 2019-01-04
CN109136968B true CN109136968B (zh) 2020-05-22

Family

ID=64806604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811275705.9A Active CN109136968B (zh) 2018-10-30 2018-10-30 一种电解水产氢用碳量子点膜/Ru纳米晶及其制备方法

Country Status (1)

Country Link
CN (1) CN109136968B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109810699A (zh) * 2019-03-05 2019-05-28 贺州学院 生物质氮、硫掺杂荧光碳点的制备方法
CN111939930B (zh) * 2020-09-14 2023-04-21 郑州大学 一种碳量子点负载钴钌合金复合材料及其制备方法、应用
CN112920797B (zh) * 2021-03-25 2022-03-11 广东工业大学 N,s掺杂水溶性碳量子点及其应用
CN113278990B (zh) * 2021-05-25 2023-08-22 中北大学 一种钌量子点负载碳纤维析氢催化剂及其制备方法和应用
CN114887460A (zh) * 2022-04-22 2022-08-12 安徽科技学院 一种基于分子量级大气棕色碳的分级定量超滤方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108101018A (zh) * 2017-12-19 2018-06-01 重庆文理学院 一种以三七为原料合成氮掺杂碳量子点的方法

Also Published As

Publication number Publication date
CN109136968A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
CN109136968B (zh) 一种电解水产氢用碳量子点膜/Ru纳米晶及其制备方法
CN109453811B (zh) 一种双功能复合电解水催化剂、制备方法及其应用
CN108736031B (zh) 一种自支撑PtCo合金纳米颗粒催化剂及其制备方法与应用
CN106784865B (zh) 一种铁氮共掺杂碳微球及制备方法、用途和氧还原电极
CN109065897B (zh) 磷掺杂孔状碳包覆四氧化三钴氧还原催化剂及其制备方法和应用
CN108435211B (zh) 一种Ce掺杂的Ni-Fe-Ce三元硫化物析氧催化剂的制备方法
CN110993975B (zh) 氮掺杂多孔碳非金属催化剂及其制备方法和在氧化还原反应中的应用
CN106876729B (zh) 有序介孔碳生长碳纳米管催化剂的制备及催化剂和应用
CN110504456B (zh) 一种基于氮氧掺杂球/片多孔碳材料的氧还原电极及其制备方法和应用
CN110124702A (zh) 一种双金属磷化物复合还原石墨烯纳米电催化材料的制备方法
CN107335451A (zh) 铂/二硫化钼纳米片/石墨烯三维复合电极催化剂的制备方法
CN109304464B (zh) 一种电解水产氢用中空笼状碳/Ru复合微球及其制备方法
CN113881965B (zh) 一种以生物质碳源为模板负载金属纳米颗粒催化剂及其制备方法和应用
CN112522726A (zh) 一种由天然琼脂衍生的氮掺杂多孔碳/二硫化钼复合材料的制备方法及其应用
CN110359059B (zh) 电催化产氧NiPS3/石墨烯复合催化剂及其制备方法
CN110586116A (zh) 一种析氢电催化剂的MoO2-Ni/CC复合材料及制备方法
CN109860645B (zh) 一种生物胶固氮掺杂多孔碳的制备方法及其应用
CN111841598A (zh) 一种具有高析氧催化活性的S掺杂Co@NC复合材料及其制备方法
CN107706429B (zh) 一种wc/wo3核壳结构电催化剂制备方法
CN113718269A (zh) 一种电催化材料及其制备方法和应用
CN110106518B (zh) 一种用于碱性电催化析氢的复合材料及制备方法
CN115094440B (zh) 钴/四氧化三铁/碳纳米管/c多孔微球制氢催化剂的制备方法
CN111342067A (zh) 一种铂基催化剂及其制备方法
CN110137523B (zh) 一种制氢水合肼燃料电池装置
CN113774428A (zh) 一种高效钴铑氢氧化物纳米颗粒/碳布电极的制备方法及其产品和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant