CN109095486A - 一种多级孔花球状硼酸根插层类水滑石纳米材料的制备方法 - Google Patents

一种多级孔花球状硼酸根插层类水滑石纳米材料的制备方法 Download PDF

Info

Publication number
CN109095486A
CN109095486A CN201811086765.6A CN201811086765A CN109095486A CN 109095486 A CN109095486 A CN 109095486A CN 201811086765 A CN201811086765 A CN 201811086765A CN 109095486 A CN109095486 A CN 109095486A
Authority
CN
China
Prior art keywords
nano material
shaped
stage porous
flower ball
intercalation hydrotalcite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811086765.6A
Other languages
English (en)
Other versions
CN109095486B (zh
Inventor
刘志宏
贾亚欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201811086765.6A priority Critical patent/CN109095486B/zh
Publication of CN109095486A publication Critical patent/CN109095486A/zh
Application granted granted Critical
Publication of CN109095486B publication Critical patent/CN109095486B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明公开了一种多级孔花球状硼酸根插层类水滑石纳米材料的制备方法,以硝酸镁、硝酸铝、氢氧化钠和尿素为主要原料,采用水热法,通过添加五硼酸铵作为硼源和结构导向剂,制备成多级孔花球状硼酸根插层类水滑石纳米材料。本发明方法简单,原料易得,反应条件温和,所制备的硼酸根插层类水滑石纳米材料比表面积较大且具有多级孔结构,具有较好的吸附能力,可应用于水污染处理、催化、吸附、医药等不同领域。

