CN109133908A - 用于diw技术的生物基磷酸钙3d打印陶瓷浆料及其制备方法 - Google Patents

用于diw技术的生物基磷酸钙3d打印陶瓷浆料及其制备方法 Download PDF

Info

Publication number
CN109133908A
CN109133908A CN201811058516.6A CN201811058516A CN109133908A CN 109133908 A CN109133908 A CN 109133908A CN 201811058516 A CN201811058516 A CN 201811058516A CN 109133908 A CN109133908 A CN 109133908A
Authority
CN
China
Prior art keywords
diw
technology
ceramic slurry
biology base
calcium phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811058516.6A
Other languages
English (en)
Inventor
丁云飞
顾海
陈劲松
杨建明
黄大志
王晓丽
冯文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Institute of Technology
Huaihai Institute of Techology
Original Assignee
Nantong Institute of Technology
Huaihai Institute of Techology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Institute of Technology, Huaihai Institute of Techology filed Critical Nantong Institute of Technology
Priority to CN201811058516.6A priority Critical patent/CN109133908A/zh
Publication of CN109133908A publication Critical patent/CN109133908A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种用于DIW技术的生物基磷酸钙3D打印陶瓷浆料及其制备方法,涉及陶瓷材料制领域,包括以下质量百分比的原料:磷酸三钙45%~70%;固化剂30%~55%;其他助剂0%~3%;通过本发明的原料和方法,利用DIW技术3D打印机将生物基陶瓷浆料打印成型,经烧结后得到不仅精度高、弹性模量好、弯曲强度好的陶瓷体,还节约了时间和成本。

Description

用于DIW技术的生物基磷酸钙3D打印陶瓷浆料及其制备方法
技术领域
本发明涉及陶瓷材料制领域,具体涉及一种用于DIW技术的生物基磷酸钙3D打印陶瓷浆料及其制备方法。
背景技术
陶瓷材料具有耐高温、耐磨损、耐腐蚀等特点,被广泛应用于先进制造业,特种加工领域及医疗领域,尤其是骨组织工程。从生物材料的角度看,磷酸三钙因其具有良好的生物相容性,耐腐蚀性和骨诱导性,被认为是理想的人工骨骼替代材料。传统的生物陶瓷材料的制备多采用机械加工,模具加工的方式,使得陶瓷加工周期长,成本高,尤其限制了具有复杂特定结构和尺寸的骨组织工程用陶瓷零件的应用和发展。
为了提高陶瓷零件的加工精度和加工效率,陶瓷无模成型技术应运而生。以陶瓷无模成型制造技术为基础,陶瓷3D打印技术得到了一定的发展与应用。陶瓷3D打印技术,通过层层连接的方式快速成型出各种复杂形状的陶瓷零部件,显著缩短产品的研发和制备周期,使得制造先进、结构复杂的特种陶瓷变为可能。从20世纪90年代开始,陶瓷3D打印技术主要包括三维印刷成型技术、喷射打印成型技术、激光选区烧结技术、光固化快速成型技术和陶瓷熔化沉积成型技术。三维印刷成型以黏结剂选择性连接陶瓷粉体制备产品,强度精度较低;喷射打印成型技术无法制备三维多孔结构;激光选区烧结成型技术借助激光,选择性辐射陶瓷粉体,高温熔化后连接成牢固三维结构,精度强度很高,过程中粉末需要预热冷却,成型周期长;光固化快速成型需借助紫外光辐射,固化时间不确定;熔化沉积成型技术将原料加热到略高于熔点处成型,受制于加热环境和材料熔点。基于解决上述方法的缺陷,陶瓷浆料直写成型技术(DirectInkWriting,DIW)取得了较大的进步和完善。
陶瓷浆料直写成型技术,其优势在于:无需激光的辐照和加热,在室温条件下,通过配置水基浆料既可成型出微米级高精度陶瓷三维结构。该技术可以用于制备修复骨骼用支架材料、仿生材料和多孔材料。因此制备出具有良好流动性的生物基陶瓷浆料尤为重要。
发明内容
针对上述存在的问题,本发明提出了一种用于DIW技术的生物基磷酸钙3D打印陶瓷浆料及其制备方法,可通过以磷酸三钙粉末为支撑主体,制备的3D打印陶瓷浆料具有分散均匀,固相含量高,粘度低,强度高和流动性好的特点,通过DIW技术进行3D打印制备得到高质量磷酸三钙陶瓷,可用于生物医疗陶瓷。
为了实现上述的目的,本发明采用以下的技术方案:
一种用于DIW技术的生物基磷酸钙3D打印陶瓷浆料,包括以下质量百分比的原料:
磷酸三钙 45%~70%
固化剂 30%~55%
其他助剂 0%~3%。
优选的,所述磷酸三钙的粒径为100~500nm,纯度为≥98%。
优选的,按重量份计,所述固化剂由纤维素30-60份、增稠剂10-20份、分散剂1-10份,助剂1-10份的重量份组成。
优选的,所述纤维素为羟丙基甲基纤维素、羟乙基纤维素、硬脂酸镁、藻酸丙二醇酯、海藻酸丙二醇酯中的至少一种。
优选的,所述增稠剂为明胶、罗望子多糖胶、酪蛋白酸钠、田菁胶、琼脂、阿拉伯胶中的至少一种。
优选的,所述分散剂为2-羟基丙烷-1,2,3-三羧酸、2-羟基丁二酸、α-氨基乙酸、1,2,3,4,5-五羟基己酸中的至少一种。
优选的,所述其他助剂为丙三醇、聚己内脂、聚丁二酸丁二醇脂、聚丙交脂乙交脂共聚物中的至少一种。
一种用于DIW技术的生物基磷酸钙3D打印陶瓷浆料的制备方法,包括以下步骤:
(1)将磷酸三钙粉末放入无水乙醇中进行超声分散处理,处理时间30~60分钟,水浴温度40℃;
(2)将纤维素、增稠剂、分散剂按比例混合,辅以机械搅拌或磁力搅拌,搅拌时间1h;
(3)按配比称取原料;
(4)将过滤干燥后的磷酸三钙、固化剂、其他助剂至于容器中,高速搅拌混合30~120分钟。
由于采用上述的技术方案,本发明的有益效果是:
(1)本发明份原料来源广泛,成本低,适于大量生产;
(2)本发明通过利用DIW技术3D打印机将生物基陶瓷浆料打印成型,经烧结后得到精度高、弹性模量好、弯曲强度好的陶瓷体,以此节约时间和成本。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述。基于本发明的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
磷酸三钙粉末预处理:将称量好的磷酸三钙粉末放入一定量的烧杯中,倒入适量无水乙醇,对其进行超声处理,超声清洗仪功率为50w,超声时间为40分钟,水浴温度为40℃,超声结束后静置1分钟,然后将上层悬浮溶液倒入另一烧杯中,然后将溶液干燥,得到纯度较高、粒度均匀的陶瓷粉末。
固化剂的配制:在烧杯中称取一定量的超纯水,先后加入称量好的羟丙基甲基纤维素、羟乙基纤维素、明胶、罗望子多糖胶、2-羟基丙烷-1,2,3-三羧酸、2-羟基丁二酸,辅以机械搅拌或磁力搅拌,搅拌时间1h。
制备由磷酸三钙粉末、固化剂和其他助剂构成的混合浆料:将上述磷酸三钙粉末与固化剂和丙三醇、聚己内脂按固相含量为45%混合搅拌得到分散均匀,流动性好的适用于DIW技术的生物基磷酸三钙3D打印陶瓷浆料。
实施例2:
磷酸三钙粉末预处理:将称量好的磷酸三钙粉末放入一定量的烧杯中,倒入适量无水乙醇,对其进行超声处理,超声清洗仪功率为50w,超声时间为30分钟,水浴温度为40℃,超声结束后静置1分钟,然后将上层悬浮溶液倒入另一烧杯中,然后将溶液干燥,得到纯度较高、粒度均匀的陶瓷粉末。
固化剂的配制:在烧杯中称取一定量的超纯水,先后加入称量好的羟乙基纤维素、硬脂酸镁、罗望子多糖胶、酪蛋白酸钠、2-羟基丁二酸、α-氨基乙酸,辅以机械搅拌或磁力搅拌,搅拌时间1h。
制备由磷酸三钙粉末、固化剂和其他助剂构成的混合浆料:将上述磷酸三钙粉末与固化剂和聚己内脂、聚丁二酸丁二醇脂按固相含量为50%混合搅拌得到分散均匀,流动性好的适用于DIW技术的生物基磷酸三钙3D打印陶瓷浆料。
实施例3:
磷酸三钙粉末预处理:将称量好的磷酸三钙粉末放入一定量的烧杯中,倒入适量无水乙醇,对其进行超声处理,超声清洗仪功率为50w,超声时间为50分钟,水浴温度为40℃,超声结束后静置1分钟,然后将上层悬浮溶液倒入另一烧杯中,然后将溶液干燥,得到纯度较高、粒度均匀的陶瓷粉末。
固化剂的配制:在烧杯中称取一定量的超纯水,先后加入称量好的硬脂酸镁、藻酸丙二醇酯、酪蛋白酸钠、田菁胶、α-氨基乙酸、1,2,3,4,5-五羟基己酸,辅以机械搅拌或磁力搅拌,搅拌时间1h。
制备由磷酸三钙粉末、固化剂和其他助剂构成的混合浆料:将上述磷酸三钙粉末与固化剂和聚丁二酸丁二醇脂按固相含量为55%混合搅拌得到分散均匀,流动性好的适用于DIW技术的生物基磷酸三钙3D打印陶瓷浆料。
实施例4:
磷酸三钙粉末预处理:将称量好的磷酸三钙粉末放入一定量的烧杯中,倒入适量无水乙醇,对其进行超声处理,超声清洗仪功率为50w,超声时间为60分钟,水浴温度为40℃,超声结束后静置1分钟,然后将上层悬浮溶液倒入另一烧杯中,然后将溶液干燥,得到纯度较高、粒度均匀的陶瓷粉末。
固化剂的配制:在烧杯中称取一定量的超纯水,先后加入称量好的藻酸丙二醇酯、海藻酸丙二醇酯、田菁胶、琼脂、α-氨基乙酸、1,2,3,4,5-五羟基己酸,辅以机械搅拌或磁力搅拌,搅拌时间1h。
制备由磷酸三钙粉末、固化剂和其他助剂构成的混合浆料:将上述磷酸三钙粉末与固化剂和聚丙交脂乙交脂共聚物按固相含量为60%混合搅拌得到分散均匀,流动性好的适用于DIW技术的生物基磷酸三钙3D打印陶瓷浆料。
实施例5:
磷酸三钙粉末预处理:将称量好的磷酸三钙粉末放入一定量的烧杯中,倒入适量无水乙醇,对其进行超声处理,超声清洗仪功率为50w,超声时间为45分钟,水浴温度为40℃,超声结束后静置1分钟,然后将上层悬浮溶液倒入另一烧杯中,然后将溶液干燥,得到纯度较高、粒度均匀的陶瓷粉末。
固化剂的配制:在烧杯中称取一定量的超纯水,先后加入称量好的海藻酸丙二醇酯、阿拉伯胶、α-氨基乙酸,辅以机械搅拌或磁力搅拌,搅拌时间1h。
制备由磷酸三钙粉末、固化剂和其他助剂构成的混合浆料:将上述磷酸三钙粉末与固化剂和丙三醇按固相含量为65%混合搅拌得到分散均匀,流动性好的适用于DIW技术的生物基磷酸三钙3D打印陶瓷浆料。
实施例6:
磷酸三钙粉末预处理:将称量好的磷酸三钙粉末放入一定量的烧杯中,倒入适量无水乙醇,对其进行超声处理,超声清洗仪功率为50w,超声时间为55分钟,水浴温度为40℃,超声结束后静置1分钟,然后将上层悬浮溶液倒入另一烧杯中,然后将溶液干燥,得到纯度较高、粒度均匀的陶瓷粉末。
固化剂的配制:在烧杯中称取一定量的超纯水,先后加入称量好的羟乙基纤维素、罗望子多糖胶、1,2,3,4,5-五羟基己酸,辅以机械搅拌或磁力搅拌,搅拌时间1h。
制备由磷酸三钙粉末、固化剂和其他助剂构成的混合浆料:将上述磷酸三钙粉末与固化剂和丙三醇、聚己内脂、聚丁二酸丁二醇脂按固相含量为70%混合搅拌得到分散均匀,流动性好的适用于DIW技术的生物基磷酸三钙3D打印陶瓷浆料。
性能评价方式及实行标准:
将采用实施例1~5方法得到的浆料在基于DIW技术的3D打印机上逐层堆叠成型,制成测试样品;弯曲性能测试按照GB/T 6569-2006进行;拉伸性能测试按照GB/T 23805-2009进行;室温硬度按照GB/T 16534-2009进行,测试结果如表1:
表1:
综合上述,从表格中可以看出,本发明实施例制得的陶瓷材料相对于不在本发明范围内的制得材料打印效果更好,打印时力学性能更优异。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

1.一种用于DIW技术的生物基磷酸钙3D打印陶瓷浆料,其特征在于,包括以下质量百分比的原料:
磷酸三钙 45%~70%
固化剂 30%~55%
其他助剂 0%~3%。
2.如权利要求1所述的用于DIW技术的生物基磷酸钙3D打印陶瓷浆料,其特征在于,所述磷酸三钙的粒径为100~500nm,纯度为≥98%。
3.如权利要求1所述的用于DIW技术的生物基磷酸钙3D打印陶瓷浆料,其特征在于,按重量份计,所述固化剂由纤维素30-60份、增稠剂10-20份、分散剂1-10份,助剂1-10份的重量份组成。
4.如权利要求3所述的用于DIW技术的生物基磷酸钙3D打印陶瓷浆料,其特征在于,所述纤维素为羟丙基甲基纤维素、羟乙基纤维素、硬脂酸镁、藻酸丙二醇酯、海藻酸丙二醇酯中的至少一种。
5.如权利要求3所述的用于DIW技术的生物基磷酸钙3D打印陶瓷浆料,其特征在于,所述增稠剂为明胶、罗望子多糖胶、酪蛋白酸钠、田菁胶、琼脂、阿拉伯胶中的至少一种。
6.如权利要求3所述的用于DIW技术的生物基磷酸钙3D打印陶瓷浆料,其特征在于,所述分散剂为2-羟基丙烷-1,2,3-三羧酸、2-羟基丁二酸、α-氨基乙酸、1,2,3,4,5-五羟基己酸中的至少一种。
7.如权利要求1所述的用于DIW技术的生物基磷酸钙3D打印陶瓷浆料,其特征在于,所述其他助剂为丙三醇、聚己内脂、聚丁二酸丁二醇脂、聚丙交脂乙交脂共聚物中的至少一种。
8.如权利要求1用于DIW技术的生物基磷酸钙3D打印陶瓷浆料的制备方法,其特征在于,包括以下步骤:
(1)将磷酸三钙粉末放入无水乙醇中进行超声分散处理,处理时间30~60分钟,水浴温度40℃;
(2)将纤维素、增稠剂、分散剂按比例混合,辅以机械搅拌或磁力搅拌,搅拌时间1h;
(3)按配比称取原料;
(4)将过滤干燥后的磷酸三钙、固化剂、其他助剂至于容器中,高速搅拌混合30~120分钟。
CN201811058516.6A 2018-09-11 2018-09-11 用于diw技术的生物基磷酸钙3d打印陶瓷浆料及其制备方法 Pending CN109133908A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811058516.6A CN109133908A (zh) 2018-09-11 2018-09-11 用于diw技术的生物基磷酸钙3d打印陶瓷浆料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811058516.6A CN109133908A (zh) 2018-09-11 2018-09-11 用于diw技术的生物基磷酸钙3d打印陶瓷浆料及其制备方法

Publications (1)

Publication Number Publication Date
CN109133908A true CN109133908A (zh) 2019-01-04

Family

ID=64824559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811058516.6A Pending CN109133908A (zh) 2018-09-11 2018-09-11 用于diw技术的生物基磷酸钙3d打印陶瓷浆料及其制备方法

Country Status (1)

Country Link
CN (1) CN109133908A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650872A (zh) * 2019-02-20 2019-04-19 四川大学 一种基于自由挤出式3d打印技术的磷酸钙多孔生物陶瓷支架及其制备方法
CN109650909A (zh) * 2019-02-20 2019-04-19 四川大学 一种基于光固化3d打印技术的磷酸钙骨诱导生物陶瓷支架及其制备方法
CN110639059A (zh) * 2019-10-10 2020-01-03 宁波慈北医疗器械有限公司 一种人工颅骨修复体3d打印制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105196398A (zh) * 2015-09-16 2015-12-30 华南理工大学 用于气压挤出式三维打印的陶瓷浆料及生物陶瓷支架的制备方法
WO2016035949A1 (ko) * 2014-09-05 2016-03-10 (주)비앤케이 3d 프린터용 항균 필라멘트 제조 방법 및 이에 따라 제조된 3d 프린터용 항균 필라멘트
CN107281554A (zh) * 2017-05-09 2017-10-24 西南交通大学 一种机械活化制备适合3d打印的磷酸钙基复合材料的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035949A1 (ko) * 2014-09-05 2016-03-10 (주)비앤케이 3d 프린터용 항균 필라멘트 제조 방법 및 이에 따라 제조된 3d 프린터용 항균 필라멘트
CN105196398A (zh) * 2015-09-16 2015-12-30 华南理工大学 用于气压挤出式三维打印的陶瓷浆料及生物陶瓷支架的制备方法
CN107281554A (zh) * 2017-05-09 2017-10-24 西南交通大学 一种机械活化制备适合3d打印的磷酸钙基复合材料的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650872A (zh) * 2019-02-20 2019-04-19 四川大学 一种基于自由挤出式3d打印技术的磷酸钙多孔生物陶瓷支架及其制备方法
CN109650909A (zh) * 2019-02-20 2019-04-19 四川大学 一种基于光固化3d打印技术的磷酸钙骨诱导生物陶瓷支架及其制备方法
CN110639059A (zh) * 2019-10-10 2020-01-03 宁波慈北医疗器械有限公司 一种人工颅骨修复体3d打印制作方法

Similar Documents

Publication Publication Date Title
Zeng et al. 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing
Liu et al. Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility
Alksne et al. In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration
CN109133908A (zh) 用于diw技术的生物基磷酸钙3d打印陶瓷浆料及其制备方法
Liu et al. DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry
Gu et al. Effects of incorporation of HA/ZrO2 into glass ionomer cement (GIC)
Oladapo et al. Mechanical performances of hip implant design and fabrication with PEEK composite
Lu et al. Rational design of bioceramic scaffolds with tuning pore geometry by stereolithography: microstructure evaluation and mechanical evolution
Xie et al. Gelcasting of alumina ceramics with improved green strength
Sayyedan et al. Effect of forsterite nanoparticles on mechanical properties of glass ionomer cements
Shuai et al. Effect of nano‐zirconia on the mechanical and biological properties of calcium silicate scaffolds
CN102604146A (zh) 无机生物活性材料与聚合物多孔复合材料的制备方法
Zhang et al. DLP 3D printed silica-doped HAp ceramic scaffolds inspired by the trabecular bone structure
Du et al. Design and characterization of injectable abalone shell/calcium sulfate bone cement scaffold for bone defect repair
CN109053183A (zh) 用于光固化三维打印的生物陶瓷浆料的制备方法
Dixit et al. Additive manufacturing of carbon nanotube reinforced bioactive glass scaffolds for bone tissue engineering
Zhang et al. Effect of different dopants on porous calcium silicate composite bone scaffolds by 3D gel-printing
Li et al. The design of strut/TPMS-based pore geometries in bioceramic scaffolds guiding osteogenesis and angiogenesis in bone regeneration
Shu et al. Novel vaterite-containing tricalcium silicate bone cement by surface functionalization using 3-aminopropyltriethoxysilane: setting behavior, in vitro bioactivity and cytocompatibility
Zou et al. A biocompatible silicon nitride dental implant material prepared by digital light processing technology
Pradeep et al. 3D printing of shrimp derived chitosan with HAp as a bio-composite scaffold
Zhang et al. Enhancing the biological activity of vaterite-containing β-dicalcium silicate cement by silane coupling agent for biomaterials
TWI388348B (zh) 含有聚合物或寡聚物之矽酸鈣系骨水泥及其製法
CN106270516B (zh) 双梯度多孔NiTi/羟基磷灰石复合材料的制备方法
AU2020104357A4 (en) Preparation Method of Bio-based Calcium Phosphate 3D Printing Ceramic Slurry for DIW Technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination