CN109100692B - 基于迭代物理光学的粗糙面与多个目标复合散射仿真方法 - Google Patents
基于迭代物理光学的粗糙面与多个目标复合散射仿真方法 Download PDFInfo
- Publication number
- CN109100692B CN109100692B CN201810628019.9A CN201810628019A CN109100692B CN 109100692 B CN109100692 B CN 109100692B CN 201810628019 A CN201810628019 A CN 201810628019A CN 109100692 B CN109100692 B CN 109100692B
- Authority
- CN
- China
- Prior art keywords
- rough surface
- target
- scattering
- total
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 69
- 238000004088 simulation Methods 0.000 title claims abstract description 54
- 230000008878 coupling Effects 0.000 claims abstract description 29
- 238000010168 coupling process Methods 0.000 claims abstract description 29
- 238000005859 coupling reaction Methods 0.000 claims abstract description 29
- 230000006870 function Effects 0.000 claims abstract description 11
- 230000006698 induction Effects 0.000 claims abstract description 10
- 238000000342 Monte Carlo simulation Methods 0.000 claims abstract description 9
- 230000003287 optical effect Effects 0.000 claims abstract description 7
- 238000001228 spectrum Methods 0.000 claims abstract description 4
- 239000004020 conductor Substances 0.000 claims description 43
- 230000010287 polarization Effects 0.000 claims description 13
- 238000005070 sampling Methods 0.000 claims description 11
- 230000003595 spectral effect Effects 0.000 claims description 8
- 230000005684 electric field Effects 0.000 claims description 3
- 230000035699 permeability Effects 0.000 claims description 3
- 238000004613 tight binding model Methods 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明属于雷达电磁仿真技术领域,公开了一种基于迭代物理光学的粗糙面与多个目标复合散射仿真方法,输入粗糙面功率谱密度函数和粗糙度参数,用蒙特卡罗方法获得粗糙面几何轮廓;采用仿真软件FEKO对目标进行几何建模;将目标的几何模型加入粗糙面模型,生成复合模型;利用物理光学法计算粗糙面和每个目标直接散射的表面感应电磁流;根据迭代策略和惠更斯原理,计算粗糙面和目标之间及目标与目标之间耦合散射的表面感应电磁流;通过惠更斯原理得到复合模型的远区总散射场;基于复合模型的总散射场和入射场,获取复合模型的双站雷达散射系数。本发明具有内存需求低、仿真效率高、仿真方法通用性强等优点。
Description
技术领域
本发明属于雷达电磁仿真技术领域,主要涉及电磁散射高频仿真,具体是一种基于迭代物理光学的粗糙面与多个目标复合散射仿真方法,用于获取复合模型的远区双站雷达散射系数。
背景技术
近些年来,随着雷达技术的飞速发展,粗糙地海面与目标复合模型电磁散射特性研究在环境遥感、雷达探测、目标识别等领域均具有重要的应用价值。雷达发射电磁波照射物体时,物体的散射回波中往往包含被照射物体的几何形状和电磁参数信息,将为目标识别和特征提取提供重要信息。但当雷达对实际地海环境中的目标进行探测时,雷达的回波信号中不但包含有目标的回波信号还不可避免地包含了地海背景反射回来的杂波信号,这将降低雷达对目标的检测与识别能力。所以,开展粗糙面与目标复合散射及耦合机理研究具有重要的学术价值和广泛的应用前景。
国内外学者对于粗糙面与单个目标复合电磁散射已进行了大量的研究,求解方法大致包含低频数值、高频近似及高低频混合三种算法。低频数值方法通常将粗糙面和目标看做一个整体来处理,有较高的计算精度,但其计算内存消耗大,计算时间长,例如矩量法(MOM)、时域有限差分法(FDTD)、时域有限元法(FEM)以及这些算法的改进加速方法等。高频近似方法通常都是基于特定的物理近似,其精度往往较低,但计算速度快,粗糙面与目标之间的耦合多采用迭代策略和射线寻迹思想来求解,例如物理光学法(PO)、几何光学法(GO)、几何绕射理论(GTD)等。高低频混合算法将整个计算区域划分为粗糙面区域和目标区域,粗糙面区域采用高频近似方法求解,目标区域采用低频数值方法求解,该方法既保留了低频算法的精确性又保留了高频算法的高效性,例如PO-MOM、PO-FEM方法等。
但在实际中经常会遇到地海面上飞机编队、海面上方舰船与导弹同时存在等问题,该问题属于粗糙面与多个目标的复合散射问题。有学者采用低频数值方法求解了小尺度粗糙面与两个小尺寸目标的复合散射,该方法内存需求高,仿真效率低。而对于大尺度粗糙面与多个电大尺寸目标复合模型的快速求解问题,国内外鲜有文献报道。
总之,对于粗糙面与多个目标的复合电磁散射,国内外学者研究相对较少。粗糙面与多个目标的复合电磁散射,需考虑粗糙面与每个目标之间的耦合散射,以及任意两个目标之间的耦合散射,与粗糙面与单个目标的复合散射相比,求解相对比较复杂。粗糙面与多个目标的复合电磁散射研究对实际地物环境中多个目标的雷达探测与识别技术具有重要的实际应用价值。
发明内容
本发明的目的在于克服已有技术的不足,针对大区域粗糙面与多个电大尺寸目标的复合电磁散射仿真问题,提供了一种基于迭代物理光学的粗糙面与多个目标复合散射仿真方法,在保证一定精度的前提下降低了仿真的内存需求,提高了仿真效率。
本发明所提出的基于迭代物理光学的粗糙面与多个目标复合散射仿真方法包括:输入粗糙面功率谱密度函数和粗糙度参数,用蒙特卡罗方法获得粗糙面几何轮廓;采用仿真软件FEKO对目标进行几何建模;将目标的几何模型加入粗糙面模型,生成复合模型;利用物理光学法计算粗糙面和每个目标直接散射的表面感应电磁流;根据迭代策略和惠更斯原理,计算粗糙面和目标之间以及目标与目标之间耦合散射的表面感应电磁流;通过惠更斯原理得到复合模型的远区总散射场;基于复合模型的总散射场和入射场,获取复合模型的双站雷达散射系数。
进一步,所述基于迭代物理光学的粗糙面与多个目标复合散射仿真方法包括以下步骤:
步骤一,基于粗糙面的功率谱密度函数及粗糙度参数,采用蒙特卡罗方法产生仿真的粗糙面轮廓;根据目标数量、大小、形状及相对位置要求,利用仿真软件FEKO对目标进行几何建模,并将产生的目标几何模型加入到粗糙面模型中,生成仿真所需的粗糙面与上方多个目标复合模型;
步骤三,基于迭代策略和惠更斯原理,求解粗糙面与目标之间的耦合散射以及目标与目标之间的耦合散射,计算出每一次迭代粗糙面的表面耦合电流J1-s、J2-s···JN-s,以及表面耦合磁流M1-s、M2-s···MN-s;同时计算出每一次迭代每个导体目标表面的耦合电流,第一个目标第j个目标这里N表示总迭代次数,得到粗糙面表面的总感应电磁流:
Jtotal-s=Jd-s+J1-s+J2-s+···JN-s;
Mtotal-s=Md-s+M1-s+M2-s+···MN-s;
以及每个导体目标表面的总感应电流,第j个目标:
其中,k是电磁波的波数,θi是电磁波的入射角,θs是电磁波的散射角,g是锥形波因子。
进一步,所述步骤一中生成仿真所需的粗糙面与上方多个目标复合模型包括:
(1)仿真粗糙面轮廓需要粗糙度参数及其功率谱密度函数,其中,粗糙度参数包括均方根高度δ和相关长度l;粗糙面功率谱密度函数为其中k是空间波数;将S(k)、δ、l作为输入参数,并选取一系列振幅独立的高斯随机变量的高斯谐波;
(2)输入入射波的频率f,以Δx=3.0×108/(10f)为采样间隔,取N个离散采样点x-N/2+1,···,x-1,x0,x1,···,xN/2,令x0=0,则x-1=-Δx,x1=Δx,···x-N/2+1=(-N/2+1)·Δx,xN/2=N/2·Δx;
(3)将(2)中产生的N个离散采样点作为粗糙面的横坐标,在离散点处通过蒙特卡罗方法将产生的大量振幅独立的高斯谐波进行叠加,然后作逆傅里叶变换得到每个采样点对应的纵坐标z-N/2+1,···,z-1,z0,z1,···,zN/2,生成所要仿真的粗糙面轮廓;
(4)根据目标数量、大小、形状及相对位置要求,利用仿真软件FEKO对目标进行几何建模,并将建立好的几何模型导出,加入到粗糙面模型中,生成仿真所需的粗糙面与上方多个目标复合模型。
进一步,所述步骤二中获得粗糙面直接散射的表面感应电磁流,以及每个导体目标直接散射的表面感应电流具体包括:
(1)用锥形波作为雷达的入射波源对粗糙面进行直接照射,HH极化下粗糙面上被照亮区域的表面电磁流Jd-s、Md-s为:
(2)计算每个导体目标被锥形波直接照亮区域的表面感应电流,第j个导体目标:
进一步,所述步骤三中获取耦合散射粗糙面表面的耦合电磁流,以及每个导体目标表面的耦合电流具体包括:
(1)基于惠更斯原理,对于第1次耦合散射,粗糙面的耦合面电磁流J1-s、M1-s为:
第1次耦合目标表面的耦合电流,第j个目标表面:
(2)基于迭代策略和惠更斯原理,得第N次迭代粗糙面和目标表面的耦合电磁流:
(3)粗糙面上总的感应面电磁流Jtotal-s、Mtotal-s为:
Jtotal-s=Jd-s+J1-s+J2-s+···JN-s;
Mtotal-s=Md-s+M1-s+M2-s+···MN-s;
第j个导体目标,其表面总的感应电流为:
进一步,所述步骤四中粗糙面上总感应电磁流产生的远区散射场,以及每个目标上总感应电流产生的远区散射场具体包括:
(1)粗糙面上总感应电磁流产生的远区散射场为:
(2)每个导体目标上总感应电流产生的远区散射场,第j个目标:
进一步,所述步骤五获取粗糙面上方多个目标复合模型的双站雷达散射系数按如下公式计算:
综上所述,本发明的优点及积极效果为:本发明采用锥形波照射该复合模型,避免了有限长粗糙面边缘处的人工反射,提高了该方法的准确性。本发明采用物理光学法计算粗糙面及上方每个目标表面的等效电磁流,利用迭代策略和惠更斯原理求解粗糙面与每个目标及任意两目标之间的耦合散射,因此,在保证正确率的情况下,相对于现有方法,极大地减少了仿真时间和计算机内存,可用于求解大尺度粗糙面与上方多个电大尺寸目标的复合电磁散射问题。本发明由于目标的形状和数目是任意的,因此,相对于现有技术具有更高的通用性和更广的工程应用范围。
附图说明
图1是本发明实施例提供的基于迭代物理光学的粗糙面与多个目标复合散射仿真方法流程图。
图2是本发明实施例提供的基于迭代物理光学的粗糙面与多个目标复合散射仿真方法的实现流程图。
图3是本发明实施例提供的粗糙面与多个目标的复合散射模型示意图。
图4是本发明实施例提供的粗糙面与多个目标之间的耦合散射示意图。
图5是本发明实施例提供的粗糙面与多个无限长圆柱目标复合模型实例图。
图6是本发明实施例提供的本发明和有限元-边界积分方程法在导体粗糙面与两个导体圆柱目标复合模型的双站雷达散射系数对比曲线图。
图7是本发明实施例提供的本发明和有限元-边界积分方程法在导体粗糙面与三个导体圆柱目标复合模型的双站雷达散射系数对比曲线图。
图8是本发明实施例提供的本发明和有限元-边界积分方程法在介质粗糙面与两个导体圆柱目标复合模型的双站雷达散射系数对比曲线图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明针对现有技术仿真效率低、仿真通用性不强、内存需求高等缺陷,提供一种基于迭代策略的电磁场高频方法,在保证精度的前提下降低仿真的内存需求、提高仿真效率和工程应用性。
下面结合附图对本发明的应用原理作详细的描述。
如图1所示,本发明实施例提供的基于迭代物理光学的粗糙面与多个目标复合散射仿真方法包括以下步骤:
S101:输入粗糙面功率谱密度函数和粗糙度参数,用蒙特卡罗方法获得粗糙面几何轮廓;
S102:根据目标大小、形状、数目及相对位置要求,采用仿真软件FEKO对目标进行几何建模;
S103:将目标的几何模型加入粗糙面模型,生成复合模型;
S104:利用物理光学法计算粗糙面和每个目标直接散射的表面感应电磁流;
S105:根据迭代策略和惠更斯原理,计算粗糙面和目标之间以及目标与目标之间耦合散射的表面感应电磁流;
S106:将直接散射和耦合散射对应的表面感应电磁流叠加得到总的表面感应电磁流,通过惠更斯原理得到复合模型的远区总散射场;
S107:基于复合模型的总散射场和入射场,获取复合模型的双站雷达散射系数。
下面结合附图对本发明的应用原理作进一步的描述。
如图2所示,本发明实施例提供的基于迭代物理光学的粗糙面与多个目标复合散射仿真方法具体包括以下步骤:
步骤1:生成仿真所需的粗糙面与多个目标复合模型。
(1.1)仿真粗糙面轮廓需要粗糙度参数及其功率谱密度函数,其中,粗糙度参数包括均方根高度δ和相关长度l;粗糙面功率谱密度函数为其中k是空间波数;将S(k)、δ、l作为输入参数,并选取一系列振幅独立的高斯随机变量的高斯谐波;
(1.2)输入入射波的频率f,以Δx=3.0×108/(10f)为采样间隔,取N个离散采样点x-N/2+1,···,x-1,x0,x1,···,xN/2,令x0=0,则x-1=-Δx,x1=Δx,···x-N/2+1=(-N/2+1)·Δx,xN/2=N/2·Δx;
(1.3)将(2)中产生的N个离散采样点作为粗糙面的横坐标,在离散点处通过蒙特卡罗方法将产生的大量振幅独立的高斯谐波进行叠加,然后作逆傅里叶变换得到每个采样点对应的纵坐标z-N/2+1,···,z-1,z0,z1,···,zN/2,生成所要仿真的粗糙面轮廓;
(1.4)根据目标数量、大小、形状及相对位置要求,利用仿真软件FEKO对目标进行几何建模,并将建立好的几何模型导出,加入到粗糙面模型中,生成仿真所需的粗糙面与上方多个目标复合模型。
步骤2:求解粗糙面直接散射的感应电磁流,以及每个导体目标直接散射的感应电流。
(2.1)用锥形波作为雷达的入射波源对粗糙面进行直接照射,HH极化下粗糙面上被照亮区域的表面电磁流Jd-s、Md-s为:
(2.2)计算每个导体目标被锥形波直接照亮区域的表面感应电流,第j个导体目标:
步骤3:求解每次迭代粗糙面表面的耦合电磁流,以及每个导体目标表面上的耦合电流,最终获得粗糙面表面的总电磁流以及每个导体目标表面的总电流。
(3.1)基于惠更斯原理,对于第1次耦合散射,粗糙面的耦合面电磁流J1-s、M1-s为:
第1次耦合目标表面的耦合电流,第j个目标表面:
(3.2)基于迭代策略和惠更斯原理,得第N次迭代粗糙面和目标表面的耦合电磁流:
(3.3)粗糙面上总的感应面电磁流Jtotal-s、Mtotal-s为:
Jtotal-s=Jd-s+J1-s+J2-s+···JN-s;
Mtotal-s=Md-s+M1-s+M2-s+···MN-s;
第j个导体目标,其表面总的感应电流为:
步骤4:基于步骤3获得的粗糙面表面的总感应电磁流,利用惠更斯原理获得远区散射场,以及每个目标上的总感应电流产生的远区散射场。
(4.1)粗糙面上总感应电磁流产生的远区散射场为:
(4.2)每个导体目标上总感应电流产生的远区散射场,第j个目标:
步骤5:基于步骤4获得的远区散射场,得到粗糙面上方多个目标复合模型的双站雷达散射系数σ(θs):
下面结合仿真对本发明的应用效果做详细的描述。
1.试验仿真条件
仿真实验中使用的雷达入射频率f=1.0GHz,入射波波长λ=0.3m,将粗糙面采样点数设定为Ns=4096,采样间隔设定为Δx=0.03m,对应粗糙面长度L=122.88m,锥形波因子g=30.72m,均方根高度δ=0.1λ,相关长度l=1.0λ。本发明中所有的试验仿真是在CPU为Intel(R)Core(TM)i3,主频3.4GHz,可用内存为8GB的Windows7系统上用CompaqVisualFortran6软件编程完成。
2.试验仿真实例与结果分析