Description

一种多级孔花球状硼酸根插层类水滑石纳米材料的制备方法
技术领域
本发明属于类水滑石的制备技术领域,具体涉及一种采用多级孔花球状硼酸根插层类水滑石纳米材料的制备方法。
背景技术
类水滑石材料又被称为层状双羟基复合金属氧化物,由带正电荷层板和层间阴离子有序的组装而成,具有层板金属阳离子的可搭配性,插层阴离子的可交换性及“记忆效应”等特点。近年来人们对此进行了大量的研究,在其性能、机理研究等方面取得了一定进展,在污水治理、光电催化、医药、阻燃、吸附等方面己得到了广泛的利用。
目前,合成类水滑石材料的方法主要有:共沉淀法、离子交换法、水热法及焙烧还原法等方法,其中共沉淀法是制备这些类水滑石材料最常用的方法。例如,2015年单冉冉等(R.R.Shan,L.G.Yan,Y.M.Yang,Highly efficient removal of three red dyes byadsorption onto Mg-Al-layered double hydroxide,Journal of Industrial andEngineering Chemistry.21(2015)561-568.)以硝酸镁、硝酸铝、无水碳酸钠及氢氧化钠为原料,采用共沉淀的方法合成出了块状结构Mg-Al-CO3-LDH,但其制出的样品粒径较大,导致其比表面积较小,另外其反应在室温下反应,产物的结晶度较低。2016年,李冰等人(B.Li,Y.X.Zhang,X.B.Zhou,Z.L.Liu,Q.Z.Liu,X.H.Li,Different dye removalmechanisms between monodispersed and uniform hexagonal thin plate-likeMgAlCO3 2--LDH and its calcined product in efficient removal of Congo red fromwater,Journal of Alloys and Compounds.673(2016)265-271.)采用溶剂热法制备出了片状结构MgAl-LDHs。其反应的温度较高,提高了结晶度,但不利于环境友好。2015年,邱心泓等人(X.H.Qiu,K.Sasaki,K.Osseo-Asare,T.Hirajima,K.Ideta,J.Miyawaki,Sorptionof H3BO3/B(OH)4-on calcined LDHs including different divalent metals,Journalof Colloid and Interface Science.445(2015)183-194.)用加入尿素的水热法制备了一系列的不同的二价金属的类水滑石,并通过煅烧得到多孔的双金属氧化物用作吸附H3BO3/B(OH)4-
发明内容
本发明所要解决的问题在于提供了一种通过加入五硼酸铵作为硼源和结构导向剂,采用水热法制备多级孔花球状硼酸根插层类水滑石纳米材料,该多级孔花球状纳米材料可用于吸附水体中有机污染物等。
解决上述技术问题所采用的技术方案是:将九水硝酸铝和六水硝酸镁完全溶解于去离子水中,所得溶液滴加到五硼酸铵水溶液中,滴加完后搅拌5~15分钟,再加入氢氧化钠和尿素,搅拌30~60分钟,所得混合液转移到聚四氟乙烯衬里的不锈钢高压釜中,在密闭条件下100~120℃静置反应12~24小时,反应完后自然冷却,抽滤、洗涤、干燥,得到多级孔花球状硼酸根插层类水滑石纳米材料。
上述制备方法中,所述五硼酸铵的加入量为九水硝酸铝摩尔量的10~18倍,优选五硼酸铵的加入量为九水硝酸铝摩尔量的13~15倍。
上述制备方法中,所述九水硝酸铝和六水硝酸镁、氢氧化钠、尿素的摩尔比为1:3:5~15:5~15,优选九水硝酸铝和六水硝酸镁、氢氧化钠、尿素的摩尔比为1:3:8~12:8~12。
上述制备方法中,优选在密闭条件下120℃静置反应24小时。
本发明以五硼酸铵作为硼源和结构导向剂,采用水热法制备成多级孔花球状硼酸根插层类水滑石纳米材料,制备方法简单,原料易得,反应条件温和,所制备的硼酸根插层类水滑石纳米材料具有多级孔结构,比表面积较大,具有较好的吸附能力,在水污染处理、催化、吸附、医药等不同领域具有潜在的应用前景。
附图说明
图1是实施例1制备的多级孔花球状硼酸根插层类水滑石纳米材料的XRD图。
图2是实施例1制备的多级孔花球状硼酸根插层类水滑石纳米材料的红外光谱图。
图3是实施例1制备的多级孔花球状硼酸根插层类水滑石纳米材料的XPS图。
图4是实施例1制备的多级孔花球状硼酸根插层类水滑石纳米材料的SEM图。
图5是实施例1制备的多级孔花球状硼酸根插层类水滑石纳米材料的氮气吸脱附等温曲线。
图6是对比例1制备的材料的SEM图。
图7是实施例2制备的多级孔花球状硼酸根插层类水滑石纳米材料的SEM图。
图8是实施例3制备的多级孔花球状硼酸根插层类水滑石纳米材料的SEM图。
图9是实施例4制备的多级孔花球状硼酸根插层类水滑石纳米材料的SEM图。
图10是实施例1制备的多级孔花球状硼酸根插层类水滑石纳米材料吸附刚果红溶液的紫外光谱图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
将0.38g(1mmol)九水硝酸铝和0.78g六水硝酸镁(3mmol)溶解于5mL去离子水中,记为溶液A,将3.54g(13mmol)五硼酸铵溶于20mL去离子水中,记为溶液B,然后将A溶液逐滴加入B溶液中,滴加完后搅拌10分钟,再加入0.4g(10mmol)氢氧化钠和0.48g(8mmol)尿素,搅拌30min,转入50mL聚四氟乙烯衬里的不锈钢高压釜内,放入烘箱,在密闭条件下120℃静置反应24h。反应完后自然冷却,抽滤,用去离子水、无水乙醇依次洗涤。所得样品放置于60℃的烘箱内干燥12h,得到白色粉末。
发明人采用X-射线衍射仪、红外光谱仪、冷场发射扫描电子显微镜以及物理吸附仪对实施例1所得白色粉末进行表征,结果见图1~4。由图1的XRD结果可知,所得白色粉末为类水滑石。图2的FT-IR表征结果表明,3485cm-1为-OH的弯曲振动,1292cm-1为B-O-H,1013和866cm-1为B(4)-O的不对称和对称伸缩振动,1383、1447cm-1和937为B(3)-O的不对称和对称伸缩振动,663cm-1为B(3)-O的面外弯曲振动,447cm-1为B(4)-O的弯曲振动。图3的XPS表征结果也证明所得白色粉末中含有硼元素。这些均说明所得白色粉末为硼酸根插层类水滑石。由图4可见,所得硼酸根插层类水滑石为直径3μm左右的花球状形貌,其是由厚度约为10nm的纳米片自组装形成的。由图5吸脱附曲线类型可知,该多级孔花球状硼酸根插层类水滑石纳米材料中存在介孔和一定数目的微孔,其比表面积为147.8m2/g。
对比例1
在实施例1中,不添加五硼酸铵,其他步骤与实施例1相同,所得产物的形貌见图6。由图6可见,不添加五硼酸铵时,所得产物为圆盘状,无法得到多级孔花球状硼酸根插层类水滑石纳米材料。
实施例2
本实施例中,氢氧化钠的加入量为0.2g(5mmol),其他步骤与实施例1相同,得到白色粉末多级孔花球状硼酸根插层类水滑石纳米材料(见图7)。
实施例3
本实施例中,尿素的加入量为0.72g(12mmol),其他步骤与实施例1相同,得到白色粉末多级孔花球状硼酸根插层类水滑石纳米材料(见图8)。
实施例4
本实施例中,五硼酸铵的加入量为4.08g(15mmol),其他步骤与实施例1相同,得到白色粉末多级孔花球状硼酸根插层类水滑石纳米材料(见图9)。
为了证明本发明作为吸附材料的有益效果,发明人向20mL初始浓度为50mg/L的刚果红水溶液中加入10mg实施例1制备的多级孔花球状硼酸根插层类水滑石纳米材料,搅拌1小时,离心分离之后取上清液,采用紫外可见分光光度计进行分析,结果见图10。经计算,本发明制备的多级孔花球状硼酸根插层类水滑石纳米材料对刚果红的除去率高达99%。

Claims (5)

1.一种多级孔花球状硼酸根插层类水滑石纳米材料的制备方法,其特征在于:将九水硝酸铝和六水硝酸镁完全溶解于去离子水中,所得溶液滴加到五硼酸铵水溶液中,滴加完后搅拌5~15分钟,再加入氢氧化钠和尿素,搅拌30~60分钟,所得混合液转移到聚四氟乙烯衬里的不锈钢高压釜中,在密闭条件下100~120℃静置反应12~24小时,反应完后自然冷却,抽滤、洗涤、干燥,得到多级孔花球状硼酸根插层类水滑石纳米材料;其中所述五硼酸铵的加入量为九水硝酸铝摩尔量的10~18倍。
2.根据权利要求1所述的多级孔花球状硼酸根插层类水滑石纳米材料的制备方法,其特征在于:所述五硼酸铵的加入量为九水硝酸铝摩尔量的13~15倍。
3.根据权利要求1或2所述的多级孔花球状硼酸根插层类水滑石纳米材料的制备方法,其特征在于:所述的九水硝酸铝和六水硝酸镁、氢氧化钠、尿素的摩尔比为1:3:5~15:5~15。
4.根据权利要求1或2所述的多级孔花球状硼酸根插层类水滑石纳米材料的制备方法,其特征在于:所述九水硝酸铝和六水硝酸镁、氢氧化钠、尿素的摩尔比为1:3:8~12:8~12。
5.根据权利要求1所述的多级孔花球状硼酸根插层类水滑石纳米材料的制备方法,其特征在于:在密闭条件下120℃静置反应24小时。
CN201811086765.6A 2018-09-18 2018-09-18 一种多级孔花球状硼酸根插层类水滑石纳米材料的制备方法 Active CN109095486B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811086765.6A CN109095486B (zh) 2018-09-18 2018-09-18 一种多级孔花球状硼酸根插层类水滑石纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811086765.6A CN109095486B (zh) 2018-09-18 2018-09-18 一种多级孔花球状硼酸根插层类水滑石纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN109095486A true CN109095486A (zh) 2018-12-28
CN109095486B CN109095486B (zh) 2020-08-25

Family

ID=64866629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811086765.6A Active CN109095486B (zh) 2018-09-18 2018-09-18 一种多级孔花球状硼酸根插层类水滑石纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN109095486B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112264020A (zh) * 2020-11-19 2021-01-26 王兴富 一种硼酸根插层镍铁类水滑石负载TiO2光催化剂的制备方法
CN113086998A (zh) * 2021-04-07 2021-07-09 长治学院 一种Mg6Al2(OH)18·4.5H2O纳米片及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362457A (en) * 1992-08-13 1994-11-08 Aluminum Company Of America Direct synthesis of anion substituted hydrotalcite
WO2010066642A1 (en) * 2008-12-08 2010-06-17 Akzo Nobel N.V. Polymer-containing composition comprising a layered double hydroxide in a matrix
CN101830490A (zh) * 2010-04-16 2010-09-15 北京泰克来尔科技有限公司 一种硼酸根插层类水滑石化合物的清洁制备方法
CN105565348A (zh) * 2015-12-27 2016-05-11 北京泰克来尔科技有限公司 一种纳米粒径硼酸根插层类水滑石化合物及其清洁制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362457A (en) * 1992-08-13 1994-11-08 Aluminum Company Of America Direct synthesis of anion substituted hydrotalcite
US5484583A (en) * 1992-08-13 1996-01-16 Aluminum Company Of America Filler material containing an anion substituted hydrotalcite
WO2010066642A1 (en) * 2008-12-08 2010-06-17 Akzo Nobel N.V. Polymer-containing composition comprising a layered double hydroxide in a matrix
CN101830490A (zh) * 2010-04-16 2010-09-15 北京泰克来尔科技有限公司 一种硼酸根插层类水滑石化合物的清洁制备方法
CN105565348A (zh) * 2015-12-27 2016-05-11 北京泰克来尔科技有限公司 一种纳米粒径硼酸根插层类水滑石化合物及其清洁制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112264020A (zh) * 2020-11-19 2021-01-26 王兴富 一种硼酸根插层镍铁类水滑石负载TiO2光催化剂的制备方法
CN113086998A (zh) * 2021-04-07 2021-07-09 长治学院 一种Mg6Al2(OH)18·4.5H2O纳米片及其制备方法和应用
CN113086998B (zh) * 2021-04-07 2022-06-24 长治学院 一种Mg6Al2(OH)18·4.5H2O纳米片及其制备方法和应用

Also Published As

Publication number Publication date
CN109095486B (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
Hosseinpour-Mashkani et al. Investigation the effect of temperature and polymeric capping agents on the size and photocatalytic properties of NdVO 4 nanoparticles
Hibino et al. Characterization of repeatedly reconstructed Mg− Al hydrotalcite-like compounds: gradual segregation of aluminum from the structure
Liu et al. ZnCr-LDH/N-doped graphitic carbon-incorporated g-C3N4 2D/2D nanosheet heterojunction with enhanced charge transfer for photocatalysis
El Gaini et al. Removal of indigo carmine dye from water to Mg–Al–CO3-calcined layered double hydroxides
Sharma et al. Synthesis and application of an analogue of mesolite for the removal of uranium (VI), thorium (IV), and europium (III) from aqueous waste
Taghavi Fardood et al. A novel green synthesis of copper oxide nanoparticles using a henna extract powder
CN105399150B (zh) 一种钴酸镍纳米材料及其制备方法和应用
CN109095486A (zh) 一种多级孔花球状硼酸根插层类水滑石纳米材料的制备方法
Wang et al. Preparation of interlayer surface tailored protonated double-layered perovskite H 2 CaTa 2 O 7 with n-alcohols, and their photocatalytic activity
CN103447061A (zh) 碳酸银-氧化石墨烯复合纳米材料及其制备方法及应用
Hussein et al. Synthesis of a monophasic nanohybrid for a controlled release formulation of two active agents simultaneously
CN105948085A (zh) 一种磁性水滑石的制备方法
CN103572362A (zh) 一种水热合成方沸石单晶的方法
Hsiao et al. Synthesis of analcime from sericite and pyrophyllite by microwave-assisted hydrothermal processes
CN103112898A (zh) 水热法制备花棒状钨酸铋的方法
Ramezanalizadeh et al. Design and development of a novel lanthanum inserted CuCr2O4 nanoparticles photocatalyst for the efficient removal of water pollutions
Xu et al. Ionic interactions in crystallite growth of CoMgAl-hydrotalcite-like compounds
Silva et al. Morphological evolution and visible light-induced degradation of Rhodamine 6G by nanocrystalline bismuth tungstate prepared using a template-based approach
Saemian et al. Synthesis of CoFe2O4@ Cu3 (BTC) 2 nanocomposite as a magnetic metal–organic framework
Sarijo et al. Synthesis of dual herbicides-intercalated hydrotalcite-like nanohybrid compound with simultaneous controlled release property
Zhao et al. Synthesis of bismuth oxyiodide/kaolinite composite with enhanced photocatalytic activity
Gong et al. Template-free hydrothermal synthesis and luminescent properties of octahedral NaGd (MoO4) 2: Eu3+ microcrystals
CN106732588B (zh) 一种转化水溶液中Cr(VI)的催化剂及其制备方法和应用
Prasad et al. Efficient sorption and photocatalytic degradation of malachite green dye onto NiS nanoparticles prepared using novel green approach
CN103949205A (zh) 一种纳米混层组装粘土矿物材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant