TWI388348B - 含有聚合物或寡聚物之矽酸鈣系骨水泥及其製法 - Google Patents

含有聚合物或寡聚物之矽酸鈣系骨水泥及其製法 Download PDF

Info

Publication number
TWI388348B
TWI388348B TW098132141A TW98132141A TWI388348B TW I388348 B TWI388348 B TW I388348B TW 098132141 A TW098132141 A TW 098132141A TW 98132141 A TW98132141 A TW 98132141A TW I388348 B TWI388348 B TW I388348B
Authority
TW
Taiwan
Prior art keywords
calcium
mixture
powder
group
solution
Prior art date
Application number
TW098132141A
Other languages
English (en)
Other versions
TW201029681A (en
Inventor
Shinn Jyh Ding
Original Assignee
Univ Chung Shan Medical
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chung Shan Medical filed Critical Univ Chung Shan Medical
Publication of TW201029681A publication Critical patent/TW201029681A/zh
Application granted granted Critical
Publication of TWI388348B publication Critical patent/TWI388348B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0021Plasticisers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/0047Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L24/0073Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix
    • A61L24/0089Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix containing inorganic fillers not covered by groups A61L24/0078 or A61L24/0084
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/02Surgical adhesives or cements; Adhesives for colostomy devices containing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rheumatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Materials For Medical Uses (AREA)

Description

含有聚合物或寡聚物之矽酸鈣系骨水泥及其製法
本發明係關於一種骨水泥,特別是含有聚合物與/或寡聚物之矽酸鈣骨水泥。
矽在骨質形成初期為一重要之微量元素,在鈣濃度低時,矽會隨著鈣的濃度增加而增加,而當組成接近氫氧磷灰石時,矽之濃度會降低至可偵測的極限(Carlisle EM,Science 1970;167:279-280.)。可溶性矽會刺激第一型膠原蛋白的合成,以及人類似成骨細胞(human osteoblast-like cells)的分化(Reffitt DM,Ogston N,Jygdaohsingh R. Orthosilicic acid stimulates collagen type I synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 2003;32:127-135.)。矽基物可應用於額竇(frontal sinus)與脊椎之重建、顱顏骨缺損、骨質疏鬆與根管治療之骨質補強、及牙周骨質缺失之修復。在整形外科與牙科手術方面,基於其優異的生物活性,矽酸鈣陶瓷材料已被視為骨缺損修復用的良好生物活性物質,例如:偏矽酸鈣(CaSiO3 )(Siriphannon P,Kameshima Y,Yasumori A,Okada K,Hayashi S.,J Biomed Mater Res 2000;52:30-39;Sarmento C,Luklinska ZB,Brown L,Anseau M,De Aza PN,De Aza S.,Biomed Mater Res 2004;69A:351-358.)、生物活性玻璃(Saravanapavan P,Jones JR,Pryce RS,Hench LL.,J Biomed Mater Res 2003;66A:110-119.)與三氧礦聚合物(mineral trioxide aggregate)(Ribeiro DA,Duarte MAH,Matsumoto MA,Marques MEA,Salvadori DMF.,J Endod 2005;31:605-607.)。
已有人研究將溶膠凝膠法(Sol-gel)所製之矽酸鈣材料以塊材(bulk)或支架(scaffold)形式使用。Izquierdo-Barba等人利用溶膠凝膠法合成一種含80%氧化矽及20%氧化鈣之生物活性玻璃(zquierdo-Barba I,Salinas AJ,Vallet-M.,J Biomed Mater Res 1999;47:243-250.),此研究團隊亦發現當浸泡在模擬體液(simulated body fluid)時,二氧化矽含量低(50%-70%莫耳)的氧化鈣-氧化矽玻璃形成磷灰石的速率較高二氧化矽含量(80%-90%莫耳)的玻璃快(A,Izquierdo-Barba I,Vallet-M.,Chem Mater 2000;12:3080-3088.)。
醫師利用糊狀的自身硬化骨水泥注入骨組織空腔或缺損處,以形成礦物基質,因此硬化時間是極重要的臨床因子之一。硬化時間長會造成臨床上使用問題,因為在此時間內骨水泥無法維持其形狀,以及支持應力(Ishikawa K,Miyamoto Y,Takechi M,Toh T,Kon M,Nagayama M,AsaoKa K.,J Biomed Mater Res 1997;36:393-399.)。顆粒大小、燒結溫度、液體成分、粉體組成,粉體與液體的比例,皆在糊狀骨水泥的硬化時間上,扮演了重要的角色。另一方面,材料鍵結骨組織的必要條件為當材料在人體內,其表面可形成一似骨質般的磷灰石層,此為其生物活性的指標。當暴露於生理溶液時,骨水泥需促使似骨質般的HA層(“bone-like”HA layer)在其表面析出,此顯示骨水泥可與骨組織整合的能力。
關於溶膠凝膠法製成之矽酸鈣水泥,Chang與其團隊利用溶膠凝膠法製備矽酸二鈣與矽酸三鈣粉體,將此兩種粉體與水混合以產生矽酸鈣水泥,此矽酸鈣水泥之初期硬化時間(initial setting time)為一小時以上,在模擬體液上需花幾天時間才能析出磷灰石(Zhao W,Wang J,Zhai W,Wang Z,Chang J.,Biomaterials 2005;26:6113-6121;Gou Z,Chang J,Zhai W,Wang J. Study on the self-setting property and the in vitro bioactivity of β-Ca2 SiO4 . J Biomed Mater Res 2005;73B:244-251.)。最近Ding S. J.等人提出另一矽酸鈣骨水泥製備方法,組成係由溶膠凝膠法製成的矽酸鈣粉體做為固相與磷酸銨溶液做為液相。由此法製得的骨水泥不只硬化時間短,只需九分鐘,且有高生物活性,甚至可增加細胞增生與分化(Ding SJ,Shie MY,Wang CY.,J Mater Chem 2009;19:1183-1190)。然而,陶瓷基的骨水泥因較具脆性及流動性,難以送到複雜的骨缺陷部位及形成較緻密結構。聚合物如幾丁聚醣(chitosan)、海藻酸鹽(alginate)與明膠(gelatin),因其本身所具備的塑性,應該具有改善矽酸鈣骨水泥臨床操作性之潛力。
骨骼與牙齒為複合物質,其主要由有機基質(如:膠原蛋白)與礦物相(mineral phase)組成,一個成功的骨質替代物質設計需要審視骨骼結構。因此,使用內含生物聚合物與矽酸鈣之混合複合物,其具有天然骨骼的組合形態與特性,可能為一解決陶瓷易脆問題,且不會降低其物理特性的方法,更可具有好的生物相容性、高生物活性與好的鍵結特性。
幾丁聚醣為一豐富及自然生成的多醣類,可由天然幾丁質去乙醯後獲得(Francis Suh JK,Matthew HWT.,Biomaterials 2000;21:2589-2598.)。因其具有眾多吸引人的特性,如:低成本、不具抗原性、化學惰性、低毒性、高親水性與好的形成膜之特性(EB,M. Chitosan microspheres and sponges:preparation and characterization. J Appl Polym Sci 2000;76:1637-1643;VandeVord PJ,Matthew HWT,DeSilva SP,Mayton L,Wu B,Wooley PH.,J Biomed Mater Res 2002;59:585-590.),成為微球體、薄膜與支架等生醫應用的選擇材料。Liu與其同事研發出一可注射的骨質替代物質,是由幾丁聚醣、檸檬酸、葡萄糖溶液做為液相及磷酸三鈣粉體做為固相(Liu H,Li H,Cheng W,Yang Y,Zhu M,Zhou C.,Acta Biomater 2006;2:557-565.)。此物質為可塑的物質,因其混合後具黏稠性。Yokoyama等人研發出一內含幾丁聚醣之磷酸鈣水泥,其可塑造成任何所欲形狀,因為其具有像口香糖般的黏稠性(Yokoyama A,Yamamoto S,Kawasaki T,Kohgo T,Nakasu M.,Biomaterials 2002;23:1091-1101.)。Xu與Simon將幾丁聚醣與水溶性己六醇混合,研發出大孔洞的強磷酸鈣支架,並測試此新材料與成骨細胞的生物相容性,以及酵素分析(Hockin H.K. Xu,Carl G. Simon Jr.,Biomaterials 2005;26:1337-1348.)。
明膠(gelatin)為一天然聚合物,可由膠原蛋白的物理與化學之裂解而獲得,因其生物相容、生物裂解與無毒之特性,明膠已被廣泛的利用於組織工程領域中之支架材料或藥物載體(Olsen D,Yang C,Bodo M,Chang R,Leigh S,Baez J,Carmichael D,M,ER,Jarvinen M,Polarek J.,Adv Drug Delivery Rev 2003;55:1547-1567;Tabata Y,Hong L,Miyamoto S,Miyao M,Hashimoto N,Ikada Y.,J Biomater Sci Polym Edn 2000;11:891-901.)。Fujishiro與其同僚發現加入明膠至α-磷酸三鈣水泥(α-tricalcium phosphate cement)後,其可形成直徑20~100微米的多孔,且其孔徑隨明膠含量之增加而增加(Fujishiro Y,Takahashi K,Sato T.,J Biomed Mater Res 2001;54:525-530.)。當明膠含量增加至總重的5%時,α-磷酸三鈣水泥之壓縮強度在一週後從9.0增加至14.1百萬帕斯卡(MPa),而超過5%後,壓縮強度下降。幾丁聚醣纖維與明膠可強化磷酸鈣骨水泥之機械性質(Pan Z,Jiang P,Fan Q,Ma B,Cai H.,J Biomed Mater Res 2007;82B:246-252.),最佳的添加比例是5%的明膠與30%幾丁聚醣纖維。
本發明係提供一種製造含有聚合物的矽酸鈣骨水泥之方法,包含以下步驟:(1)混合鈣鹽與矽化合物;(2)以溶膠凝膠法處理步驟(1)之混合物;(3)加熱混合物(2);(4)加入增加塑性之物質至(3)之混合物中;(5)研磨(4)之混合物使其成粉體;及(6)加(5)之粉體至水或磷酸溶液中,該溶液含或不含增加塑性之物質;其中增加塑性之物質係選自含有-NH2 、-OH、-CO或-CH3 官能基之聚合物與寡聚物之材料。
在較佳實施例中,該聚合物與寡聚物之材料係選自明膠(gelatin)、膠原蛋白(collagen)、幾丁聚醣(chitosan)、幾丁質(chitin)、織維素(cellulose)、海藻酸鹽(alginate)、玻尿酸(hyaluronic acid)、聚乳酸(poly(lactic acid))、聚乙醇酸(poly(glycolic acid))與聚乳酸-聚乙醇酸(poly(lactic-co-glycolic acid))。此增加塑性之物質為固相或液相,其重量百分比為1~50%,較佳為2-30%。
在較佳實施例中,鈣鹽係硝酸鈣;矽化合物係矽烷。本發明中之矽烷具下列化學式:
其中R1 、R2 、R3 或R4 係C1-6 烷基。
在最佳實施例中,本發明之矽烷具有下列化學式:
其中R1 、R2 、R3 或R4 係乙基(C2 H5 )。
在較佳實施例中,本發明之混合物鈣矽莫耳比介於10到0.1之間。在最佳實施例中,該混合物矽鈣莫耳比介於4到0.25之間。
本發明方法中之溶膠凝膠法處理包括以下步驟:(1)以稀釋溶液將混合物混合1~12小時,其中稀釋溶液係選自硝酸與乙醇;與(2)將混合物置於20~100℃之間1~7天;及(3)將混合物置於-40~150°C乾燥。
本發明方法中之加熱處理包含以下步驟:(1)該混合物以每分鐘升溫1~40℃之速率加熱至700~1300℃;(2)將該混合物置於700~1300℃之恆溫;及(3)以空冷、水冷或快速冷卻之方法將該混合物冷卻至室溫,以獲得矽酸鈣粉體。
本發明方法中,將增加塑性之物質加入混合物之處理,包含以下步驟:(1)加入增加塑性之物質至矽酸鈣粉體中;及(2)利用調節混合器混合步驟(1)之粉體5~30分鐘。
本發明方法中,研磨處理包含以下步驟:(1)將含增加塑性物質之矽酸鈣粉體與醇混合;(2)以研磨機研磨該粉體0.5~3天;與(3)將該粉體置於-40~60℃乾燥。
在較佳實施例中,粉體之顆粒大小介於0.01到50微米。
在較佳實施例中,粉體加入水中10至60秒,且水與粉體之比例係0.3~2毫升/1克。在最佳實施例中,水與粉體之比例係0.4~0.8毫升/1克。