仿真实验1,目标选取无限长圆柱,无限长圆柱目标的半径设定为r=1λ,按照目标数量、排列方式不同,执行步骤1生成仿真所用的复合模型,如图5所示。图5(a)~5(b)表示粗糙面与上方两个圆柱目标的复合模型,其中图5(a)中圆柱沿x轴分布,两个圆柱的圆心坐标分别为(-2λ,2λ)和(2λ,2λ);图5(b)中圆柱沿着z轴分布,两个圆柱的圆心坐标为(0,2λ)和(0,5λ)。图5(c)表示粗糙面与上方三个圆柱目标的复合模型,三个圆柱的圆心坐标分别为(-2λ,2λ)、(2λ,2λ)和(0,4λ)。
仿真实验2,用本发明和有限元-边界积分方程法对图5(a)~(b)所述的导体粗糙面与两个导体圆柱复合模型的双站雷达散射系数进行仿真,结果如图6。其中,图6(a)~图6(b)为两个圆柱沿着x轴分布,不同极化下用本发明和有限元-边界积分方程法得到的该复合模型双站雷达散射系数对比曲线图,入射角θi=30°;图6(c)~图6(d)中两个圆柱沿着z轴分布,不同极化下用本发明和有限元-边界积分方程法得到的该复合模型双站雷达散射系数对比曲线图,入射角θi=50°。
表1图6(a)~图6(b)中本发明与有限元-边界积分方程法计算资源的比较
从图6(a)~图6(d)可以看出,对于导体粗糙面与上方两个导体圆柱的复合模型,不同入射角、极化、目标排列方式下用本发明仿真得到的双站雷达散射系数与有限元-边界积分方程法所得结果具有很好的一致性,说明了本发明在对该复合模型双站雷达散射系数进行仿真时具有很高的精度。另外,表1给出了图6(a)~图6(b)实施的仿真条件下本发明与有限元-边界积分方程法所占计算机内存和仿真时间对比。由表1可知,HH和VV极化下本发明所耗内存为有限元-边界积分方程法的0.11%;对于仿真时间,HH极化本发明为有限元-边界积分方程法的9.7%,VV极化本发明为有限元-边界积分方程法的11.7%。这说明本发明极大地节省了计算机资源,可用于大尺度粗糙面与多个电大尺寸目标复合电磁散射的快速计算。
仿真实验3,用本发明和有限元-边界积分方程法对图5(c)所述的导体粗糙面上方三个导体圆柱复合模型的双站雷达散射系数进行仿真,结果如图7。其中,图7(a)为入射角θi=20°下用本发明和有限元-边界积分方程法得到的该复合模型双站雷达散射系数对比曲线图;图7(b)为入射角θi=40°下两种方法计算得到的双站雷达散射系数对比曲线图。
从图7(a)~图7(b)可以看出,用本发明仿真得到的导体粗糙面上方三个导体圆柱复合模型的双站雷达散射系数与有限元-边界积分方程法的计算结果吻合的很好,说明了本发明在对该复合模型双站雷达散射系数进行仿真时具有很高的精度。
仿真实验4,用本发明和有限元-边界积分方程法对图5(a)~图5(b)所述的介质粗糙面上方两个导体圆柱复合模型的双站雷达散射系数进行仿真,这里粗糙面的介电系数εr=(16.67,1.15),结果如图8。其中,图8(a)~图8(b)为两个圆柱沿着x轴分布,不同极化下用本发明和有限元-边界积分方程法得到的该复合模型双站雷达散射系数对比曲线图,入射角θi=30°;图8(c)~图8(d)中两个圆柱沿着z轴分布,不同极化下用本发明和有限元-边界积分方程法得到的该复合模型双站雷达散射系数对比曲线图,入射角θi=50°。
从图8(a)~图8(d)可以看出,对于介质粗糙面与上方两个导体圆柱的复合模型,不同入射角、极化、目标排列方式下用本发明仿真得到的双站雷达散射系数与有限元-边界积分方程法所得结果具有很好的一致性,说明了本发明在对该复合模型双站雷达散射系数进行仿真时具有很高的精度。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (5)
1.一种基于迭代物理光学的粗糙面与多个目标复合散射仿真方法,其特征在于,所述基于迭代物理光学的粗糙面与多个目标复合散射仿真方法包括:输入粗糙面功率谱密度函数和粗糙度参数,用蒙特卡罗方法获得粗糙面几何轮廓;采用仿真软件FEKO对目标进行几何建模;将目标的几何模型加入粗糙面模型,生成复合模型;利用物理光学法计算粗糙面和每个目标直接散射的表面感应电磁流;根据迭代策略和惠更斯原理,计算粗糙面和目标之间及目标与目标之间耦合散射的表面感应电磁流;通过惠更斯原理得到复合模型的远区总散射场;基于复合模型的总散射场和入射场,获取复合模型的双站雷达散射系数;
所述基于迭代物理光学的粗糙面与多个目标复合散射仿真方法包括以下步骤:
步骤一,基于粗糙面的功率谱密度函数及粗糙度参数,采用蒙特卡罗方法产生仿真的粗糙面轮廓;根据目标数量、大小、形状及相对位置要求,利用仿真软件FEKO对目标进行几何建模,并将产生的目标几何模型加入到粗糙面模型中,生成仿真所需的粗糙面与上方多个目标复合模型;
步骤三,基于迭代策略和惠更斯原理,求解粗糙面与目标之间的耦合散射以及目标与目标之间的耦合散射,计算出每一次迭代粗糙面的表面耦合电流J1-s、J2-s…JN-s,以及表面耦合磁流M1-s、M2-s…MN-s;同时计算出每一次迭代每个导体目标表面的耦合电流,第一个目标第j个目标这里N表示总迭代次数,得到粗糙面表面的总感应电磁流:
Jtotal-s=Jd-s+J1-s+J2-s+…JN-s;
Mtotal-s=Md-s+M1-s+M2-s+…MN-s;
以及每个导体目标表面的总感应电流,第j个目标:
2.如权利要求1所述的基于迭代物理光学的粗糙面与多个目标复合散射仿真方法,其特征在于,所述步骤一中生成仿真所需的粗糙面与上方多个目标复合模型包括:
(1)仿真粗糙面轮廓需要粗糙度参数及其功率谱密度函数,其中,粗糙度参数包括均方根高度δ和相关长度l;粗糙面功率谱密度函数为其中k是空间波数;将S(k)、δ、l作为输入参数,并选取一系列振幅独立的高斯随机变量的高斯谐波;
(2)输入入射波的频率f,以Δx=3.0×108/(10f)为采样间隔,取N个离散采样点x-N/2+1,…,x-1,x0,x1,…,xN/2,令x0=0,则x-1=-Δx,x1=Δx,…x-N/2+1=(-N/2+1)·Δx,xN/2=N/2·Δx;
(3)将(2)中产生的N个离散采样点作为粗糙面的横坐标,在离散点处通过蒙特卡罗方法将产生的大量振幅独立的高斯谐波进行叠加,然后作逆傅里叶变换得到每个采样点对应的纵坐标z-N/2+1,…,z-1,z0,z1,…,zN/2,生成所要仿真的粗糙面轮廓;
(4)根据目标数量、大小、形状及相对位置要求,利用仿真软件FEKO对目标进行几何建模,并将建立好的几何模型导出,加入到粗糙面模型中,生成仿真所需的粗糙面与上方多个目标复合模型。
3.如权利要求1所述的基于迭代物理光学的粗糙面与多个目标复合散射仿真方法,其特征在于,所述步骤二中获得粗糙面直接散射的表面感应电磁流,以及每个导体目标直接散射的表面感应电流具体包括:
(1)用锥形波作为雷达的入射波源对粗糙面进行直接照射,HH极化下粗糙面上被照亮区域的表面电磁流Jd-s、Md-s为:
(2)计算每个导体目标被锥形波直接照亮区域的表面感应电流,第j个导体目标:
4.如权利要求1所述的基于迭代物理光学的粗糙面与多个目标复合散射仿真方法,其特征在于,所述步骤三中获取耦合散射粗糙面的表面耦合电磁流,以及每个导体目标的表面耦合电流具体包括:
(1)基于惠更斯原理,对于第1次耦合散射,粗糙面上的耦合面电磁流J1-s、M1-s为:
第1次耦合目标表面的耦合电流,第j个目标表面:
(2)基于迭代策略和惠更斯原理,得第N次迭代粗糙面和目标表面的耦合电磁流:
(3)粗糙面上总的感应面电磁流Jtotal-s、Mtotal-s为:
Jtotal-s=Jd-s+J1-s+J2-s+…JN-s;
Mtotal-s=Md-s+M1-s+M2-s+…MN-s;
第j个导体目标,其表面总的感应电流为:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810628019.9A CN109100692B (zh) | 2018-06-19 | 2018-06-19 | 基于迭代物理光学的粗糙面与多个目标复合散射仿真方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810628019.9A CN109100692B (zh) | 2018-06-19 | 2018-06-19 | 基于迭代物理光学的粗糙面与多个目标复合散射仿真方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109100692A CN109100692A (zh) | 2018-12-28 |
CN109100692B true CN109100692B (zh) | 2022-09-09 |
Family
ID=64796934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810628019.9A Active CN109100692B (zh) | 2018-06-19 | 2018-06-19 | 基于迭代物理光学的粗糙面与多个目标复合散射仿真方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109100692B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111143757B (zh) * | 2019-12-10 | 2023-05-09 | 西安理工大学 | 一种二维非高斯粗糙体目标散射特性的计算方法 |
CN111368398B (zh) * | 2020-02-06 | 2023-12-29 | 北京环境特性研究所 | 一种不确定结构电大目标电磁散射特性分析方法及装置 |
CN111753419B (zh) * | 2020-06-23 | 2023-03-31 | 河海大学常州校区 | 一种基于小波矩阵法检测粗糙面散射声压的方法 |
CN112731328A (zh) * | 2020-12-29 | 2021-04-30 | 北京环境特性研究所 | 一种雷达目标电磁散射特性模拟方法及装置 |
CN112711888B (zh) * | 2021-01-08 | 2022-10-28 | 北京理工大学 | 双向反射分布函数和散射中心的复合散射联合计算方法 |
CN113901638A (zh) * | 2021-09-03 | 2022-01-07 | 天津大学 | 基于贝克曼-基尔霍夫散射的太赫兹传播的射线追踪方法 |
CN114842052B (zh) * | 2022-05-06 | 2024-04-05 | 中国人民解放军空军工程大学 | 一种基于目标与环境复合电磁散射场的运动目标识别方法 |
CN116050082B (zh) * | 2022-12-16 | 2023-08-04 | 西安电子科技大学 | 一种含植被的地面电磁散射系数计算方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6600566B1 (en) * | 2000-09-29 | 2003-07-29 | Northrop Grumman Corporation | High-order high-frequency rough surface scattering solver |
CN103400004B (zh) * | 2013-07-22 | 2016-06-29 | 西安电子科技大学 | 基于多区域模型矩量法的介质粗糙面电磁散射仿真方法 |
CN103487791B (zh) * | 2013-09-24 | 2015-12-23 | 上海无线电设备研究所 | 一种基于散射中心矩阵的rcs转换方法 |
CN103593510B (zh) * | 2013-10-25 | 2016-06-29 | 西安电子科技大学 | 基于互易性原理的粗糙面与目标复合电磁散射仿真方法 |
CN103870654A (zh) * | 2014-03-26 | 2014-06-18 | 西安电子科技大学 | 基于并行矩量法与物理光学混合的电磁散射仿真方法 |
-
2018
- 2018-06-19 CN CN201810628019.9A patent/CN109100692B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN109100692A (zh) | 2018-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109100692B (zh) | 基于迭代物理光学的粗糙面与多个目标复合散射仿真方法 | |
CN110058315B (zh) | 一种三维各向异性射频大地电磁自适应有限元正演方法 | |
CN103870654A (zh) | 基于并行矩量法与物理光学混合的电磁散射仿真方法 | |
CN103593510B (zh) | 基于互易性原理的粗糙面与目标复合电磁散射仿真方法 | |
CN102508220B (zh) | 均匀双各向同性媒质物体的雷达散射截面获取方法 | |
CN108763153A (zh) | 一种地下各向同性介质球电磁散射的计算方法 | |
CN110274920B (zh) | 体面剖分弹跳射线法分析金属介质目标瞬态特性的方法 | |
CN104317984B (zh) | 基于分域建模的船舶电磁散射预测方法及系统 | |
Maheshwari et al. | Application of emission source microscopy technique to EMI source localization above 5 GHz | |
CN109783829B (zh) | 一种三维fem混合二维fmm的电磁场预测方法 | |
Gu et al. | Fast computation of electromagnetic scattering from a metal–dielectric composite and randomly distributed BoRs cluster | |
CN111735996A (zh) | 一种用于数学吸波暗室构建的多径干扰抑制方法及装置 | |
Li et al. | Time domain inverse scattering for a homogenous dielectric cylinder by asynchronous particle swarm optimization | |
CN112257261B (zh) | 天线、飞行器平台及等离子体鞘套一体化仿真分析方法 | |
Chen et al. | Scattering center modeling for low-detectable targets | |
Zhang et al. | Electromagnetic scattering study of complex targets on rough surfaces | |
Wei et al. | Fast calculation of electromagnetic scattering from objects above complex rough surface environment | |
Yang et al. | Active cancellation stealth technology analysis and verification in experiment | |
Luo et al. | An efficient hybrid high-frequency solution for the composite scattering of the ship on very large two-dimensional sea surface | |
Ru et al. | Low-Frequency Electromagnetic Scattering from Surface Ship Using Moment Method | |
Su et al. | A Fast Iterative Physical Optics Method With Quadratic Amplitude and Phase Integral Terms | |
Zhang et al. | Fast hybrid FEM/CRE-UTD method to compute the radiation pattern of antennas on large carriers | |
Li et al. | FDTD investigation on electromagnetic scattering from the PEC cylinder above two-layered rough surfaces | |
Tang et al. | Solution of Scattered Electric Field of Transmission Lines in the background of ground | |
Zhang et al. | Underground Pipeline Depth Localization Based On Stepped Frequency Continuous Wave GPR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |