CN110538654A - 一种可见光响应型Ag/WO3二元复合光催化剂及其制备方法 - Google Patents

一种可见光响应型Ag/WO3二元复合光催化剂及其制备方法 Download PDF

Info

Publication number
CN110538654A
CN110538654A CN201910783642.6A CN201910783642A CN110538654A CN 110538654 A CN110538654 A CN 110538654A CN 201910783642 A CN201910783642 A CN 201910783642A CN 110538654 A CN110538654 A CN 110538654A
Authority
CN
China
Prior art keywords
preparation
visible light
binary composite
composite photocatalyst
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910783642.6A
Other languages
English (en)
Inventor
宋志龙
颜佳
蒲文杰
许晖
李华明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201910783642.6A priority Critical patent/CN110538654A/zh
Publication of CN110538654A publication Critical patent/CN110538654A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及环境功能材料领域,具体涉及的是一种可见光响应型Ag/WO3二元复合光催化剂及其制备方法。本发明以WO3纳米片为载体和光响应剂,通过引入Ag纳米颗粒有效拓宽太阳光的吸收范围,利用Ag与WO3间的金属载体强相互作用形成紧密结构的可见光响应型Ag/WO3二元复合光催化剂。本发明所提供的二元复合光催化剂相对于单体WO3具有较高的光催化降解罗丹明B的性能,在太阳能转化和污水处理等方面具有良好的应用前景和经济效益。

Description

一种可见光响应型Ag/WO3二元复合光催化剂及其制备方法
技术领域
本发明涉及环境功能材料领域,具体涉及一种可见光响应型Ag/WO3二元复合光催化剂及其制备方法。
背景技术
随着工业化的快速发展,环境污染日益严重。世界上15%的染料在染色过程中丢失,并在纺织废水中被释放。这些有色废水在生态系统中的外排是水体污染、富营养化的重要来源。随着国际环境标准(ISO 14001)在去除染料等有机污染物方面对技术要求日趋严格。光催化技术被广泛认为是解决能源短缺和环境污染问题最有效的方法之一。近三十年来,研究人员在提高光催化剂的量子产率方面进行了不懈的努力。在不同类型的金属氧化物半导体光催化剂(ZnO、TiO2、SnO2、In2O3)中,WO3是最理想的光催化剂之一,它具有优异的稳定性、良好的电子传输能力、无光腐蚀和光活性高的优点。由于WO3具有广阔的应用前景和良好的电化学性能,近年来受到广泛的关注。
n型半导体WO3,尤其是最稳定的单斜相(m-WO3)具有较低的带隙(2.4-2.8 eV),被认为是一种很有前途的光催化剂,可以在太阳照射下处理有机污染物。然而,纯WO3光催化剂的导带(CB)水平较低,不仅限制了其与氧等电子受体反应的能力,而且增加了光生电子-空穴对的复合速率,因此其光催化效率相对较低。如何克服这一障碍,提高对可见光的吸收能力以及光生电子-空穴对的分离效率是科研人员一直研究的热点问题。通常采用两种方法,一种是纳米结构形态学,另一种是用半导体或金属纳米颗粒对表面进行修饰,以获得更好的电荷分离效率,提高光催化效率。特别是引入铂、金、银等金属纳米粒子后,WO3的可见光吸附范围将会扩大。在这些不同的金属中,银纳米粒子(Ag NPs)以其相对较低的价格和引人注目的光催化和抗菌性能而受到广泛的关注。然而,Ag纳米粒子的聚集趋势会导致效率损失,限制了它们在实际应用中的大规模应用。因此,WO3可以作为银纳米粒子的合适金属氧化物载体,实现高负载、分散良好的银纳米团簇。
发明内容
本发明的目的在于克服现有技术中的不足,本发明提供了一种可见光响应型Ag/WO3二元复合光催化剂及其制备方法,所述的一种可见光响应型Ag/WO3二元复合光催化剂解决了WO3光生电子-空穴分离效率低以及Ag纳米粒子易聚集的问题,提高对可见光的吸收能力以及光生电子-空穴对的分离效率,从而提高复合光催化剂的性能及其稳定性。
为了实现以上目的,本发明采用的技术方案是:
一方面,本发明提供一种可见光响应型Ag/WO3二元复合光催化剂,所述二元复合光催化剂由WCl6、油酸和油胺混合制备WO3纳米片,Ag纳米颗粒分散在WO3纳米片表面复合而成。
在某一具体实施例中,制备的Ag/WO3二元复合光催化剂可见光照射90 min后对浓度为10 mg/L的罗丹明B(RhB)的降解效率达到96.8%。
另一方面,本发明还提供了一种可见光响应型Ag/WO3二元复合光催化剂的制备方法,包括以下步骤:
(1)将油酸、油胺加入WCl6中搅拌,加入乙醇均匀分散后至反应釜加热反应一段时间后迅速冷却至室温,洗涤烘干后得到WO3纳米片;
(2)将步骤(1)制备的WO3纳米片分散于乙醇中,加入AgNO3乙醇溶液后氙灯光照后得到Ag/WO3光催化剂。
优选的,步骤(1)中所述的油酸与油胺的体积比为20 mL:2.0 ~5.0 mL;所述WCl6与油酸的用量比为1~2 mmol:20mL。
步骤(1)中所述的搅拌时间为60 ~90 min。
步骤(1)中所述加热反应的温度为160 ℃,时间为120 ~200 min。
步骤(1)中所述的洗涤为用甲苯和乙醇洗涤3-6次。
优选的,步骤(2)中所述的WO3纳米片与乙醇的用量比为0.4~0.5 g:30 mL。
步骤(2)中所述的AgNO3的质量为WO3纳米片质量的1.67~7.98%。
步骤(2)中所述的氙灯光照为300 W氙灯光照1~4 h。
与现有技术相比,本发明有益效果是:
本发明以WO3纳米片为载体和光响应剂,通过引入Ag纳米颗粒有效拓宽太阳光的吸收范围,利用Ag与WO3间的金属载体强相互作用形成紧密结构的可见光响应型Ag/WO3二元复合光催化剂,由于金属-载体间强相互作用与Ag的表面等离子体效应,WO3纳米片与Ag纳米颗粒二者之间的协同作用共同提升了光催化降解特性。另外,Ag可促进电荷转移,还可为目标污染物的吸附和降解提供更多的活性位点。从某一具体实施方式中可见,制备的可见光响应型Ag/WO3二元复合光催化剂在WO3纳米片上均匀负载有5 nm 左右的Ag纳米颗粒,具有良好的可见光吸收能力以及光生电子-空穴对分离能力,具有良好的催化降解性能和稳定性;所提供的二元复合光催化剂相对于单体WO3具有较高的光催化降解罗丹明B的性能。本发明所述制备方法操作简单、试剂便宜,可用于大规模低成本制备,在太阳能转化和污水处理等方面具有良好的应用前景和经济效益。
附图说明
图1是实施例2中制备的Ag/WO3(2 h)的扫描电镜和透射电镜图;图a)为扫面电镜图,图b)为透射电镜图;
图2是实施例2中制备的Ag/WO3(0.5 h)、Ag/WO3(1 h)、Ag/WO3(2 h)、Ag/WO3(4 h)与实施例1中制备的WO3纳米片的漫反射光谱对比图。
具体实施方式
本发明公开了一种Ag/WO3二元复合光催化剂及其制备方法。本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本发明的方法及产品已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法进行改动或适当变更与组合,来实现和应用本发明技术。
为了进一步理解本发明,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如无特殊说明,本发明实施例中所涉及的试剂均为市售产品,均可以通过商业渠道购买获得。
实施例1:不同光照时间下Ag/WO3二元复合光催化材料的制备
本实施例中验证制备WO3纳米片的最佳的溶剂热温度为160 ℃,具体WO3纳米片制备方法为:将0.674 g WCl6置于烧杯中,再向烧杯中加入20 mL油酸以及2.5 mL油胺,以700rap/min搅拌60 min,加入10 mL乙醇使其混合均匀,将混合液倒入50 mL反应釜中,放入烘箱中升温到160℃,保持180 min,快速冷却至室温,甲苯和乙醇洗涤后烘干得到WO3纳米片。
各取0.45 g制备得到的WO 3纳米片加入30 mL的乙醇中,超声分散3 h后加入20 mL的5 mmol/L含AgNO3的乙醇溶液混合后置于300 W的氙灯光源下光照一定时间,边光照边搅拌,光照时间分别为0.5 h、1h、2h、4h,离心烘干后分别制得Ag/WO3(0.5 h)、Ag/WO3(1 h)、Ag/WO3(2 h)、Ag/WO3(4 h)二元复合光催化材料,制备的Ag/WO3二元复合光催化材料中Ag的质量分数为2%。
图1是制备的Ag/WO3(2 h)的扫描电镜和透射电镜图;图a)为扫面电镜图,图b)为透射电镜图;由图1可见,在WO3纳米片表面均匀沉积了直径为5 nm左右的Ag纳米颗粒,WO3纳米片提供了更多的负载位点,有效的解决了Ag纳米粒子的团聚问题。
图2是制备的Ag/WO3(0.5 h)、Ag/WO3(1 h)、Ag/WO3(2 h)、Ag/WO3(4 h)与实施例1中制备的WO3纳米片的漫反射光谱对比图;如图2可见,在400 nm以下均表现出强吸收峰,与WO3纳米片比较发现,Ag/WO3(1 h)、Ag/WO3(2 h)、Ag/WO3(4 h)的光吸收在450~600 nm范围内有拓宽,而Ag/WO3 (0.5 h)的等离子体共振吸收不明显。由于WO3的带间跃迁,400 nm以下均表现出强吸收峰,而金属Ag的表面等离子体共振效应使得Ag/WO3的光吸收在450–600 nm范围内有拓宽。由于Ag/WO3 (0.5 h)的Ag含量低使得等离子体共振吸收不明显,随着光照时间的延长,Ag的等离子共振效应增强。可见,Ag的引入增强了可见光的吸收,有利于提升光催化降解性能。
实施例3:可见光催化降解罗丹明B
(1)实施例1中制备的WO3纳米片和实施例2中制备的Ag/WO3(0.5 h)、Ag/WO3(1 h)、Ag/WO3(2 h)、Ag/WO3(4 h) 各称取0.050 g,分别置于100 mL光反应瓶中,加入50 mL RhB水溶液(10 mg/L)后将光反应瓶置于光反应仪(JOYN-GHX-AC)中;
(2)向光反应瓶中通入空气,在黑暗条件下磁力搅拌30 min使反应体系达到吸附-脱附平衡(即测试溶液的吸光度直至不变为止);
(3)打开光源(300 W的氙灯λ> 400 nm),每隔15 min抽取4 mL样品并离心;
(4)将离心后的上清液于比色皿中,使用液体紫外可见分光光度计(UV-2450)在波长553 nm下测量,分别记录溶液吸光度的变化。结果见表1。
表1.实施3溶液吸光度变化对比表
由表3可以看出,与罗丹明B在WO3纳米片中的光催化性能相比,引入Ag纳米颗粒后,Ag/WO3材料的催化性能得到明显提升。其中Ag/WO3 (2 h)复合光催化材料的催化降解效果最好。在可见光照射90 min后,WO3,Ag/WO3(0.5 h),Ag/WO3(1 h),Ag/WO3(2 h)和Ag/WO3(4 h)降解RhB的效率分别可达30.5%、80.4%、82.0%、96.8%和89.1%。
可见,本发明所提供的Ag/WO3二元复合光催化材料相对于WO3单体具有更优的光催化降解RhB的性能,在太阳能转化和污水处理等方面具有良好的应用前景和经济效益。
实施例4:
(1)将0.397g WCl6置于烧杯中,再向烧杯中加入20 mL油酸以及2.0 mL油胺,以700rap/min搅拌60 min,加入10 mL乙醇使其混合均匀,将混合液倒入50 mL反应釜中,放入烘箱中升温到160℃,保持120 min,快速冷却至室温,甲苯和乙醇洗涤3次后烘干得到WO3纳米片;
(2)取0.40 g步骤(1)中制备得到的WO 3纳米片加入30 mL的乙醇中,超声分散3 h后加入7.85 mL的5 mmol/L含AgNO3的乙醇溶液混合后置于300 W的氙灯光源下光照2 h,边光照边搅拌,离心烘干后制得质量分数为0.2%的Ag/WO3二元复合光催化材料。
(3)称取0.050 g步骤(2)中制备的质量分数为0.2%的Ag/WO3置于100 mL光反应瓶中,加入50 mL RhB水溶液(10 mg/L)后将光反应瓶置于光反应仪(JOYN-GHX-AC)中,可见光下90 min降解效率为85.9%。
实施例5:
(1)将0.794g WCl6置于烧杯中,再向烧杯中加入20 mL油酸以及5.0 mL油胺,以700rap/min搅拌90 min,加入10 mL乙醇使其混合均匀,将混合液倒入50 mL反应釜中,放入烘箱中升温到160℃,保持200 min,快速冷却至室温,甲苯和乙醇洗涤6次后烘干得到WO3纳米片;
(2)取0.50 g步骤(1)中制备得到的WO 3纳米片加入30 mL的乙醇中,超声分散3 h后加入47 mL的5 mmol/L AgNO3溶液混合后置于300 W的氙灯光源下光照2 h,边光照边搅拌,离心烘干后制得质量分数为4%的Ag/WO3二元复合光催化材料。
(3)称取0.050 g步骤(2)中制备的质量分数为4%的Ag/WO3置于100 mL光反应瓶中,加入50 mL RhB水溶液(10 mg/L)后将光反应瓶置于光反应仪(JOYN-GHX-AC)中,可见光下90 min降解效率为90.7%。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明所揭露的技术范围内,可不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。

Claims (9)

1.一种可见光响应型Ag/WO3二元复合光催化剂,其特征在于,所述二元复合光催化剂由WCl6、油酸和油胺混合制备WO3纳米片,Ag纳米颗粒分散在WO3纳米片表面复合而成。
2.一种可见光响应型Ag/WO3二元复合光催化剂的制备方法,其特征在于,包括以下步骤:
(1)将油酸、油胺加入WCl6中搅拌,加入乙醇均匀分散后至反应釜加热反应一段时间后迅速冷却至室温,洗涤烘干后得到WO3纳米片;
(2)将步骤(1)制备的WO3纳米片分散于乙醇中,加入AgNO3乙醇溶液后氙灯光照后得到Ag/WO3光催化剂。
3.根据权利要求2所述的制备方法,其特征在于,步骤(1)中所述的油酸与油胺的体积比为20 mL:2.0 ~5.0 mL;所述WCl6与油酸的用量比为1~2 mmol:20mL。
4.根据权利要求2所述的制备方法,其特征在于,步骤(1)中所述的搅拌时间为60 ~90min。
5.根据权利要求2所述的制备方法,其特征在于,步骤(1)中所述加热反应的温度为160℃,时间为120 ~200 min。
6.根据权利要求2所述的制备方法,其特征在于,步骤(1)中所述的洗涤为用甲苯和乙醇洗涤3-6次。
7.根据权利要求2所述的制备方法,其特征在于,步骤(2)中所述的WO3纳米片与乙醇的用量比为0.4~0.5 g:30 mL。
8.根据权利要求2所述的制备方法,其特征在于,步骤(2)中所述的AgNO3的质量为WO3纳米片质量的1.67~7.98%。
9.根据权利要求2所述的制备方法,其特征在于,步骤(2)中所述的氙灯光照为300 W氙灯光照1~4 h。
CN201910783642.6A 2019-08-23 2019-08-23 一种可见光响应型Ag/WO3二元复合光催化剂及其制备方法 Pending CN110538654A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910783642.6A CN110538654A (zh) 2019-08-23 2019-08-23 一种可见光响应型Ag/WO3二元复合光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910783642.6A CN110538654A (zh) 2019-08-23 2019-08-23 一种可见光响应型Ag/WO3二元复合光催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN110538654A true CN110538654A (zh) 2019-12-06

Family

ID=68711936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910783642.6A Pending CN110538654A (zh) 2019-08-23 2019-08-23 一种可见光响应型Ag/WO3二元复合光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110538654A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111068719A (zh) * 2019-12-12 2020-04-28 肇庆市华师大光电产业研究院 一种双元级等离子基团修饰氧化钨光催化剂的制备方法和应用
CN113634250A (zh) * 2021-08-25 2021-11-12 清华大学 一种复合光催化材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102008959A (zh) * 2010-12-30 2011-04-13 上海大学 具有高光催化活性的纳米银负载三氧化钨的制备方法
CN107999072A (zh) * 2017-12-05 2018-05-08 广东工业大学 一种光热催化剂、其制备方法和催化环己烷氧化的方法
CN109364871A (zh) * 2018-11-05 2019-02-22 江苏大学 一种氧缺陷型三氧化钨纳米片吸附剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102008959A (zh) * 2010-12-30 2011-04-13 上海大学 具有高光催化活性的纳米银负载三氧化钨的制备方法
CN107999072A (zh) * 2017-12-05 2018-05-08 广东工业大学 一种光热催化剂、其制备方法和催化环己烷氧化的方法
CN109364871A (zh) * 2018-11-05 2019-02-22 江苏大学 一种氧缺陷型三氧化钨纳米片吸附剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAOXIONG YU, ET AL: "Colloidal synthesis of tungsten oxide quantum dots for sensitive andselective H2S gas detection", 《SENSORS AND ACTUATORS B: CHEMICAL》 *
SIRSHENDU GHOSH,ET AL: "Maximizing the photo catalytic and photoresponse properties of multimodal plasmonic Ag/WO3−x heterostructure nanorods by variation of the Ag size", 《NANOSCALE》 *
WENJIE PU, ET AL: "Preparation of oxygen-deficient 2D WO3-x nanoplates and their adsorption behaviors for organic pollutants:equilibrium and kinetics modeling", 《J MATER SCI》 *
WENYU ZHU, ET AL: "Ag loaded WO3 nanoplates for efficient photocatalytic degradation ofsulfanilamide and their bactericidal effect under visible lightirradiation", 《JOURNAL OF HAZARDOUS MATERIALS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111068719A (zh) * 2019-12-12 2020-04-28 肇庆市华师大光电产业研究院 一种双元级等离子基团修饰氧化钨光催化剂的制备方法和应用
CN113634250A (zh) * 2021-08-25 2021-11-12 清华大学 一种复合光催化材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Li et al. Boosting photocatalytic hydrogen production coupled with benzyl alcohol oxidation over CdS/metal–organic framework composites
Wei et al. Photocatalytic hydrogen evolution with simultaneous antibiotic wastewater degradation via the visible-light-responsive bismuth spheres-g-C3N4 nanohybrid: Waste to energy insight
Mei et al. Step-scheme porous g-C3N4/Zn0. 2Cd0. 8S-DETA composites for efficient and stable photocatalytic H2 production
Shi et al. Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation
CN110180548B (zh) 一维氧化铟中空纳米管/二维铁酸锌纳米片异质结复合材料及其在去除水体污染物中的应用
Sun et al. Dodecylamine coordinated tri-arm CdS nanorod wrapped in intermittent ZnS shell for greatly improved photocatalytic H2 evolution
Huang et al. Broad spectrum response flower spherical-like composites CQDs@ CdIn2S4/CdS modified by CQDs with up-conversion property for photocatalytic degradation and water splitting
WO2021068570A1 (zh) 用于降解四环素的复合光催化剂及其制备方法和应用
Smrithi et al. Carbon dots decorated cadmium sulphide heterojunction-nanospheres for the enhanced visible light driven photocatalytic dye degradation and hydrogen generation
Guo et al. Review on the advancement of SnS 2 in photocatalysis
Xu et al. MOFs-derived C-In2O3/g-C3N4 heterojunction for enhanced photoreduction CO2
Zhang et al. Preparation of Ag/UiO-66-NH 2 and its application in photocatalytic reduction of Cr (VI) under visible light
Wei et al. A novel FeS2@ g-C3N4 composite with enhanced photo-Fenton catalytic activity for pollutant degradation
CN110252326B (zh) 一种钨酸铜@氧化锌复合光催化剂及其制备方法与应用
CN108940332B (zh) 一种高活性MoS2/g-C3N4/Bi24O31Cl10复合光催化剂的制备方法
CN106362742B (zh) 一种Ag/ZnO纳米复合物及其制备方法和应用
Cheng et al. Lollipop-shaped Co9S8/CdS nanocomposite derived from zeolitic imidazolate framework-67 for the photocatalytic hydrogen production
CN104801325A (zh) 光催化剂复合结构体及其制备方法
CN112427045A (zh) 一种水热法合成的具有Z型异质结CdS/g-C3N4复合光催化剂材料的制备方法
CN111068715A (zh) Ag/Bi2O3/CuBi2O4纳米纤维复合光催化剂的制备方法
CN110538654A (zh) 一种可见光响应型Ag/WO3二元复合光催化剂及其制备方法
Chen et al. ZnIn2S4/UiO-66-(SH) 2 composites as efficient visible-light photocatalyst for RhB degradation
Huang et al. Fabrication of CuS-modified inverse opal g-C3N4 photocatalyst with enhanced performance of photocatalytic reduction of CO2
Jing et al. Enhanced photocatalytic hydrogen production under visible light of an organic-inorganic hybrid material based on enzo [1, 2-b: 4, 5-b'] dithiophene polymer and TiO2
Wang et al. Comparison of modulation strategies for enhancing the photocatalytic water splitting performance of metal-organic frameworks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191206