CN109126882A - 一种聚3-己基噻吩/生物质碳/SnO2-x纳米复合光催化材料的制备方法 - Google Patents

一种聚3-己基噻吩/生物质碳/SnO2-x纳米复合光催化材料的制备方法 Download PDF

Info

Publication number
CN109126882A
CN109126882A CN201811093629.XA CN201811093629A CN109126882A CN 109126882 A CN109126882 A CN 109126882A CN 201811093629 A CN201811093629 A CN 201811093629A CN 109126882 A CN109126882 A CN 109126882A
Authority
CN
China
Prior art keywords
poly
sno
hexyl thiophene
biomass carbon
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201811093629.XA
Other languages
English (en)
Inventor
杨柳青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pingdingshan University
Original Assignee
Pingdingshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pingdingshan University filed Critical Pingdingshan University
Priority to CN201811093629.XA priority Critical patent/CN109126882A/zh
Publication of CN109126882A publication Critical patent/CN109126882A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种聚3‑己基噻吩/生物质碳/SnO2‑x纳米复合光催化材料的制备方法,本发明是SnO2‑x和生物质碳半导体异质结通过化学键络合的形式负载分散于聚3‑己基噻吩(P3HT)而得到的纳米复合材料;利用SnO2‑x的可见光光催化氧化还原特性、生物质碳的优异导电性、聚3‑己基噻吩(P3HT)的导电性以及三个组分之间具有化学键合的异质结结构,来充分抑制其光催化反应中的光生电子‑空穴复合,从而有利于提高其光催化氧化还原降解污染物和光催化分解水产氢的性能。同时,聚3‑己基噻吩(P3HT)易塑型的特点能有效避免粉体材料的回收困难问题,因而,本发明制得的聚3‑己基噻吩(P3HT)/生物质碳/SnO2‑x纳米复合材料是一种便于回收的新型环保光催化材料。

Description

一种聚3-己基噻吩/生物质碳/SnO2-x纳米复合光催化材料的 制备方法
技术领域
本发明涉及一种纳米复合光催化材料的制备方法,特别涉及一种聚3‐己基噻吩/生物质碳/SnO2‐x纳米复合光催化材料的制备方法。
背景技术
随着环境污染问题日趋严重,半导体光催化技术在污水处理领域的应用受到广泛重视,富缺陷氧化锡(SnO2-x)由于具有优异的可见光光催化响应能力而在光催化领域具有巨大潜力。然而单一成分的富缺陷氧化锡(SnO2-x)存在着光响应范围较窄、太阳能利用率低,以及量子效率低等不足,严重限制了其实际应用。生物质碳和聚3-己基噻吩(P3HT)材料是具有自个特殊显微结构的纳米轻质材料,在环境保护、催化剂载体等领域应用前景广阔。同时随着社会发展,废弃物增加的速度逐渐加快,将生物质废弃物变废为宝,制成生物质碳而实现重新利用,也能有效减轻环境负担。生物质碳和聚3-己基噻吩(P3HT)作为电的良导体,也能有效传导光生电子,从而提高光生载流子的寿命,有利于获得优异光催化性能。聚3-己基噻吩(P3HT)的易塑型特点也有利于实现该复合催化剂材料的回收再利用,能有效避免粉体材料难回收而对环境造成的不良影响。
SnO2是一种重要的n型宽带隙半导体,它具有优异的光电特性、气敏特性、化学稳定性和环境友好性,因而被广泛应用于药物传输、能量储存、磁存储介质材料、太阳能电池、电极材料、气敏传感材料、电催化材料和光催化材料等领域。在催化剂领域,SnO2被广泛用于降解橙黄G、布里尔蓝、茜素红S、亚甲基蓝、罗丹明B等有机染料[Wang,X.,Fan,H.,Ren,P.,et al.Homogeneous SnO2core-shell microspheres:Microwave-assistedhydrothermal synthesis,morphology control and photocatalytic properties[J].Materials Research Bulletin,2014,50:191-196.]。单价态SnO2较大的禁带宽度导致其只能吸收利用紫外光才能进行光催化反应,但是紫外光能量仅占太阳光能总能量的不足5%。为了提高SnO2材料的光吸收和光催化性能,最简便有效的策略就是构造混合价态或非化学计量比的锡氧化物来增加其内部缺陷的同时减小其禁带宽度[朱翰林,梁况.氧缺陷型SnO2纳米颗粒可见光催化性能的研究[J].化学通报,2016,79(4):327-331.]。并且缺陷型氧化锡SnO2-x中的氧空穴作为电子捕获中心有利于促进光生电子-空穴的分离,从而促进氧化锡的光催化反应[时乐宇,刘美玲,李欣桐,等.非化学计量氧化锡的制备及光催化性能研究[J].山东化工,2016,45(6):7-8.]。Sn自掺杂SnO2-x纳米晶中氧缺陷的存在能有效提高光生电子-空穴对的分离,从而获得了优异的染料光催化降解性能[Han,D.,Jiang,B.,Feng,J.,Yin,Y.,Wang,W.Photocatalytic Self-Doped SnO2-x Nanocrystals Drive Visible-Light-Responsive Color Switching[J].Angewandte Chemie International Edition,2017,56(27):7792-7796.]。富氧空位缺陷的结构特点使SnO2-x纳米颗粒显示出了比P25和ZnO都优异的光解水产氢性能(133.8μmol·h-1·g-1)[Li,M.,Hu,Y.,Xie,S.,Huang,Y.,Tong,Y.,Lu,X.Heterostructured ZnO/SnO2-x nanoparticles for efficientphotocatalytic hydrogen production[J].Chemical Communications,2014,50(33):4341-4343.]
为了实现提高SnO2材料的光催化性能,各种SnO2复合光催化剂被设计、制备了出来,如石墨烯/SnO2[Seema,H.,Kemp,K.C.,Chandra,V.,et al.Graphene-SnO2compositesfor highly efficient photocatalytic degradation of methylene blue undersunlight[J].Nanotechnology,2012,23(35):355705.]、CdS/SnO2[Liu,Y.,Zhang,P.,Tian,B.,et al.Core-shell structural CdS@SnO2nanorods with excellent visible-light photocatalytic activity for the selective oxidation of benzyl alcoholto benzaldehyde[J].ACS Applied Materials&Interfaces,2015,7(25):13849-13858.]、Zn2SnO4/SnO2 [Sun,L.,Han,X.,Jiang,Z.,et al.Fabrication of cubic Zn2SnO4/SnO2complex hollow structures and their sunlight-driven photocatalyticactivity[J].Nanoscale,2016,8(26):12858-12862.]、MoS2/SnO2 [Huang,Y.,Miao,Y.E.,Zhang,L.,et al.Synthesis of few-layered MoS2nanosheet-coated electrospunSnO2nanotube heterostructures for enhanced hydrogen evolution reaction[J].Nanoscale,2014,6(18):10673-10679.]与Fe2O3/SnO2 [Niu,M.,Huang,F.,Cui,L.,etal.Hydrothermal synthesis,structural characteristics,and enhancedphotocatalysis of SnO2/α-Fe2O3semiconductor nanoheterostructures[J].ACS Nano,2010,4(2):681-688.]。以上复合材料将宽禁带宽度的SnO2窄禁带宽度的半导体材料进行复合,在一定程度上促进了SnO2半导体材料中光生电子-空穴的分离,拓展了从紫外到可见的光吸收范围,从而得到了光催化性能的一定提高,但是以上复合材料无法最大限度地解决不同复合组分之间的能级结构相匹配的问题,因而无法得到SnO2基复合材料光生电子-空穴分离的最大化。
能级结构相匹配的不同化学计量比的锡氧化物复合材料有利于提高光生载流子分离率而获得优异光催化性能。例如SnO/Sn3O4异质结构具有比单组分SnO和单组分Sn3O4更加优异的罗丹明B光催化降解性能[崔磊,杨丽娟,高剑森,顾世浦.SnO/Sn3O4异质结构的制备及其光催化性能.功能材料,2017,48(1),1159-1162.]。并且SnO/Sn3O4异质结构通过能级结构相匹配的界面间的有效电荷转移而比单组分具有更优异的光催化降解罗丹明B性能[Xia,W.,Wang,H.,Zeng,X.,Han,J.,Zhu,J.,Zhou,M.,&Wu,S.High-efficiencyphotocatalytic activity of type II SnO/Sn3O4heterostructures via interfacialcharge transfer.CrystEngComm,2014,16(30),6841-6847.]。但以上锡氧化物异质结结构的光生电子-空穴分离率依然没有达到最优化,并且存在着稳定性不够高的缺陷,因而抑制了其光催化性能的进一步提高。
聚3-己基噻吩(P3HT)是典型的导电高分子,其环境稳定性好、无毒、电导率高、容易合成、溶液加工性优异及载流子迁移率高,在有机场效应晶体管及有机太阳能电池、高分子导线、电子和光学器件、化学传感器、电致变色显示器、防腐材料等功能材料和器件方面有许多潜在的应用。生物质碳具有安全无毒、空隙发达、吸附性能好、强度高、易再生、经济耐用等优点等结构特点,主要被用于饮用水、制酒、饮料、工业污水的吸附净化处理,既可以作为催化剂的支撑载体,也可以有效提高催化剂的催化效率。研究表明,大量的可再生的生物质资源能为工业社会可提供能量和有机碳的来源和生产化学产品,并且与化石燃料相比较生物质资源会产生相对较少的温室效应气体。
有关聚3-己基噻吩(P3HT)/碳/半导体复合材料的制备方法主要有如下几种:液相化学离子交换法[谢楚如.磷酸银/氮掺杂石墨烯/聚3-己基噻吩复合光催化剂的制备及其光催化反应机理研究[D].华南师范大学,2016.]、旋涂法[李现化.rr-P3HT/CdS/CNT三元异质结构制备及光电性能的研究[D].北京化工大学,2013.]、化学接枝法[刘恺然.CdS/P3HT/CNT异质结构材料的制备及光电性能研究[D].北京化工大学,2014.]等。这些制备方法都具有其独特的优点,但不足之处在于反应原料不够环境友好,步骤繁琐,并且制得的材料团聚效应明显等。
发明内容
本发明的目的在于提供一种聚3‐己基噻吩/生物质碳/SnO2‐x纳米复合光催化材料的制备方法,即采用湿化学原位合成法制备出形貌可控、分散程度高、粒度均一且界面结合紧密的聚3‐己基噻吩(P3HT)/生物质碳/SnO2‐x纳米复合光催化材料。
为达到上述目的,本发明采用的技术方案是:
1)将生物质废弃物在氮气或氩气气氛下,以2~10℃/min的升温速率自室温升温至100~400℃保温0.5~10h,反应结束冷却至室温得到生物质碳骨架;
2)取1mmol分析纯的酒石酸亚锡(C4H4O6Sn)和0.2~3mmol的酒石酸(C4H6O6)充分溶解于5~15mL的无水乙醇中,之后依次加入2~12mmol的十二烷基乙氧基磺基甜菜碱和10~20mL的去离子水,完全溶解后得到溶液A;
3)取0.5~6g经研磨后的生物质碳骨架加入溶液A中混合均匀得到混合液B;
4)将混合液B转移至聚四氟乙烯内衬的水热釜中,然后将反应釜放入恒温烘箱中于100~180℃保温48~72h,反应结束冷却至室温得到含有沉淀产物SnO2-x的混合液C;
5)按3-己基噻吩(C10H16S)和步骤2)中所用酒石酸亚锡(C4H4O6Sn)的摩尔比为(0.01~0.1):1,将3-己基噻吩(C10H16S)在密闭容器中充分溶解于无水乙醇中得到溶液D,将混合液C缓慢加入溶液D中,用乳酸溶液调节其pH值为2~4后迅速密封容器,磁力搅拌0.5~2h后将容器转移至-20~-10℃的低温恒温箱中静置48~72h;
6)将产物进行离心分离,并先后使用去离子水及无水乙醇各自洗涤,最后在30~70℃且真空度为10-1~10-3Pa的真空干燥箱中干燥,即得聚3-己基噻吩(P3HT)/生物质碳/SnO2-x纳米复合光催化材料。
所述的生物质废弃物为椰壳、荔枝壳、落叶、香蕉皮、橘子皮、柚子皮或柠檬皮。
所述步骤2、3)整个过程在氯化钠和碎冰的冰盐浴中使用恒温磁力搅拌装置对其在-20~-10℃的温度条件下进行持续的磁力搅拌。
所述步骤4)填充比为40~70%。
所述步骤5)整个过程在-20~-10℃的氯化钠和碎冰的冰浴中进行持续磁力搅拌。
所述步骤5)乳酸溶液的浓度为0.5~12mol/L。
所述步骤6)使用去离子水及无水乙醇各自洗涤3~8次。
所述步骤6)干燥时间为1~12h。
本发明将聚3‐己基噻吩(P3HT)、生物质碳与SnO2‐x进行复合后可显著增强复合材料的电子转移的协同效应,从而有利于提高其光催化性能。
与传统制备方法相比,本发明所提出的低温湿化学原位合成法制备得到的聚3-己基噻吩(P3HT)/生物质碳/SnO2-x纳米复合光催化材料能有效避免硬团聚,制得的复合材料具有稳定性高、分散性好、粒径分布窄、晶体发育完整、形貌及尺寸可控、工艺简单高效和界面结合紧密等优点,有效克服了锡氧化物复合光催化材料中不同组分间能级结构不相匹配的问题,有效促进了光生电子-空穴对的快速分离,获得了更加高效的光催化性能。
本发明的有益效果体现在:
1)本发明的聚3-己基噻吩(P3HT)/生物质碳/SnO2-x纳米复合光催化材料的制备方法工艺控制简单,成本较低,制备温度低且不需要后期热处理,一定程度上避免了后期热处理过程中可能导致的晶粒长大、粗化或卷曲等缺陷。
2)本发明提出的聚3-己基噻吩(P3HT)/生物质碳/SnO2-x纳米复合光催化材料,利用不同组分之间良好的物理化学相容性以及相匹配的能级结构,能实现紧密的界面结合以及界面结构上高效的光生电子-空穴对的分离,从而在太阳光照射条件下160min内获得了95%以上的光催化氧化降解罗丹明B的效率。
3)本发明提出的湿化学原位合成法实现了形貌可控、高分散性、界面结合紧密且粒度均一的聚3-己基噻吩(P3HT)/生物质碳/SnO2-x纳米结构复合光催化材料。
附图说明
图1为本发明实施例2制备的聚3-己基噻吩/生物质碳/SnO2-x纳米复合光催化材料的扫描电子显微镜(SEM)照片。
具体实施方式
下面结合附图对本发明作进一步详细说明。
实施例1:
1)将生物质废弃物椰壳在氮气气氛下,以2℃/min的升温速率自室温升温至100℃保温10h,反应结束冷却至室温得到生物质碳骨架;
2)取1mmol分析纯的酒石酸亚锡(C4H4O6Sn)和0.2mmol的酒石酸(C4H6O6)充分溶解于5mL的无水乙醇中,之后依次加入2mmol的十二烷基乙氧基磺基甜菜碱和10mL的去离子水,整个过程在氯化钠和碎冰的冰盐浴中使用恒温磁力搅拌装置对其在-20℃的温度条件下进行持续的磁力搅拌至完全溶解后得到溶液A;
3)取0.5g经研磨后的生物质碳骨架加入溶液A中,整个过程在氯化钠和碎冰的冰盐浴中使用恒温磁力搅拌装置对其在-20℃的温度条件下进行持续的磁力搅拌至混合均匀得到混合液B;
4)按45%的填充比将混合液B转移至聚四氟乙烯内衬的水热釜中,然后将反应釜放入恒温烘箱中于110℃保温52h,反应结束冷却至室温得到含有沉淀产物SnO2-x的混合液C;
5)在-20℃的氯化钠和碎冰的冰浴中持续磁力搅拌的条件下,按3-己基噻吩(C10H16S)和步骤2)中所用酒石酸亚锡(C4H4O6Sn)的摩尔比为0.01:1,将3-己基噻吩(C10H16S)在密闭容器中充分溶解于无水乙醇中得到溶液D,将混合液C缓慢加入溶液D中,用0.5mol/L的乳酸溶液调节其pH值为4后迅速密封容器,磁力搅拌2h后将容器转移至-20℃的低温恒温箱中静置72h;
6)将产物进行离心分离,并先后使用去离子水及无水乙醇各自洗涤4次,最后在35℃且真空度为10-3Pa的真空干燥箱中干燥12h,即得聚3-己基噻吩(P3HT)/生物质碳/SnO2-x纳米复合光催化材料。
实施例2:
1)将生物质废弃物落叶在氩气气氛下,以7℃/min的升温速率自室温升温至180℃保温6h,反应结束冷却至室温得到生物质碳骨架;
2)取1mmol分析纯的酒石酸亚锡(C4H4O6Sn)和2mmol的酒石酸(C4H6O6)充分溶解于9mL的无水乙醇中,之后依次加入8mmol的十二烷基乙氧基磺基甜菜碱和15mL的去离子水,整个过程在氯化钠和碎冰的冰盐浴中使用恒温磁力搅拌装置对其在-15℃的温度条件下进行持续的磁力搅拌至完全溶解后得到溶液A;
3)取2g经研磨后的生物质碳骨架加入溶液A中,整个过程在氯化钠和碎冰的冰盐浴中使用恒温磁力搅拌装置对其在-15℃的温度条件下进行持续的磁力搅拌至混合均匀得到混合液B;
4)按60%的填充比将混合液B转移至聚四氟乙烯内衬的水热釜中,然后将反应釜放入恒温烘箱中于130℃保温60h,反应结束冷却至室温得到含有沉淀产物SnO2-x的混合液C;
5)在-15℃的氯化钠和碎冰的冰浴中持续磁力搅拌的条件下,按3-己基噻吩(C10H16S)和步骤2)中所用酒石酸亚锡(C4H4O6Sn)的摩尔比为0.05:1,将3-己基噻吩(C10H16S)在密闭容器中充分溶解于无水乙醇中得到溶液D,将混合液C缓慢加入溶液D中,用6mol/L的乳酸溶液调节其pH值为3后迅速密封容器,磁力搅拌1h后将容器转移至-15℃的低温恒温箱中静置60h;
6)将产物进行离心分离,并先后使用去离子水及无水乙醇各自洗涤6次,最后在50℃且真空度为10-2Pa的真空干燥箱中干燥8h,即得聚3-己基噻吩(P3HT)/生物质碳/SnO2-x纳米复合光催化材料。
由图1可以看出,制得复合材料的组分包括聚3-己基噻吩、生物质碳骨架和SnO2-x,组分之间结合紧密,其中生物质碳呈现骨架结构,骨架孔隙直径约为300~500nm,聚3-己基噻吩与SnO2-x均匀且紧密地分布于生物质碳骨架之中。
实施例3:
1)将生物质废弃物落叶在氮气气氛下,以8℃/min的升温速率自室温升温至300℃保温1h,反应结束冷却至室温得到生物质碳骨架;
2)取1mmol分析纯的酒石酸亚锡(C4H4O6Sn)和2.8mmol的酒石酸(C4H6O6)充分溶解于15mL的无水乙醇中,之后依次加入12mmol的十二烷基乙氧基磺基甜菜碱和20mL的去离子水,整个过程在氯化钠和碎冰的冰盐浴中使用恒温磁力搅拌装置对其在-10℃的温度条件下进行持续的磁力搅拌至完全溶解后得到溶液A;
3)取6g经研磨后的生物质碳骨架加入溶液A中,整个过程在氯化钠和碎冰的冰盐浴中使用恒温磁力搅拌装置对其在-10℃的温度条件下进行持续的磁力搅拌至混合均匀得到混合液B;
4)按70%的填充比将混合液B转移至聚四氟乙烯内衬的水热釜中,然后将反应釜放入恒温烘箱中于180℃保温48h,反应结束冷却至室温得到含有沉淀产物SnO2-x的混合液C;
5)在-10℃的氯化钠和碎冰的冰浴中持续磁力搅拌的条件下,按3-己基噻吩(C10H16S)和步骤2)中所用酒石酸亚锡(C4H4O6Sn)的摩尔比为0.1:1,将3-己基噻吩(C10H16S)在密闭容器中充分溶解于无水乙醇中得到溶液D,将混合液C缓慢加入溶液D中,用12mol/L的乳酸溶液调节其pH值为2后迅速密封容器,磁力搅拌0.5h后将容器转移至-10℃的低温恒温箱中静置48h;
6)将产物进行离心分离,并先后使用去离子水及无水乙醇各自洗涤8次,最后在70℃且真空度为10-1Pa的真空干燥箱中干燥1h,即得聚3-己基噻吩(P3HT)/生物质碳/SnO2-x纳米复合光催化材料。
实施例4:
1)将生物质废弃物橘子皮在氩气气氛下,以5℃/min的升温速率自室温升温至400℃保温0.5h,反应结束冷却至室温得到生物质碳骨架;
2)取1mmol分析纯的酒石酸亚锡(C4H4O6Sn)和1mmol的酒石酸(C4H6O6)充分溶解于8mL的无水乙醇中,之后依次加入5mmol的十二烷基乙氧基磺基甜菜碱和13mL的去离子水,整个过程在氯化钠和碎冰的冰盐浴中使用恒温磁力搅拌装置对其在-13℃的温度条件下进行持续的磁力搅拌至完全溶解后得到溶液A;
3)取1g经研磨后的生物质碳骨架加入溶液A中,整个过程在氯化钠和碎冰的冰盐浴中使用恒温磁力搅拌装置对其在-13℃的温度条件下进行持续的磁力搅拌至混合均匀得到混合液B;
4)按40%的填充比将混合液B转移至聚四氟乙烯内衬的水热釜中,然后将反应釜放入恒温烘箱中于100℃保温72h,反应结束冷却至室温得到含有沉淀产物SnO2-x的混合液C;
5)在-13℃的氯化钠和碎冰的冰浴中持续磁力搅拌的条件下,按3-己基噻吩(C10H16S)和步骤2)中所用酒石酸亚锡(C4H4O6Sn)的摩尔比为0.03:1,将3-己基噻吩(C10H16S)在密闭容器中充分溶解于无水乙醇中得到溶液D,将混合液C缓慢加入溶液D中,用8mol/L的乳酸溶液调节其pH值为3后迅速密封容器,磁力搅拌1.5h后将容器转移至-13℃的低温恒温箱中静置66h;
6)将产物进行离心分离,并先后使用去离子水及无水乙醇各自洗涤3次,最后在30℃且真空度为10-2Pa的真空干燥箱中干燥5h,即得聚3-己基噻吩(P3HT)/生物质碳/SnO2-x纳米复合光催化材料。
实施例5:
1)将生物质废弃物柠檬皮在氮气气氛下,以10℃/min的升温速率自室温升温至200℃保温8h,反应结束冷却至室温得到生物质碳骨架;
2)取1mmol分析纯的酒石酸亚锡(C4H4O6Sn)和3mmol的酒石酸(C4H6O6)充分溶解于12mL的无水乙醇中,之后依次加入10mmol的十二烷基乙氧基磺基甜菜碱和18mL的去离子水,整个过程在氯化钠和碎冰的冰盐浴中使用恒温磁力搅拌装置对其在-18℃的温度条件下进行持续的磁力搅拌至完全溶解后得到溶液A;
3)取4g经研磨后的生物质碳骨架加入溶液A中,整个过程在氯化钠和碎冰的冰盐浴中使用恒温磁力搅拌装置对其在-18℃的温度条件下进行持续的磁力搅拌至混合均匀得到混合液B;
4)按50%的填充比将混合液B转移至聚四氟乙烯内衬的水热釜中,然后将反应釜放入恒温烘箱中于150℃保温56h,反应结束冷却至室温得到含有沉淀产物SnO2-x的混合液C;
5)在-18℃的氯化钠和碎冰的冰浴中持续磁力搅拌的条件下,按3-己基噻吩(C10H16S)和步骤1)中所用酒石酸亚锡(C4H4O6Sn)的摩尔比为0.08:1,将3-己基噻吩(C10H16S)在密闭容器中充分溶解于无水乙醇中得到溶液D,将混合液C缓慢加入溶液D中,用10mol/L的乳酸溶液调节其pH值为2后迅速密封容器,磁力搅拌1h后将容器转移至-18℃的低温恒温箱中静置50h;
6)将产物进行离心分离,并先后使用去离子水及无水乙醇各自洗涤5次,最后在60℃且真空度为10-1Pa的真空干燥箱中干燥10h,即得聚3-己基噻吩(P3HT)/生物质碳/SnO2-x纳米复合光催化材料。

Claims (8)

1.一种聚3-己基噻吩/生物质碳/SnO2-x纳米复合光催化材料的制备方法,其特征在于包括以下步骤:
1)将生物质废弃物在氮气或氩气气氛下,以2~10℃/min的升温速率自室温升温至100~400℃保温0.5~10h,反应结束冷却至室温得到生物质碳骨架;
2)取1mmol分析纯的酒石酸亚锡(C4H4O6Sn)和0.2~3mmol的酒石酸(C4H6O6)充分溶解于5~15mL的无水乙醇中,之后依次加入2~12mmol的十二烷基乙氧基磺基甜菜碱和10~20mL的去离子水,完全溶解后得到溶液A;
3)取0.5~6g经研磨后的生物质碳骨架加入溶液A中混合均匀得到混合液B;
4)将混合液B转移至聚四氟乙烯内衬的水热釜中,然后将反应釜放入恒温烘箱中于100~180℃保温48~72h,反应结束冷却至室温得到含有沉淀产物SnO2-x的混合液C;
5)按3-己基噻吩(C10H16S)和步骤2)中所用酒石酸亚锡(C4H4O6Sn)的摩尔比为(0.01~0.1):1,将3-己基噻吩(C10H16S)在密闭容器中充分溶解于无水乙醇中得到溶液D,将混合液C缓慢加入溶液D中,用乳酸溶液调节其pH值为2~4后迅速密封容器,磁力搅拌0.5~2h后将容器转移至-20~-10℃的低温恒温箱中静置48~72h;
6)将产物进行离心分离,并先后使用去离子水及无水乙醇各自洗涤,最后在30~70℃且真空度为10-1~10-3Pa的真空干燥箱中干燥,即得聚3-己基噻吩(P3HT)/生物质碳/SnO2-x纳米复合光催化材料。
2.根据权利要求1所述的聚3-己基噻吩/生物质碳/SnO2-x纳米复合光催化材料的制备方法,其特征在于:所述的生物质废弃物为椰壳、荔枝壳、落叶、香蕉皮、橘子皮、柚子皮或柠檬皮。
3.根据权利要求1所述的聚3-己基噻吩/生物质碳/SnO2-x纳米复合光催化材料的制备方法,其特征在于:所述步骤2、3)整个过程在氯化钠和碎冰的冰盐浴中使用恒温磁力搅拌装置对其在-20~-10℃的温度条件下进行持续的磁力搅拌。
4.根据权利要求1所述的聚3-己基噻吩/生物质碳/SnO2-x纳米复合光催化材料的制备方法,其特征在于:所述步骤4)填充比为40~70%。
5.根据权利要求1所述的聚3-己基噻吩/生物质碳/SnO2-x纳米复合光催化材料的制备方法,其特征在于:所述步骤5)整个过程在-20~-10℃的氯化钠和碎冰的冰浴中进行持续磁力搅拌。
6.根据权利要求1所述的聚3-己基噻吩/生物质碳/SnO2-x纳米复合光催化材料的制备方法,其特征在于:所述步骤5)乳酸溶液的浓度为0.5~12mol/L。
7.根据权利要求1所述的聚3-己基噻吩/生物质碳/SnO2-x纳米复合光催化材料的制备方法,其特征在于:所述步骤6)使用去离子水及无水乙醇各自洗涤3~8次。
8.根据权利要求1所述的聚3-己基噻吩/生物质碳/SnO2-x纳米复合光催化材料的制备方法,其特征在于:所述步骤6)干燥时间为1~12h。
CN201811093629.XA 2018-09-19 2018-09-19 一种聚3-己基噻吩/生物质碳/SnO2-x纳米复合光催化材料的制备方法 Withdrawn CN109126882A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811093629.XA CN109126882A (zh) 2018-09-19 2018-09-19 一种聚3-己基噻吩/生物质碳/SnO2-x纳米复合光催化材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811093629.XA CN109126882A (zh) 2018-09-19 2018-09-19 一种聚3-己基噻吩/生物质碳/SnO2-x纳米复合光催化材料的制备方法

Publications (1)

Publication Number Publication Date
CN109126882A true CN109126882A (zh) 2019-01-04

Family

ID=64815107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811093629.XA Withdrawn CN109126882A (zh) 2018-09-19 2018-09-19 一种聚3-己基噻吩/生物质碳/SnO2-x纳米复合光催化材料的制备方法

Country Status (1)

Country Link
CN (1) CN109126882A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113882034A (zh) * 2021-11-03 2022-01-04 东华大学 一种纳米纤维光解水制氢催化剂及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113882034A (zh) * 2021-11-03 2022-01-04 东华大学 一种纳米纤维光解水制氢催化剂及其制备方法

Similar Documents

Publication Publication Date Title
Zhang et al. A mini-review on ZnIn2S4-Based photocatalysts for energy and environmental application
CN110180548B (zh) 一维氧化铟中空纳米管/二维铁酸锌纳米片异质结复合材料及其在去除水体污染物中的应用
Gao et al. Construction of dual defect mediated Z-scheme photocatalysts for enhanced photocatalytic hydrogen evolution
Zhao et al. Preparation of photocatalysts decorated by carbon quantum dots (CQDs) and their applications: A review
Li et al. A novel binary visible-light-driven photocatalyst type-I CdIn2S4/g-C3N4 heterojunctions coupling with H2O2: synthesis, characterization, photocatalytic activity for Reactive Blue 19 degradation and mechanism analysis
Xu et al. MOFs-derived C-In2O3/g-C3N4 heterojunction for enhanced photoreduction CO2
US20180072586A1 (en) Bismuth-titanium oxide nanowire material used for photocatalysis, and preparation method
CN109107612A (zh) 一种聚3,4-乙撑二氧噻吩/生物质碳/SnO2-x纳米复合材料的制备方法
Zhang et al. Z-scheme TiO2− x@ ZnIn2S4 architectures with oxygen vacancies-mediated electron transfer for enhanced catalytic activity towards degradation of persistent antibiotics
Wang et al. Pn heterostructured TiO2/NiO double-shelled hollow spheres for the photocatalytic degradation of papermaking wastewater
CN103551136B (zh) 凹凸棒石负载准一维二氧化钛复合光催化剂及其制备方法
CN108940332B (zh) 一种高活性MoS2/g-C3N4/Bi24O31Cl10复合光催化剂的制备方法
CN106362742B (zh) 一种Ag/ZnO纳米复合物及其制备方法和应用
Zheng et al. Preparation and characterization of CuxZn1-xS nanodisks for the efficient visible light photocatalytic activity
CN108767113B (zh) 一种TiO2纳米柱-Au纳米粒子复合阵列、制备方法及其应用
CN106390979A (zh) 一种负载型ZnO纳米阵列光催化剂的制备方法
CN105540640B (zh) 一种花状纳米氧化锌的制备方法
Tong et al. Flexible organic/inorganic hybrid solar cells based on conjugated polymer and ZnO nanorod array
Yu et al. Construction of Cu7. 2S4/g-C3N4 photocatalyst for efficient NIR photocatalysis of H2 production
CN103272647B (zh) 一种用于染料脱色的纤维素基ZnO-CdS复合光催化剂的制备方法
Gao et al. 3D heterogeneous CTF@ TiO 2/Bi 2 WO 6/Au hybrid supported by hollow carbon tubes and its efficient photocatalytic performance in the UV-vis range
Guan et al. Constructing 0D/1D/2D Z-scheme heterojunctions of Ag nanodots/SiC nanofibers/g-C3N4 nanosheets for efficient photocatalytic water splitting
Xue et al. Construction of the novel polyimide/Bi2MoO6-OVs pn type heterojunction aerogel photocatalysts to enhance the photodegradation on organic pollutants driven by the internal electric field
CN110538654A (zh) 一种可见光响应型Ag/WO3二元复合光催化剂及其制备方法
CN109107611A (zh) 一种聚吡咯/生物质碳/SnO2-x纳米复合光催化材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20190104

WW01 Invention patent application withdrawn after publication