在較佳實施例中,粉體加入磷酸溶液中10至60秒,且磷酸溶液與粉體之比例係0.3~2毫升/1克。在最佳實施例中,磷酸溶液與粉體之比例係0.4~0.8毫升/1克。
在較佳實施例中,磷酸溶液之陰離子濃度係介於0.12~5莫耳濃度,其係選自磷酸根(PO4 3- )、磷酸一氫根(HPO4 2- )或磷酸二氫根(H2 PO4 - );磷酸溶液之陽離子係銨離子或1A族之金屬離子。
在另一較佳實施例中,磷酸溶液之陽離子係銨、鈉或鉀離子。
本發明另提供一種含有聚合物之矽酸鈣骨水泥的混合物,其包含:(1)鈣鹽;(2)矽化合物;(3)增加塑性之物質;與(4)醫藥可接受之溶液,該溶液內含或不含增加塑性之物質;其中增加塑性之物質係選自含有-NH2 、-OH、-CO或-CH3 官能基之聚合物與寡聚物之材料。
其中,醫藥上可接受之溶液是水、氯化鈉溶液、氯化鈣溶液或磷酸溶液。
本發明之混合物可應用於整形外科手術、脊椎融合手術或齒科之應用,也可用於替代骨或牙齒材料。此外該混合物加入輔藥後可作為口服用藥物載體。
以下實施例為非限制性的,僅作為本發明各個方面及特徵之典型實例。
實施例一 矽酸鈣粉體之相組成
四乙基矽酸鹽(Si(OC2 H5 )4 ,TEOS)與硝酸鈣水溶液(Ca(NO3 )2 ‧4H2 O)分別被利用為二氧化矽與氧化鈣之前驅物,以及以硝酸做為催化劑;乙醇為溶劑。二氧化矽/氧化鈣之莫耳比例介於7/3~3/7之間,如表一所示。許多矽酸鈣粉體係以溶膠凝膠法製成,本發明使用一般溶膠凝膠法之步驟,包含水解與熟化;將2當量濃度(N)之硝酸與絕對酒精依序加入四乙基矽酸鹽(TEOS)中攪拌1個小時,使之水解,再加入定量之硝酸鈣(Ca(NO3 )2 ‧4H2 O)至酒精溶液中,並攪拌混合溶液1個小時;其中硝酸溶液(HNO3 +H2 O):四乙基矽酸鹽(TEOS):酒精(ethanol)之莫耳比為10:1:10。將溶膠溶液密封,並置於60℃下1天以熟化(aged)。將上述混合溶液置於120℃的烘箱中,待溶劑蒸發後,乾燥的膠體於空氣中加熱至700、800、900或1000℃並維持恆溫2小時,接著冷卻至室溫,以製造出不同之矽酸鈣粉體;利用Shimadzu XD-D1型X光繞射儀(Shimadzu XD-D1 X-ray diffractometer,XRD)進行相位分析,以Cukα激發之X光經鎳板濾波(Ni-Filtered),工作電流與電壓為30千伏特(kV)與30毫安培(mA),掃描速度為1分鐘1度,以不同燒結溫度下製備之矽酸鈣粉體,其不同之X光繞射(XRD)圖譜如圖一所示。繞射角(2θ)的最大繞射係介於29~35°,因不同矽酸鈣之不同結晶相,例如:矽灰石(wollastonite)與二鈣矽酸鹽(dicalcium silicate);粉體之結晶度(crystallinity)隨著燒結溫度的升高而增加。
表1.比較五種矽-鈣水泥之不同莫耳比與不同燒結溫度製備之粉體,其硬化時間(setting time)與徑向抗張強度(diametral tensile strength,DTS)。
實施例二 燒結溫度對水泥之硬化時間與徑向抗張強度之影響
四乙基矽酸鹽(Si(OC2 H5 )4 ,TEOS)與硝酸鈣水溶液(Ca(NO3 )2 ‧4H2 O)分別被利用為二氧化矽與氧化鈣之前驅物,以及以硝酸做為催化劑;乙醇為溶劑。粉體S70C30、S60C40、S50C50、S40C60與S30C70係以溶膠凝膠法製成,以及在800、900或1000℃下燒結2小時,粉體燒結後置入含酒精之瑪瑙研磨罐,以Retsch離心式球磨機S 100球磨12小時。乾燥後,將0.2克之粉體與0.1毫升之水或0.5莫耳濃度之磷酸氫二鈉(Na2 HPO4 )混合,接著利用直徑1毫米之400-g針頭(Gillmore needle)測試水泥之硬化時間,此測量依據國際標準ISO 9917-1(ISO 9917-1,Dentistry-water-based cements part1:powder/liquid acid-base cements. International Standard Organization,2003)進行,當針無法在三個不同區域產生1毫米深之壓痕時,此即為水泥之硬化時間;粉體與液體混合後,置於圓柱型不鏽鋼模具中,以形成6毫米(直徑)x3毫米(高度)的樣品,並置於相對濕度100%及溫度37℃之恒溫恒溼箱中一天。從每個實驗組中取八個樣品做測試,徑向抗張測試係利用EZ-測試機(EZ-Test machine,Shimadzu,Kyoto,Japan)測試,加載速率為每分鐘0.5毫米,水泥樣品之徑向抗張強度值(diametral tensile strength,DTS)以方程式DTS=2P/πbw求得,其中P為最大負荷(牛頓,Newton),b為直徑(毫米),w為樣品厚度(毫米)。每組至少測試20個樣品,表一為五個矽酸鈣樣品之硬化時間與徑向抗張強度之測試結果。當粉體與水混合時,硬化時間明顯取決於粉體之成份,其硬化時間介於11~43分鐘;隨著鈣含量的增加,硬化時間隨之縮短;而當骨水泥樣品之鈣/矽(SiO2 /CaO)莫耳比介於6:4~4:6時,其徑向抗張強度較另兩種鈣/矽(SiO2 /CaO)莫耳比之水泥高;用以製備固相粉體之燒結溫度並未影響水泥之硬化時間與徑向抗張強度,而做為液相之0.5莫耳濃度之磷酸氫二鈉測試結果與水則有相似之趨勢。
實施例三 水泥樣品與水混合後之相組成
四乙基矽酸鹽(Si(OC2 H5 )4 ,TEOS)與硝酸鈣水溶液(Ca(NO3 )2 ‧4H2 O)分別被利用為二氧化矽與氧化鈣之前驅物,以及以硝酸做為催化劑;乙醇為溶劑。粉體S70C30、S60C40、S50C50、S40C60與S30C70係以溶膠凝膠法製成,並在800℃下燒結2小時,粉體燒結後置入含酒精之瑪瑙研磨罐,以Retsch離心式球磨機S 100(Retsch centrifugal ball mill S 100)球磨12小時。乾燥後,將0.4克之粉體與0.2毫升之水混合,並置於相對濕度100%及溫度37℃之恒溫恒溼箱中一天。利用X光繞射儀(Shimadzu XD-D1 X-ray diffractometer,XRD)對硬化水泥樣品進行相位分析;水合作用之產物為矽酸鈣水合物(CaO-SiO2 -H2 O,C-S-H)(出現在2θ=29.3°位置),以及未完全反應之無機組成相,如圖二所示。
實施例四 含明膠(gelatin)與幾丁寡醣(chitosan oligosaccharide)之水泥樣品之相組成
以溶膠凝膠法製成之粉體S70C30、S60C40、S50C50、S40C60與S30C70在800℃下燒結2小時,將重量百分比5%之明膠加入燒結粉體中,接著將此內含與不含明膠之混合物置入含酒精之瑪瑙研磨罐,並以Retsch離心式球磨機S 100(Retsch centrifugal ball mill S 100)球磨12小時。乾燥後,將0.2克之粉體與0.1毫升之水或重量百分比5%之幾丁寡醣(溶液混合,以製備該水泥;將幾丁寡醣(Chitosan oligosaccharide lactate)粉體溶於蒸餾水中,形成質量百分比為幾丁寡醣/幾丁寡醣+水=5%之幾丁寡醣溶液,將其混合後,置於相對濕度100%及溫度37℃之恒溫恒溼箱中一天。水合過程之產物為矽化鈣水合物(CaO-SiO2 -H2 O,C-S-H)膠體,如圖三所示;從結果可知,水泥樣品中之明膠使C-S-H之波峰強度降低。
實施例五 明膠(gelatin)與幾丁寡醣(chitosan oligosaccharide)含量對水泥之硬化時間與徑向抗張強度之影響
以溶膠凝膠法製成之粉體S70C30、S60C40、S50C50、S40C60與S30C70在800℃下燒結2小時,將重量百分比5%與10%之明膠(gelatin,GLT)加入燒結粉體中,接著將此內含與不含明膠之混合物置入含酒精之瑪瑙研磨罐,並以Retsch離心式球磨機S 100(Retsch centrifugal ball mill S 100)球磨12小時。乾燥後,將0.2克之粉體與0.1毫升之水或幾丁寡醣(chitosan,CTS)溶液混合,以製備該水泥;將幾丁寡醣(Chitosan oligosaccharide lactate)粉體溶於蒸餾水中,形成質量百分比為幾丁寡醣/幾丁寡醣+水=5%或10%之幾丁寡醣溶液,將其混合後,接著利用直徑1毫米之400-g針頭(Gillmore needle)測試水泥之硬化時間,此測量依據國際標準ISO 9917-1(ISO 9917-1,Dentistry-water-based cements part1:powder/liquid acid-base cements. International Standard Organization,2003)進行,當針無法在三個不同區域產生1毫米深之壓痕時,此即為水泥之硬化時間,從每組取八個樣品做測試。另外,粉體與液體混合後,置於圓柱型不鏽鋼模具中,以形成6毫米(直徑)x3毫米(高度)的樣品,並置於相對濕度100%及溫度37℃之恒溫恒溼箱中一天,水泥樣品之徑向抗張測試係利用EZ-測試機(EZ-Test machine,Shimadzu,Kyoto,Japan)測試,加載速率為每分鐘0.5毫米,每組至少測試20個樣品。增加明膠或幾丁寡醣可降低水泥之徑向抗張強度,以及它們亦影響水泥之硬化時間,如圖五所示。
實施例六 水泥之注射性(injectability)
以溶膠凝膠法製成之粉體S50C50在800℃下燒結2小時,再將重量百分比5%之明膠(gelatin,GLT)加入燒結粉體中,接著將此內含與不含明膠之混合物置入含酒精之瑪瑙研磨罐,並以Retsch離心式球磨機S 100(Retsch centrifugal ball mill S 100)球磨12小時。乾燥後,將粉體與水或5%之幾丁寡醣(chitosan oligosaccharide,CTS)溶液混合,以製備該水泥,其中溶液與粉體之比例為0.6毫升/克;注射性(injectability)之測量係利用一個拋棄式5-毫升注射器與一個直徑2.0毫米之針頭做測試,將膠體擠壓通過針頭,注射性即表示此膠體可用注射器以手擠壓出之量(以重量百分比表示),此測試在粉體與溶液混合兩分鐘後進行,圖六為含或不含明膠與幾丁寡醣的S50C50水泥之注射力,結果顯示明膠與幾丁寡醣皆可增加水泥樣品之注射性。
實施例七 不同水泥樣品在浸泡模擬體液(simulated body fluid,SBF)後之徑向抗張強度與形態
以溶膠凝膠法製成之粉體S60C40、S50C50、S40C60與S30C70在800℃下燒結2小時,將重量百分比5%之明膠(gelatin,GLT)加入燒結粉體中,接著將此內含與不含明膠之混合物置入含酒精之瑪瑙研磨罐,並以Retsch離心式球磨機S 100(Retsch centrifugal ball mill S 100)球磨12小時。再將此混合物與水或5%之幾丁寡醣(chitosan oligosaccharide,CTS)溶液混合後,硬化樣品置於相對濕度100%及溫度37℃之恒溫恒溼箱中一天;接著,將樣品浸泡於37℃之生理溶液(模擬體液)中一段時間後,測量其生物活性。模擬體液含有與人體血漿相似之離子組成,其由7.9949克氯化鈉(NaCl)、0.3528克碳酸氫鈉(NaHCO3 )、0.2235克氯化鉀(KCl)、0.147克磷酸氫二鉀(K2 HPO4 )、0.305克水合氯化鎂(MgCl2 ‧6H2 O)、0.2775克氯化鈣(CaCl2 )與0.071克硫酸鈉(Na2 SO4 )溶於1000毫升之蒸餾水中,並以鹽酸(HCl)與三羥甲基氨基甲烷(CH2 OH)3 CNH2 )調整其pH值為7.4。以不同時間浸泡樣品於模擬體液中,再將樣品從玻璃瓶中取出,並利用EZ-測試機進行抗張測試,每組至少12個樣品接受測試,浸泡後之水泥樣品其徑向抗張強度較未浸泡之樣品高(如圖七);浸泡後之樣品從玻璃瓶中移出,以場發射掃描式電子顯微鏡(SEM)觀察其型態,圖八與圖九顯示水泥樣品會促進磷灰石球粒之形成,從此顯示其具生物活性。
實施例八 細胞之存活率與型態
將水泥樣品與人類骨髓間質幹細胞(bone marrow-derived mesenchymal stem cells,hMSCs)一起培養以測試其生物相容性,其中該細胞為從Osiris(Worthington Biochemical,Lakewood,NJ)取得之繼代培養第四代,以溶膠凝膠法製成之粉體S50C50在800℃下燒結2小時,再將重量百分比5%之明膠(gelatin,GLT)加入燒結粉體中,並磨研12小時。乾燥後,將粉體與水或5%之幾丁寡醣(chitosan oligosaccharide,CTS)溶液混合,以製備該水泥,其中溶液與粉體之比例為0.5毫升/克,最後將樣品置於相對濕度100%及溫度37℃之恒溫恒溼箱中一天。細胞培養於由Dulbecco’s modified Eagle’s medium (DMEM)組成之骨原性誘導培養液(osteogenic induction medium)中,其內含15%胎牛血清、584毫克/升麩胺酸(glutamine)、0.1毫莫耳濃度丙酮酸鈉(sodium pyruvate)、100單位/毫升青黴素(penicillin)、100微克/毫升之鏈黴素(streptomycin)、50毫克/升維生素C(ascorbic acid)、0.1毫莫耳濃度非必需氨基酸(MEM)、100毫微莫耳濃度甲基脫氫皮質固醇(dexamethasone)與10毫莫耳濃度β-甘油磷酸鈉鹽水合物(β-glycerophosphate disodium salt hydrate),細胞培養於37℃及含5%二氧化碳之環境中,其培養液每三天更新一次;細胞增生試劑WST-1(Cell Proliferation Reagent WST-1,Roche Diagnostics,Mannheim,Germany)利用活細胞內之粒線體去氫酶(dehydrogenase)切斷四唑鹽(etrazolium salt)(WST-1),以測試細胞的增生;在最終培養結束前三小時,加入100微升WST-1溶液(Sigma)與900微升培養液至每個孔洞中,從每孔洞取200微升之溶液至另一96孔組織培養盤中,再用微量盤分析儀(Bio-Rad Benchmark PlusTM Microplate Spectrophotometer)讀取440nm數值,並用650nm當作參照波長,樣品分析採用三重複與四次獨立之實驗,將培養於組織培養盤之hMSCs當作控制組;圖十之WST-1分析顯示存活細胞之數量隨著培養時間增長而增加,可見其良好之生物相容性,含有chitosan之水泥樣品較不含chitosan之水泥樣品有較佳之生物相容性;水泥表面之細胞形態利用場發射掃描式電子顯微鏡(SEM)觀察,先以磷酸緩衝溶液(phosphate buffer solution)沖洗樣品3次,並以2.5%戊二醛(glutaraldehyde)在4℃作用2小時將細胞固定,接著水泥以具濃度梯度之乙醇脫水,且以各個濃度之乙醇處理20分鐘,最後乾燥至隔天,乾燥之骨水泥表面鍍金,其表面之細胞形態利用場發射掃描式電子顯微鏡(JEOL JSM-6700F SEM)觀察,從SEM之圖可知細胞已穩固地固定於骨水泥之表面(圖十一)。
圖一係不同粉體在不同溫度燒結後之X光繞射儀(XRD)圖譜,(A)S60C4粉體、(B)S50C50粉體、(C)S40C60粉體與(D)S30C70粉體之X光繞射儀(XRD)圖譜。
圖二係五種水泥之X光繞射儀(XRD)圖譜,其粉體以燒結溫度800℃製備,以及液相為水。
圖三係五種含明膠或幾丁寡醣的矽酸鈣水泥之X光繞射儀(XRD)圖譜,(A)含幾丁寡醣之水泥與(B)含明膠之水泥。
圖四係五種含有不同含量明膠之矽酸鈣水泥的徑向抗張強度值,其中水泥樣品以水與5%幾丁寡醣溶液作為液相製備而成。
圖五係五種含或不含5%明膠之矽酸鈣水泥的硬化時間值,其中水泥樣品以水與5%幾丁寡醣溶液作為液相製備而成。
圖六係含或不含5%明膠之S50C50水泥的注射性(injectability),其中水泥樣品以水與5%幾丁寡醣溶液作為液相製備而成。
圖七係不同水泥樣品在浸泡模擬體液前與後之徑向抗張強度值,(A)S60C40粉體、(B)S50C50粉體、(C)S40C60粉體與(D)S30C70粉體含或不含5%明膠之水泥樣品。
圖八係不同水泥樣品浸泡於模擬體液1天後之表面之場發射掃描式電子顯微鏡(SEM)顯微圖,(A)S60C40粉體、(B)S50C50粉體、(C)S40C60粉體與(D)S30C70粉體,其中水泥樣品以水作為液相製備而成。
圖九係不同水泥樣品浸泡於模擬體液1小時後之表面之場發射掃描式電子顯微鏡(SEM)顯微圖,(A)硬化之S50C50水泥樣品、(B)內含明膠之硬化的S50C5水泥樣品、(C)內含幾丁寡醣之硬化的S50C50水泥樣品與(D)內含明膠與幾丁寡醣之硬化的S50C50水泥樣品,其中水泥樣品以水及幾丁寡醣作為液相製備而成;其中箭頭標示處為磷灰石沉澱。
圖十係人類間質幹細胞(human mesenchymal stem cells)與S50C50水泥一同培養,經不同培養時間後,其細胞貼附與增生的WST-1分析,其中S50C50水泥內含與不含5%明膠,且以水與5%幾丁寡醣溶液作為液相製備而成。
圖十一係與S50C50水泥一同培養一天的人類間質幹細胞(human mesenchymal stem cells)之場發射掃描式電子顯微鏡(SEM)顯微圖,(A)硬化之S50C50水泥樣品、(B)內含明膠之硬化的S50C5水泥樣品、(C)內含幾丁寡醣之硬化的S50C50水泥樣品與(D)內含明膠與幾丁寡醣之硬化的S50C50水泥樣品,其中水泥以水與5%幾丁寡醣溶液作為液相製備而成。

Claims (10)

  1. 一種製造含有聚合物的矽酸鈣骨水泥之方法,包含:(a)混合鈣鹽與矽化合物,其中該鈣鹽係選自氧化鈣、氫氧化鈣、醋酸鈣、碳酸鈣與矽化合物所構成的群組,其中該矽化合物係選自二氧化矽及四醋酸矽所構成的群組;(b)以溶膠凝膠法處理步驟(a)之混合物;(c)加熱步驟(b)之混合物;(d)以總重量百分比為2-30%的範圍加入明膠至步驟(c)之混合物中來增加塑性;(e)研磨步驟(d)之混合物使其成粉體;及(f)加粉體至水或磷酸溶液中。
  2. 如申請專利範圍第1項之方法,其中該鈣矽莫耳比係介於10~0.1,較佳的鈣矽莫耳比係介於4至0.25之間。
  3. 如申請專利範圍第1項之方法,其中該溶膠凝膠法處理包括以下步驟:(a)以稀釋溶劑將混合物混合1至12小時,其中稀釋溶液係選自由硝酸與乙醇組成之群組;(b)將混合物置於20至100℃之間1至7天;及(c)將混合物置於-40至150℃乾燥。
  4. 如申請專利範圍第1項之方法,其中該加熱處理包含以下步驟:(a)該混合物以每分鐘升溫1至40℃之速率加熱至700至1300℃;(b)將該混合物置於700至1300℃之恆溫;及(c)以氣冷、水冷或快速冷卻之方法將該混合物冷卻至室溫,以獲得矽酸鈣粉體。
  5. 如申請專利範圍第1項之方法,其中該研磨混合物之處理包含以下步驟:(a)將含增加塑性物質之矽酸鈣粉體與醇混合;(b)以研磨機研磨該粉體0.5至3天;及 (c)將該粉體置於-40至60℃乾燥。
  6. 如申請專利範圍第1項之方法,其中水或磷酸溶液與該粉體之比例係0.3至2毫升/1克及較佳為0.4至0.8毫升/1克。
  7. 如申請專利範圍第1項之方法,其中該磷酸溶液包含陰離子其係選自磷酸根(PO4 3- )、磷酸一氫根(HPO4 2- )或磷酸二氫根(H2 PO4 - )。
  8. 如申請專利範圍第1項之方法,其中該磷酸溶液包含陽離子其係選自銨離子或1A族之金屬離子,其中該陰離子具有濃度介於0.12至5莫耳濃度。
  9. 一種含有聚合物之矽酸鈣骨水泥混合物,其包含:(a)鈣鹽,其係選自氧化鈣、氫氧化鈣、醋酸鈣、碳酸鈣與矽化合物所構成的群組;(b)矽化合物,其係選自二氧化矽及四醋酸矽所構成的群組;(c)明膠,其總重量百分比為2-30%;及(d)醫藥可接受之溶液。
  10. 如申請專利範圍第9項之混合物,其中該醫藥可接受之溶液係水、氯化鈉溶液、氯化鈣溶液或磷酸鹽溶液。
TW098132141A 2009-02-02 2009-09-23 含有聚合物或寡聚物之矽酸鈣系骨水泥及其製法 TWI388348B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/364,278 US20100196514A1 (en) 2009-02-02 2009-02-02 Calcium silicate-based composite cement and methods for the preparation

Publications (2)

Publication Number Publication Date
TW201029681A TW201029681A (en) 2010-08-16
TWI388348B true TWI388348B (zh) 2013-03-11

Family

ID=42397931

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098132141A TWI388348B (zh) 2009-02-02 2009-09-23 含有聚合物或寡聚物之矽酸鈣系骨水泥及其製法

Country Status (2)

Country Link
US (1) US20100196514A1 (zh)
TW (1) TWI388348B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013116457A1 (en) * 2012-01-31 2013-08-08 The University Of Toledo Injectable, biodegradable bone cements and methods of making and using same
CN102813962B (zh) * 2012-07-12 2014-08-13 同济大学 一种可注射且可降解骨水泥及其制备方法和应用
US20140079789A1 (en) * 2012-09-18 2014-03-20 Novabone Products, Llc Bioglass with Glycosaminoglycans
CN103028143A (zh) * 2013-01-03 2013-04-10 桂林理工大学 具有磁热疗功能的骨修复材料的制备方法
CN112679123B (zh) * 2021-02-24 2022-07-26 湖南安乡南方水泥有限公司 一种生物无机骨水泥混合研磨装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930335A1 (de) * 1999-07-02 2001-01-18 Henkel Kgaa Kompositmaterialien aus Calciumverbindungen und Proteinkomponenten
ATE539759T1 (de) * 2006-12-05 2012-01-15 Unilever Nv Mundpflegeprodukt
US20090198345A1 (en) * 2008-02-04 2009-08-06 Chung Shan Medical University Calcium silicate-based composite cement and manufacturing method thereof

Also Published As

Publication number Publication date
US20100196514A1 (en) 2010-08-05
TW201029681A (en) 2010-08-16

Similar Documents

Publication Publication Date Title
Gomes et al. A brief review on hydroxyapatite production and use in biomedicine
Singh et al. Customized hydroxyapatites for bone-tissue engineering and drug delivery applications: A review
Wang et al. In vitro study on the degradation of lithium-doped hydroxyapatite for bone tissue engineering scaffold
Amudha et al. Enhanced mechanical and biocompatible properties of strontium ions doped mesoporous bioactive glass
Guo et al. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering
Dorozhkin Self-setting calcium orthophosphate formulations
Chen et al. Properties of anti-washout-type calcium silicate bone cements containing gelatin
Liu et al. Setting behavior, mechanical property and biocompatibility of anti-washout wollastonite/calcium phosphate composite cement
Oh et al. Osteoclastic cell behaviors affected by the α-tricalcium phosphate based bone cements
Li et al. Fabrication and properties of Ca-P bioceramic spherical granules with interconnected porous structure
TWI388348B (zh) 含有聚合物或寡聚物之矽酸鈣系骨水泥及其製法
Lin et al. Anti-washout carboxymethyl chitosan modified tricalcium silicate bone cement: preparation, mechanical properties and in vitro bioactivity
CN111840652B (zh) 骨修复材料及其制备方法
Tang et al. Degradation behaviour of non-sintered graphene/barium titanate/magnesium phosphate cement bio-piezoelectric composites
US20110232533A1 (en) Method for producing calcium silicate-based bone cement
CN1706504A (zh) 生物活性硅酸三钙自固化材料、制备方法及用途
CN109331223B (zh) 一种载药生物活性玻璃复合磷酸钙骨水泥及其应用
EP2236477B1 (en) Calcium silicate-based composite cement and methods for the preparation
CN104302300B (zh) 抗菌含钙材料
WO2012102601A1 (en) Composition containing injectable self-hardened apatite cement
WO2023065474A1 (zh) 基于磷酸钙的有机-无机复合生物活性材料及其制备方法
Stojkovska et al. Novel composite scaffolds based on alginate and Mg‐doped calcium phosphate fillers: Enhanced hydroxyapatite formation under biomimetic conditions
Wu et al. Improvement of bioactivity, degradability, and cytocompatibility of biocement by addition of mesoporous magnesium silicate into sodium-magnesium phosphate cement
ES2373137B2 (es) Cemento de fosfato cálcico-silicato cálcico para aplicaciones biomédicas.
Yang et al. An injectable bioactive poly (γ‐glutamic acid) modified magnesium phosphate bone cement for bone regeneration

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees