CN109126796B - 用于煤炭直接加氢液化的纳米分散型催化剂及其制备方法 - Google Patents

用于煤炭直接加氢液化的纳米分散型催化剂及其制备方法 Download PDF

Info

Publication number
CN109126796B
CN109126796B CN201811033122.5A CN201811033122A CN109126796B CN 109126796 B CN109126796 B CN 109126796B CN 201811033122 A CN201811033122 A CN 201811033122A CN 109126796 B CN109126796 B CN 109126796B
Authority
CN
China
Prior art keywords
iron
catalyst
nano
grinding
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811033122.5A
Other languages
English (en)
Other versions
CN109126796A (zh
Inventor
毛学锋
李军芳
赵鹏
胡发亭
钟金龙
李伟林
朱肖曼
谷小会
吴艳
黄澎
陈来夫
马博文
常秋连
石智杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CCTEG China Coal Research Institute
Original Assignee
CCTEG China Coal Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CCTEG China Coal Research Institute filed Critical CCTEG China Coal Research Institute
Priority to CN201811033122.5A priority Critical patent/CN109126796B/zh
Publication of CN109126796A publication Critical patent/CN109126796A/zh
Application granted granted Critical
Publication of CN109126796B publication Critical patent/CN109126796B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/086Characterised by the catalyst used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种用于煤炭直接加氢液化的纳米分散型催化剂及其制备方法,该制备方法包括以下步骤:预粉碎:将铁金属活性组分前驱体预研磨至200目以下,得到铁基细粉。研磨和分散:将铁基细粉与分散剂、溶剂混合并高剪切预分散,得到铁基浆料。纳米化处理:利用纳米化处理设备将分散后铁基浆料中悬浮液中的固体颗粒粒径降低至纳米级别,所得到的纳米分散悬浮液即为煤直接液化催化剂。采用本发明的催化剂活性高且添加量少,生产过程不产生任何工业废水。

Description

用于煤炭直接加氢液化的纳米分散型催化剂及其制备方法
技术领域
本发明涉及一种煤化工领域的煤直接液化催化剂,属于煤炭化学加工领域,具体涉及一种用于煤炭直接加氢液化的纳米分散型催化剂及其制备方法。
背景技术
煤直接加氢液化是在较高的温度和压力以及溶剂和催化剂的存在下对煤进行加氢裂解,将固体的煤直接转化为液体燃料的工艺过程。此过程中,煤大分子结构的化学键首先受热分解形成自由基碎片,再与活性氢原子结合形成稳定的小分子油类。其中,体系中的活性氢主要是来源于被催化剂活化的氢气分子。可见催化剂在煤直接液化反应过程中起到非常重要的作用。据估算,催化剂费用在煤直接液化装置投资占比高达15%,因此,提高煤直接液化催化剂活性,减少其添加量,提高油收率是提高煤直接液化竞争力的有效途径。
煤直接液化催化剂的研究和应用主要集中在三种类型,第一类是以含铁的矿物、废弃物、合成物质为代表的廉价可弃型铁基催化剂。第二类是以加氢活性高的Ni、Mo、Co、W等有色金属催化剂。第三类是以SnCl2、ZnCl2为代表的强酸性催化剂。负载型催化剂不同的是,由于原料的劣质性,煤直接液化催化剂并不追求丰富的孔结构和比表面积,而是更多聚焦于以分散型或者均相状态加入到反应体系中。
研究认为,减少催化剂粒径和提高煤直接液化催化剂的分散度可以有效地提高煤直接液化催化剂的活性。国内处研究表明,若催化剂粒径减少一个数量级,油收率增加10%左右。现有的铁基催化剂,在线制备的催化剂粒径达到了纳米级,均匀地分散在原煤上,液化催化剂活性较好,成本低,工程放大容易,已被直接液化工业示范装置采用。但由于是单纯的铁基催化剂,从目前的运转来看,油收率偏低,液化油中沥青烯和前沥青烯含量过高,液化残渣量过高,同时,过程产生大量高盐废水,环境成本较高。
发明内容
本发明为了解决现有技术中存在的不足,提供了一种用于煤炭直接加氢液化的纳米分散型催化剂,该催化剂主要含铁金属活性组分,活性高且添加量少,生产过程不产生任何工业废水,是一种非水环保型的煤直接液化催化剂。
本发明解决其技术问题所采用的技术方案是:
一种用于煤炭直接加氢液化的纳米分散型催化剂的制备方法,包括以下步骤:
(1)预研磨:将铁金属活性组分前驱体预研磨至200目以下,得到铁基细粉;
(2)分散:将铁基细粉与分散剂、溶剂混合并高剪切预分散,得到铁基浆料;
(3)纳米化处理:利用纳米化处理设备将分散后铁基浆料中悬浮液中的固体颗粒物粒径降低至纳米级别,所得到的纳米分散悬浮液为纳米分散型催化剂。
所述铁金属活性组分前驱体选自赤铁矿、磁铁矿、磁黄铁矿、铁矿渣、褐铁矿、黄铁矿、氧化铁、钢渣和电炉渣中的至少一种。
所述分散剂选自油酸二乙醇酰胺、油胺、油酸、油酸钠、三乙醇胺、乙二醇、三异丙醇胺和聚乙二醇中的至少一种。
所述溶剂选自脱晶蒽油、煤直接液化循环溶剂油、煤焦油、四氢萘和柴油中的至少一种。
所述纳米级别控制在50nm-1000nm。
所述分散剂所占的重量百分比为1.0-10%。
所述铁金属活性组分前驱体/分散剂和溶剂三者之间的用量比控制在(10-60):(1-10):(30-89)
所述铁基浆料中所述悬浮液中的所述固体颗粒物的浓度控制在10%~60%之间。
所述的纳米化处理设备为卧式砂磨机,具体地,选择设备为盘式纳米砂磨机或纳米棒硝式砂磨机。
所述纳米棒硝式砂磨机的转速在2000-2500rmp/min,研磨温度为20℃~90℃,研磨时间为0.25~4h,采用间歇或连续方式其中的一种。
本发明还提供一种煤直接加氢液化的非水溶剂型纳米催化剂,按照上述的制备方法制备得到。
与现有合成方法相比,本发明提供的方法具有如下优点:
1)制备方法简单,不产生任何工业废水;
2)所制备的催化剂颗粒处在50nm-1000nm的范围内,煤直接液化活性高且添加量少;
3)所制备的催化剂稳定性好。
具体实施方式
下面对本发明作进一步说明,但不作为对本发明的限定。
一种煤直接加氢液化的非水溶剂型纳米催化剂的制备方法,包括以下步骤:
(1)预粉碎:将铁金属活性组分前驱体预研磨至200目以下,得到铁基细粉。
(2)研磨和分散:将铁基细粉与分散剂、溶剂混合并高剪切预分散,得到铁基浆料。
(3)纳米化处理:利用纳米化处理设备将分散后铁基浆料中悬浮液中的固体颗粒粒径降低至纳米级别(50nm-1000nm),所得到的纳米分散悬浮液即为煤直接液化催化剂。
优选地,所述铁金属活性组分前驱体选自赤铁矿、磁铁矿、磁黄铁矿、铁矿渣、褐铁矿、黄铁矿、氧化铁、钢渣和电炉渣中的至少一种。
优选地,所述的分散剂为:油酸二乙醇酰胺、油胺、油酸、油酸钠、三乙醇胺、乙二醇、三异丙醇胺、聚乙二醇(辛基苯基醚)其中的一种或几种混合物。
优选地,所述溶剂为脱晶蒽油、煤直接液化循环溶剂油、煤焦油、四氢萘、柴油其中的一种或几种混合物。
所述的铁金属活性组分前驱体需预研磨至200目以下,得到铁基细粉,再进行预分散,得到铁基浆料;
优选地,所述纳米级别控制在50nm-1000nm。
本发明通过控制粒度,减少催化剂的颗粒尺寸,催化剂尺寸越小,反应活性越高。
所述分散剂占纳米分散悬浮液总重量的1.0-10%。
为了保证固体颗粒在催化剂中稳定的分散,分散剂的添加量不少于1%,从成本角度考虑,控制分散剂添加量不超过10%。
所述铁金属活性组分前驱体、分散剂和溶剂三者之间的质量比为(10-60):(1-10):(30-89)。
优选地,所述悬浮液中,所述固体颗粒物的浓度控制在10%~60%之间。固体颗粒物的浓度指重量为100kg的悬浮液中,固体颗粒物的重量为10-60kg。
优选地,所述的纳米化处理设备为盘式纳米砂磨机或纳米棒硝式砂磨机,所述纳米棒硝式砂磨机的线速度为6-23m/s,研磨温度为20℃~90℃,研磨时间为0.25~4h。
本发明还提供一种煤直接加氢液化的非水溶剂型纳米催化剂,其按照上述的制备方法制备得到。
下面通过具体实施例对本发明做进一步的说明:
实施例1
在烧杯中称取的140g氧化铁和780g四氢萘混匀,加入9.3g油酸,在高速分散机4000rmp/min下分散30min,得到铁基浆料,然后利用棒硝式砂磨机进行铁基浆料的纳米化处理,控制棒硝式砂磨机的转速在2000rmp/min,研磨温度为40℃,间歇式研磨1.5h,得到含15%的固体颗粒物煤直接液化催化剂悬浮液。该纳米氧化铁悬浮液中分散剂的重量比为1%。经过粒度测试仪测定得到催化剂的平均粒径为320nm。该催化剂记为1#催化剂。
实施例2
在烧杯中称取预粉碎至小于200目的赤铁矿(其铁含量为46.2%)440g和脱晶蒽油757g混匀,加入63g油胺,在高速分散机4000rmp/min下分散30min,得到铁基浆料,然后利用棒硝式砂磨机进行铁基浆料的纳米化处理,控制棒硝式砂磨机的转速在2000rmp/min,研磨温度为60℃,间歇式研磨2.0h,得到含35%的固体颗粒物煤直接液化催化剂悬浮液。该纳米氧化铁悬浮液中分散剂的重量比为5.0%。经过粒度测试仪测定得到催化剂的平均粒径为470nm。该催化剂记为2#催化剂。
实施例3
在烧杯中称取预粉碎至小于200目的磁黄铁矿(其铁含量为48.76%)630g和煤直接液化循环溶剂500g混匀,加入15g三乙醇胺,在高速分散机4000rmp/min下分散30min,得到铁基浆料,然后利用棒硝式砂磨机进行铁基浆料的纳米化处理,控制棒硝式砂磨机的转速在2500rmp/min,研磨温度为50℃,间歇式研磨2.0h,得到含55%的固体颗粒物煤直接液化催化剂悬浮液。该纳米氧化铁悬浮液中分散剂的重量比为1.3%。经过粒度测试仪测定得到催化剂的平均粒径为660nm。该催化剂记为3#催化剂。
实施例4
在烧杯中称取预粉碎至小于200目的褐铁矿(其铁含量46.92%)200g、四氢萘200g和煤直接液化循环溶剂140g混匀,加入60g油胺,在高速分散机4000rmp/min下分散30min,得到铁基浆料,然后利用棒硝式砂磨机进行铁基浆料的纳米化处理,控制棒硝式砂磨机的转速在2500rmp/min,研磨温度为50℃,间歇式研磨2.0h,得到含33%的固体颗粒物煤直接液化催化剂悬浮液。该纳米氧化铁悬浮液中分散剂的重量比为10.0%。经过粒度测试仪测定得到催化剂的平均粒径为270nm。该催化剂记为4#催化剂。
对比例1
将分析纯试剂Fe2O3粉体不经过纳米化处理,直接作为煤直接液化催化剂,经过粒度测试仪测定得到催化剂的平均粒径为17μm,记为5#催化剂。
对比例2
与实施例1的制备方式相似,唯一不同的是,在铁基浆料制备的分散过程中不添加分散剂。即在烧杯中称取140g Fe2O3和793g四氢萘混匀,在高速分散机4000rmp/min下分散30min,得到铁基浆料,然后利用棒硝式砂磨机进行铁基浆料的纳米化处理,控制棒硝式砂磨机的转速在2000rmp/min,研磨温度为40℃,间歇式研磨1.5h,得到含15%的固体颗粒物煤直接液化催化剂悬浮液。经过粒度测试仪测定得到催化剂的平均粒径为440nm。该催化剂记为6#催化剂。
实施例5
使用高压釜对上述催化剂进行煤直接液化活性评价,原料煤采用典型的液化用煤,其分析数据如下表所示:
表1煤样的基础数据
Figure BDA0001790227780000051
评价方法所使用的反应器为高压釜,该高压釜容积为0.5L,取上述干燥无灰基煤20g,分别加入1#-6#催化剂,其添加量以所含铁质量含量占干煤3%计算,补充部分供氢溶剂四氢萘,计算加入系统的供氢溶剂总量为24g.加入助催化剂硫磺,添加量为S:Fe=2:1(原子比)。上述物料加入高压釜中后,密封,先用低压氮气置换釜内空气,再冲入高压氢气至10MPa,以10℃/min升温速率,缓慢升温至450℃,恒温60min,然后取下加热器,通过冷却水盘管及外置风扇迅速冷却釜体至常温,停止搅拌。记录釜内压力及温度,气体取样进行气相色谱分析,固液体产物完全取出后依次进行正己烷、甲苯、四氢呋喃索氏萃取分析,分别得到油、沥青烯、前沥青烯,以及未反应物等产率。采用现有技术中的计算方法得到各产物产率,注意油产率、转化率计算过程中扣除添加催化剂过程中引入的溶剂,所得结果见下表2:
表2催化剂性能评价数据表
Figure BDA0001790227780000052
以上实施例结果(表2)显示,从油产率和转化率可以看出,经过纳米化处理后新制备的1#-4#比5#催化剂要优于添加了分散剂的1#催化剂整体性能优于6#催化剂。非水溶剂型体系下分散的纳米催化剂,纳米化处理后即不需要再次干燥处理,且因添加了分散剂,催化剂在油溶性体系中分散性好,有利于跟煤直接液化反应体系的良好接触,提高了反应催化的活性。在煤液化催化剂领域,油产率和转化率的微小增加,足以带来工业上的巨大效益,说明本发明提出的催化剂具有很好的应用前景。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (4)

1.一种用于煤炭直接加氢液化的纳米分散型催化剂的制备方法,其特征在于,包括以下步骤:
(1)预研磨:将铁金属活性组分前驱体预研磨至200目以下,得到铁基细粉;
(2)分散:将铁基细粉与分散剂、溶剂混合并高剪切预分散,得到铁基浆料;
(3)纳米化处理:利用纳米化处理设备将分散后铁基浆料中悬浮液中的固体颗粒物粒径降低至纳米级别,所得到的纳米分散悬浮液为纳米分散型催化剂;
所述分散剂选自油酸二乙醇酰胺、油胺、油酸、油酸钠、三乙醇胺、乙二醇、三异丙醇胺和聚乙二醇中的至少一种;
所述溶剂选自脱晶蒽油、煤直接液化循环溶剂油、煤焦油、四氢萘和柴油中的至少一种;
所述铁金属活性组分前驱体、分散剂和溶剂三者之间的质量比为(10-60):(1-10):(30-89);
所述铁金属活性组分前驱体选自赤铁矿、磁铁矿、磁黄铁矿、铁矿渣、褐铁矿、黄铁矿、氧化铁、钢渣和电炉渣中的至少一种;
所述纳米级别控制在50nm-1000nm;
所述的纳米化处理设备为盘式纳米砂磨机或纳米棒硝式砂磨机;所述纳米棒硝式砂磨机的转速在2000-2500rmp/min,研磨温度为20℃~90℃,研磨时间为0.25~4h。
2.根据权利要求1所述的制备方法,其特征在于,所述分散剂占纳米分散悬浮液总重量的1.0-10%。
3.根据权利要求2所述的制备方法,其特征在于,所述纳米分散悬浮液中的固体颗粒物的质量浓度控制在10%~60%之间。
4.一种用于煤炭直接加氢液化的纳米分散型催化剂,其特征在于,按照权利要求1-3任一项所述的制备方法制备得到。
CN201811033122.5A 2018-09-05 2018-09-05 用于煤炭直接加氢液化的纳米分散型催化剂及其制备方法 Active CN109126796B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811033122.5A CN109126796B (zh) 2018-09-05 2018-09-05 用于煤炭直接加氢液化的纳米分散型催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811033122.5A CN109126796B (zh) 2018-09-05 2018-09-05 用于煤炭直接加氢液化的纳米分散型催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN109126796A CN109126796A (zh) 2019-01-04
CN109126796B true CN109126796B (zh) 2021-10-29

Family

ID=64827156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811033122.5A Active CN109126796B (zh) 2018-09-05 2018-09-05 用于煤炭直接加氢液化的纳米分散型催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN109126796B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109701561A (zh) * 2019-01-17 2019-05-03 煤炭科学技术研究院有限公司 分散型纳米二硫化钼催化剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1231326A (zh) * 1999-03-19 1999-10-13 煤炭科学研究总院北京煤化学研究所 浆状高分散铁基煤液化催化剂的制备
CN102391886A (zh) * 2011-09-27 2012-03-28 长安大学 一种煤炭干馏液化方法
CN102527432A (zh) * 2011-01-04 2012-07-04 新疆大学 高活性铁基煤直接液化催化剂及其制备方法
CN102895973A (zh) * 2011-07-29 2013-01-30 煤炭科学研究总院 一种复合型煤直接液化催化剂及其制备方法
WO2013057735A1 (en) * 2011-10-21 2013-04-25 Turlapati Raghavendra Rao "process and plant for conversion of segregated or unsegregated carbonaceous homogeneous and non- homogeneous waste feed into hydrocarbon fuels"
CN106955713A (zh) * 2017-03-16 2017-07-18 河南工程学院 一种纳米化高分散金属催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1231326A (zh) * 1999-03-19 1999-10-13 煤炭科学研究总院北京煤化学研究所 浆状高分散铁基煤液化催化剂的制备
CN102527432A (zh) * 2011-01-04 2012-07-04 新疆大学 高活性铁基煤直接液化催化剂及其制备方法
CN102895973A (zh) * 2011-07-29 2013-01-30 煤炭科学研究总院 一种复合型煤直接液化催化剂及其制备方法
CN102391886A (zh) * 2011-09-27 2012-03-28 长安大学 一种煤炭干馏液化方法
WO2013057735A1 (en) * 2011-10-21 2013-04-25 Turlapati Raghavendra Rao "process and plant for conversion of segregated or unsegregated carbonaceous homogeneous and non- homogeneous waste feed into hydrocarbon fuels"
CN106955713A (zh) * 2017-03-16 2017-07-18 河南工程学院 一种纳米化高分散金属催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
煤直接液化用黄铁矿催化剂超细粉碎的研究;刘文萍等;《功能材料》;20061231;第37卷(第3期);摘要、第1、2.1-2.2部分 *

Also Published As

Publication number Publication date
CN109126796A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
Yu et al. Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade
Yu et al. Beneficiation of an iron ore fines by magnetization roasting and magnetic separation
CN101348860B (zh) 一种多孔活性磁铁矿的生产方法
Li et al. Synthesis and catalysis of oleic acid-coated Fe3O4 nanocrystals for direct coal liquefaction
Zhu et al. Siderite as a novel reductant for clean utilization of refractory iron ore
Yuan et al. Separation of manganese and iron for low-grade ferromanganese ore via fluidization magnetization roasting and magnetic separation technology
CN100488673C (zh) 一种微米级、亚微米级铁粉的制备方法
Tang et al. Prospects of green extraction of iron from waste dumped flotation tailings by H2: A pilot case study
Cheng et al. The flotation of fine hematite by selective flocculation using sodium polyacrylate
CN104630461B (zh) 一种钛矿球团及其制备方法
CN108772064B (zh) 铁系催化剂的制备方法
Zhao et al. Upgrading of iron concentrate by fluidized-bed magnetizing roasting of siderite to magnetite in CO–H 2–N 2 atmosphere
Dhawan et al. Hydrogen reduction of low-grade banded iron ore
Zhang et al. Roasting characteristics of specularite pellets with modified humic acid based (MHA) binder under different oxygen atmospheres
CN109126796B (zh) 用于煤炭直接加氢液化的纳米分散型催化剂及其制备方法
Kaneko et al. Highly active limonite catalysts for direct coal liquefaction
Gao et al. Systematic study on separation of Mn and Fe from ferruginous manganese ores by carbothermic reduction roasting process: Phase transformation and morphologies
Pang et al. Reduction of 1—3 mm Iron Ore by CO on Fluidized Bed
Yu et al. A pilot study on recovery of iron from sulfur-bearing hematite ore using hydrogen-based mineral phase transformation followed by magnetic separation
Mohanty et al. A techno-economic approach for magnetising roasting of iron ore composite pellet using conventional and hybrid microwave furnace
Zhang et al. Partial magnetization of siderite via fluidization roasting for efficient recovery of iron: Phase transition, microstructure evolution and kinetics
El-Hussiny et al. Effect of grinding time of mill scale on the physicochemical properties of produced briquettes and its reduction via hydrogen
CN104785272A (zh) 铁系催化剂及其制备方法
CN117046487A (zh) 一种碳材料包覆铁基纳米复合材料的制备方法
Zhang et al. High efficient adsorption of W (VI) with a novel lignin-based biosorbent functionalized with Zn2+ and polyamine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant