CN109101702A - 一种基于时间约束稀疏表示和特征降维的故障检测方法 - Google Patents
一种基于时间约束稀疏表示和特征降维的故障检测方法 Download PDFInfo
- Publication number
- CN109101702A CN109101702A CN201810808881.8A CN201810808881A CN109101702A CN 109101702 A CN109101702 A CN 109101702A CN 201810808881 A CN201810808881 A CN 201810808881A CN 109101702 A CN109101702 A CN 109101702A
- Authority
- CN
- China
- Prior art keywords
- matrix
- fault
- dimension reduction
- data
- fault detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 35
- 230000009467 reduction Effects 0.000 title claims abstract description 22
- 239000011159 matrix material Substances 0.000 claims abstract description 50
- 238000012549 training Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 abstract description 10
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 230000007812 deficiency Effects 0.000 abstract 1
- 238000012544 monitoring process Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 2
- 241000135164 Timea Species 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Debugging And Monitoring (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
本发明公开了一种基于时间约束稀疏表示和特征降维的故障检测方法,具体涉及故障检测技术领域。其解决了现有的故障检测没有充分考虑强扰动对故障检测的影响,没有针对正常数据与故障数据间的关联而开发的特征降维方法的不足。该基于时间约束稀疏表示和特征降维的故障检测方法通过同时考虑工业过程监测数据的空间和时间特性而引入时间约束稀疏表示方法(TCSR),提出了一种新的特征降维故障检测方法(RCDR),充分利用构建的鲁棒邻接图并考虑数据特征,它的散度矩阵是考虑到故障检测的数据特性而特别设计的。类内散度矩阵只是用经典协方差矩阵表征正常数据集,而类间散布矩阵通过预定义的散布矩阵表征正常数据和故障数据之间的可分性。
Description
技术领域
本发明涉及故障检测技术领域,具体涉及一种基于时间约束稀疏表示和特征降维的故障检测方法。
背景技术
实际工业过程中,系统的安全性和可靠性尤为重要。故障检测是保障工业过程安全平稳运行的关键技术之一。实际工业数据具有强扰动的特性。不仅包含噪声,同时也包含异常点。当我们采集到数据后,数据驱动的故障检测方法能够在实际应用中建立起有效的故障检测模型至关重要。然而,现有的故障检测方法存在两点不足,一是没有充分考虑强扰动对故障检测的影响,二是没有针对正常数据与故障数据间的关联而开发的特征降维方法。
发明内容
本发明的目的是针对上述不足,提出了一种新的充分利用构建的鲁棒邻接图并考虑数据特征的RCDR方法,使其能够处理强扰动下的故障检测问题基于时间约束稀疏表示和特征降维的故障检测方法。
本发明具体采用如下技术方案:
一种基于时间约束稀疏表示和特征降维的故障检测方法,具体包括:
①.假设所检测的对象包含d个传感器,则正常工况采集得到的单一时刻数据x∈Rd,故障工况采集得到的单一时刻数据y∈Rd;收集m个独立采样构成正常数据训练集X=[x1,x2,…,xm]T∈Rd×m,收集n个独立采样构成故障数据训练集Y=[y1,y2,…,yn]∈Rd×n;
②.求解CX,使其满足式(1):
其中,Cx是矩阵X被其自身表达的稀疏矩阵;Ex是X被其自身表达后的残差中的野值点矩阵;Zx是X被其自身表达后的残差中的噪声矩阵;1是[1,1,…,1]T向量;diag(Cx)表示矩阵Cx对角元素为0,W是时间约束矩阵,根据现场实际情况确定该矩阵内各参数;
③.求解CY,使其满足式(2):
其中,CY是矩阵Y被其自身表达的稀疏矩阵;EY是Y被其自身表达后的残差中的野值点矩阵;ZY是Y被其自身表达后的残差中的噪声矩阵;diag(CY)表示矩阵CY对角元素为0;
④.求解
其中
⑤.求解
其中
⑥.求解广义特征值:得到G;
⑦.求解统计量:
其中,m是X数据集的样本个数;p是由降维投影矩阵G降维后剩余的维数;alpha是置信度水平;
⑧.给定一个在线得到的x,判断检测对象是否发生了故障:
若则发生了故障,反之则没有发生故障;
其中,xproj.=GTx。
本发明具有如下有益效果:
该基于时间约束稀疏表示和特征降维的故障检测方法充分利用构建的鲁棒邻接图并考虑数据特征,散度矩阵是考虑到故障检测的数据特性进行了特别设计,类内散度矩阵只是用经典协方差矩阵表征正常数据集,而类间散布矩阵通过预定义的散布矩阵表征正常数据和故障数据之间的可分性;
该方法并没有对故障数据的分布进行高斯假设,而且投影方向的数量也不受限制,降维方法中嵌入了TCSR,使其能够处理强扰动下的故障检测问题。
附图说明
图1为传统Knorr故障检测逻辑对EP阀泄漏故障的检测图;
图2为基于时间约束稀疏表示和特征降维的故障检测方法对EP阀泄漏故障的检测图。
具体实施方式
下面结合附图和具体实施例对本发明的具体实施方式做进一步说明:
一种基于时间约束稀疏表示(TCSR)和特征降维的故障检测方法,具体包括:
①.假设所检测的对象包含d个传感器,则正常工况采集得到的单一时刻数据x∈Rd,故障工况采集得到的单一时刻数据y∈Rd;收集m个独立采样构成正常数据训练集X=[x1,x2,…,xm]T∈Rd×m,收集n个独立采样构成故障数据训练集Y=[y1,y2,…,yn]∈Rd×n;
②.求解CX,使其满足式(1):
其中,Cx是矩阵X被其自身表达的稀疏矩阵;Ex是X被其自身表达后的残差中的野值点矩阵;Zx是X被其自身表达后的残差中的噪声矩阵;1是[1,1,…,1]T向量;diag(Cx)表示矩阵Cx对角元素为0,W是时间约束矩阵,根据现场实际情况确定该矩阵内各参数;
③.求解CY,使其满足式(2):
其中,CY是矩阵Y被其自身表达的稀疏矩阵;EY是Y被其自身表达后的残差中的野值点矩阵;ZY是Y被其自身表达后的残差中的噪声矩阵;diag(CY)表示矩阵CY对角元素为0;
④.求解
其中
⑤.求解
其中
⑥.求解广义特征值:得到G;
⑦.求解统计量:
其中,m是X数据集的样本个数;p是由降维投影矩阵G降维后剩余的维数;alpha是置信度水平;
⑧.给定一个在线得到的x,判断检测对象是否发生了故障:
若则发生了故障,反之则没有发生故障;
其中,xproj.=GTx。
如图1所示,为采用传统故障检测逻辑对EP阀泄漏故障的检测图;故障诊断逻辑误报率0%,漏报率100%。
如图2所示,基于该方法对某车辆研究所有限公司的制动试验台进行检测的检测图。本故障诊断逻辑专利误报率1.2%,漏报率0%。该实验基于车辆研究所的1:1制动系统仿真实验平台进行,电子制动力控制单元输出的Pset和电空转换阀输出的Pcv作为系统输入,选取时间窗长度为40的时间窗口,将Pset和Pcv扩维为80维,首先,在静态环境下,采集1000组正常样本和500组故障样本用于离线模型的训练。离线建模过程为上述①-⑦所示;其次,在相同环境下,采集1000组正常样本和300组故障样本用于在线故障检测,在线故障检测过程为上文中步骤⑧所示。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。
Claims (1)
1.一种基于时间约束稀疏表示和特征降维的故障检测方法,其特征在于,具体包括:
①.假设所检测的对象包含d个传感器,则正常工况采集得到的单一时刻数据x∈Rd,故障工况采集得到的单一时刻数据y∈Rd;收集m个独立采样构成正常数据训练集X=[x1,x2,…,xm]T∈Rd×m,收集n个独立采样构成故障数据训练集Y=[y1,y2,…,yn]∈Rd×n;
②.求解CX,使其满足式(1):
其中,Cx是矩阵X被其自身表达的稀疏矩阵;Ex是X被其自身表达后的残差中的野值点矩阵;Zx是X被其自身表达后的残差中的噪声矩阵;1是[1,1,…,1]T向量;diag(Cx)表示矩阵Cx对角元素为0,W是时间约束矩阵,根据现场实际情况确定该矩阵内各参数;
③.求解CY,使其满足式(2):
其中,CY是矩阵Y被其自身表达的稀疏矩阵;EY是Y被其自身表达后的残差中的野值点矩阵;ZY是Y被其自身表达后的残差中的噪声矩阵;diag(CY)表示矩阵CY对角元素为0;
④.求解
其中,
⑤.求解
其中,
⑥.求解广义特征值:优化目标函数得到降维投影矩阵G;
⑦.求解统计量:T2控制限
其中,m是X数据集的样本个数;p是由降维投影矩阵G降维后剩余的维数;alpha是置信度水平;
⑧.给定一个在线得到的x,判断检测对象是否发生了故障:
若则发生了故障,反之则没有发生故障;
其中,xproj.=GTx。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810808881.8A CN109101702B (zh) | 2018-07-23 | 2018-07-23 | 一种基于时间约束稀疏表示和特征降维的故障检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810808881.8A CN109101702B (zh) | 2018-07-23 | 2018-07-23 | 一种基于时间约束稀疏表示和特征降维的故障检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109101702A true CN109101702A (zh) | 2018-12-28 |
CN109101702B CN109101702B (zh) | 2023-05-12 |
Family
ID=64846993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810808881.8A Active CN109101702B (zh) | 2018-07-23 | 2018-07-23 | 一种基于时间约束稀疏表示和特征降维的故障检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109101702B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109888338A (zh) * | 2019-02-20 | 2019-06-14 | 华中科技大学鄂州工业技术研究院 | 基于统计的sofc供气故障检测方法及设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104182642A (zh) * | 2014-08-28 | 2014-12-03 | 清华大学 | 一种基于稀疏表示的故障检测方法 |
CN104793604A (zh) * | 2015-04-10 | 2015-07-22 | 浙江大学 | 一种基于主成分追踪的工业故障监测方法及应用 |
WO2017210894A1 (zh) * | 2016-06-08 | 2017-12-14 | 东北大学 | 基于运行视频信息的一种电弧炉故障监测方法 |
-
2018
- 2018-07-23 CN CN201810808881.8A patent/CN109101702B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104182642A (zh) * | 2014-08-28 | 2014-12-03 | 清华大学 | 一种基于稀疏表示的故障检测方法 |
CN104793604A (zh) * | 2015-04-10 | 2015-07-22 | 浙江大学 | 一种基于主成分追踪的工业故障监测方法及应用 |
WO2017210894A1 (zh) * | 2016-06-08 | 2017-12-14 | 东北大学 | 基于运行视频信息的一种电弧炉故障监测方法 |
Non-Patent Citations (1)
Title |
---|
李钢;周东华;: "一类设备故障过程的故障趋势预测方法研究", 空军工程大学学报(自然科学版) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109888338A (zh) * | 2019-02-20 | 2019-06-14 | 华中科技大学鄂州工业技术研究院 | 基于统计的sofc供气故障检测方法及设备 |
Also Published As
Publication number | Publication date |
---|---|
CN109101702B (zh) | 2023-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yan et al. | ARX model based fault detection and diagnosis for chillers using support vector machines | |
CN112270122B (zh) | 一种建筑火灾火源参数反演评估方法 | |
Ding et al. | Application of randomized algorithms to assessment and design of observer-based fault detection systems | |
JP2021064370A (ja) | デジタル・ツイン・シミュレーション・データを利用した時系列データに基づく、大規模な産業用監視システム向けの半教師あり深層異常検出のための方法およびシステム | |
DE602005018056D1 (de) | Sensor-fehlerdiagnose und -prognose unter verwendualer entwicklungen | |
Zhao | Lab test of three fault detection and diagnostic methods’ capability of diagnosing multiple simultaneous faults in chillers | |
Yoshida et al. | ARX and AFMM model-based on-line real-time data base diagnosis of sudden fault in AHU of VAV system | |
CN107021390A (zh) | 机器人乘坐电梯的控制方法和系统 | |
KR20170031985A (ko) | 공기조화시스템의 고장 검출 및 진단 방법 | |
CN109827629A (zh) | 一种城市河道水位的分布式可靠性估计方法 | |
US20170306726A1 (en) | Stuck pipe prediction | |
Turrisi et al. | A cointegration-based approach for automatic anomalies detection in large-scale structures | |
US20200156680A1 (en) | Railway vehicle major component and system diagnosis apparatus | |
US12060876B2 (en) | P and I diagram input | |
CN108427400A (zh) | 一种基于神经网络解析冗余的飞机空速管故障诊断方法 | |
Papadopoulos et al. | Distributed diagnosis of actuator and sensor faults in HVAC systems | |
CN109210386A (zh) | 一种漏水检测方法、电子设备及存储介质 | |
Moczulski et al. | A methodology of leakage detection and location in water distribution networks—The case study | |
CN109101702A (zh) | 一种基于时间约束稀疏表示和特征降维的故障检测方法 | |
Okeya et al. | Locating pipe bursts in a district metered area via online hydraulic modelling | |
CN106874589A (zh) | 一种基于数据驱动的报警根源寻找方法 | |
CN110009033A (zh) | 一种基于动态主元分析的钻井过程异常预警模型 | |
José et al. | Improvements in failure detection of DAMADICS control valve using neural networks | |
CN109855855B (zh) | 高速列车闭环刹车制动系统间歇故障检测方法 | |
Subramaniam et al. | Output injected nonlinear observer for diagnosing faults in multi-zone building |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |