CN109085630B - 一种信号捕获方法及装置 - Google Patents
一种信号捕获方法及装置 Download PDFInfo
- Publication number
- CN109085630B CN109085630B CN201810949427.4A CN201810949427A CN109085630B CN 109085630 B CN109085630 B CN 109085630B CN 201810949427 A CN201810949427 A CN 201810949427A CN 109085630 B CN109085630 B CN 109085630B
- Authority
- CN
- China
- Prior art keywords
- positioning signals
- group
- signal
- positioning
- average
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 238000012935 Averaging Methods 0.000 claims abstract description 79
- 238000012545 processing Methods 0.000 claims abstract description 52
- 238000005070 sampling Methods 0.000 claims description 111
- 230000004044 response Effects 0.000 claims description 60
- 230000008569 process Effects 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000004891 communication Methods 0.000 description 14
- 238000004590 computer program Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 238000001914 filtration Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/45—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
- G01S19/46—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/02—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
- G01S1/04—Details
- G01S1/045—Receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例提供了一种信号捕获方法及装置,可以将接收到的由基站发出的定位信号分为至少两组,分别对每组定位信号进行频率补偿;将频率补偿后的每组定位信号分为至少两个信号块,对每组信号中信号块进行平均运算;根据块平均处理后的每组定位信号,确定捕获结果。这样,由于块平均处理后每组定位信号的噪声功率降低,所以应用本发明实施例能够减少接收的定位信号的噪声功率,从而提高了接收的定位信号的信噪比,所以能够提高信号的捕获成功率。
Description
技术领域
本发明涉及信号捕获技术领域,特别是涉及一种信号捕获方法及装置。
背景技术
如今,定位技术广泛应用于军事、交通或测绘等众多领域中。基于地面移动广播网络的TC-OFDM(Time&Code Division-Orthogonal Frequency Division Multiplexing,时分码分-正交频分复用)系统可将定位信号叠加在移动广播信号或移动通信信号上并通过基站进行广播,从而为用户提供高精度的室内外定位。但是,在遮挡物较多的室内环境中,基站广播的定位信号可能会出现较大的衰减,给定位接收机捕获信号带来很大困难。
现有技术对于增强室内弱信号的捕获能力的方法为:加长相干积分或非相干积分的时间,但是对于采用PMF-FFT(Partial Matching Filter-Fast FourierTransformation,部分匹配滤波-快速傅里叶变换)运算的捕获方法而言,长时间的相干积分会导致FFT频率搜索范围下降,使得定位信号的捕获成功率较低。
发明内容
本发明实施例的目的在于提供一种信号捕获方法及装置,以实现提高室内定位信号的捕获成功率。具体技术方案如下:
第一方面,提供了一种信号捕获方法,所述方法包括:
接收基站发送的定位信号;
将所述定位信号分为至少两组,分别对每组定位信号进行频率补偿;
将经过频率补偿的每组定位信号分为至少两个信号块,分别对每组信号中的信号块进行平均运算,得到经过块平均处理后的每组定位信号;
根据经过块平均处理后的每组定位信号,确定捕获结果。
可选的,所述将所述定位信号分为至少两组,分别对每组定位信号进行频率补偿,包括:
对所述基站发送的定位信号进行模数转换,并根据预设采样速率对所述定位信号进行采样;
根据所述采样结果,将所述定位信号分为至少两组;
分别对每组定位信号进行频率补偿,频率补偿的范围不超过一个通带周期。
可选的,所述将经过频率补偿的每组定位信号分为至少两个信号块,分别对每组信号中的信号块进行平均运算,得到经过块平均处理后的每组定位信号,包括:
将经过频率补偿的每组定位信号分为至少两个信号块,每个信号块中包括相同数量的采样点;
对于每组定位信号,分别对各信号块中各相同位置的采样点进行平均运算,得到经过块平均处理后的每组定位信号。
可选的,所述经过频率补偿后的每组定位信号为:
其中,n为采样点的序号,r(i)(n)为第i组定位信号中第n个采样点的信号,A为信号幅度,d(nTs)为第n个采样点的导航电文,c(nTs)为第n个采样点的伪噪声码,为第i组定位信号经过频率补偿后的频率,Ts为信号采样周期,为载波相位,v(nTs)为第n个采样点的噪声;
所述经过块平均处理后的每组定位信号为:
其中,n为采样点的序号,为第i组定位信号中第n个采样点块平均处理后的信号,A为信号幅度,d(nTs)为第n个采样点的导航电文,c(nTs)为第n个采样点的伪噪声码,为第i组定位信号的频率,Ts为信号采样周期,为载波相位,为第i组定位信号的块平均响应,vB(nTs)为第n个采样点的噪声经过块平均处理后的分量。
可选的,所述根据经过块平均处理后的每组定位信号,确定捕获结果,包括:
分别对经过块平均处理之后的每组定位信号进行部分匹配滤波-快速傅里叶变换PMF-FFT运算,得到每组定位信号的幅频响应;
根据每组定位信号的幅频响应确定每组定位信号的峰均比,所述每组定位信号的峰均比为各自组定位信号幅频响应中的幅值最大值与幅值平均值的比值;所述幅值平均值为每组定位信号的幅频响应中预设数量的幅值的平均值;
从所述至少两组定位信号的峰均比中确定峰均比最大的一组定位信号;
若峰均比最大的一组定位信号的峰均比大于预设阈值,则所述捕获结果为捕获成功;若峰均比最大的一组定位信号的峰均比不大于预设阈值,则所述捕获结果为捕获失败;
若捕获结果为捕获成功,则根据所述至少两组定位信号中峰均比最大的一组定位信号,确定所述接收到的基站发送的定位信号的码相位估计值和频率估计值。
第二方面,提供了一种信号捕获装置,所述装置包括:
信号接收模块,用于接收基站发送的定位信号;
频率补偿模块,用于将所述信号接收模块接收的所述定位信号分为至少两组,分别对每组定位信号进行频率补偿;
块平均处理模块,用于将经过所述频率补偿模块处理后的每组定位信号分为至少两个信号块,分别对每组信号中的信号块进行平均运算,得到经过块平均处理后的每组定位信号;
确定模块,用于根据经过所述块平均处理模块处理后的每组定位信号,确定捕获结果。
可选的,所述频率补偿模块,包括:采样单元、分组单元和频率补偿单元;
所述采样单元,用于对所述基站发送的定位信号进行模数转换,并根据预设采样速率对所述定位信号进行采样;
所述分组单元,用于根据所述采样单元确定的所述采样结果,将所述定位信号分为至少两组;
所述频率补偿单元,用于分别对所述分组单元拆分的每组定位信号进行频率补偿,频率补偿的范围不超过一个通带周期。
可选的,所述块平均处理模块,具体用于:
将经过频率补偿的每组定位信号分为至少两个信号块,每个信号块中包括相同数量的采样点;
对于每组定位信号,分别对各信号块中各相同位置的采样点进行平均运算,得到经过块平均处理后的每组定位信号。
可选的,所述经过频率补偿后的每组定位信号可以为:
其中,n为采样点的序号,r(i)(n)为第i组定位信号中第n个采样点的信号,A为信号幅度,d(nTs)为第n个采样点的导航电文,c(nTs)为第n个采样点的伪噪声码,为第i组定位信号经过频率补偿后的频率,Ts为信号采样周期,为载波相位,v(nTs)为第n个采样点的噪声;
所述经过块平均处理后的每组定位信号可以为:
其中,n为采样点的序号,为第i组定位信号中第n个采样点块平均处理后的信号,A为信号幅度,d(nTs)为第n个采样点的导航电文,c(nTs)为第n个采样点的伪噪声码,为第i组定位信号的频率,Ts为信号采样周期,为载波相位,为第i组定位信号的块平均响应,vB(nTs)为第n个采样点的噪声经过块平均处理后的分量。
可选的,所述确定模块,包括:运算单元、峰均比确定单元、确定单元、判断单元和参数估计单元;
所述运算单元,用于分别对经过块平均处理之后的每组定位信号进行部分匹配滤波-快速傅里叶变换PMF-FFT运算,得到每组定位信号的幅频响应;
所述峰均比确定单元,用于根据所述运算单元计算的每组定位信号的幅频响应确定每组定位信号的峰均比,所述每组定位信号的峰均比为各自组定位信号幅频响应中的幅值最大值与幅值平均值的比值;所述幅值平均值为每组定位信号的幅频响应中预设数量的幅值的平均值;
所述确定单元,用于从所述峰均比确定单元确定的所述至少两组定位信号的峰均比中确定峰均比最大的一组定位信号;
所述判断单元,用于若所述确定单元确定的峰均比最大的一组定位信号的峰均比大于预设阈值,则所述捕获结果为捕获成功;用于若所述确定单元确定的峰均比最大的一组定位信号的峰均比不大于预设阈值,则所述捕获结果为捕获失败;
参数估计单元,用于若捕获结果为捕获成功,则根据所述确定单元确定的至少两组定位信号中峰均比最大的一组定位信号,确定所述接收到的基站发送的定位信号的码相位估计值和频率估计值。
第三方面,提供了一种电子设备,所述电子设备包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;
存储器,用于存放计算机程序;
处理器,用于执行存储器上所存放的程序时,实现上述任一信号捕获方法的步骤。
第四方面,本发明实施还提供了一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述任一信号捕获方法的步骤。
第五方面,本发明实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一信号捕获方法。
本发明实施例提供的一种信号捕获方法及装置,可以将接收到的由基站发出的定位信号分为至少两组,分别对每组定位信号进行频率补偿;将频率补偿后的每组定位信号分为至少两个信号块,对每组信号中信号块进行平均运算;根据块平均处理后的每组定位信号,确定捕获结果。这样,由于块平均处理后每组定位信号的噪声功率降低,所以应用本发明实施例能够减少接收的定位信号的噪声功率,从而提高了接收的定位信号的信噪比,提高了接收机的捕获灵敏度,能够提高弱信号的捕获成功率。
由于频率补偿和块平均处理与捕获模块结合能够提高频率估计精度,所以应用本发明实施例能够在捕获阶段获得更加精确的频率估计值。
当然,实施本发明的任一产品或方法并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的基于频率补偿和块平均的PMF-FFT信号捕获装置结构示意图;
图2为本发明实施例提供的一种信号捕获方法流程图;
图3为本发明实施例提供的块平均处理方法流程图;
图4为本发明实施例提供的一种信号捕获方法中频率补偿的方法流程图;
图5为本发明实施例提供的块平均响应的示意图;
图6为本发明实施例提供的PMF-FFT信号捕获过程的示意图;
图7为本发明实施例提供的一组定位信号的PMF-FFT幅频响应曲线图;
图8为本发明实施例提供的快速傅里叶变换和快速傅里叶逆变换结合的运算方法流程图;
图9为本发明实施例提供的一种信号捕获装置结构示意图;
图10为本发明实施例提供的一种电子设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供的信号捕获方法可应用于如图1所示的信号捕获装置中,该装置可应用于电子设备。该装置包括频率补偿模块、块平均处理模块,PMF-FFT捕获模块、峰值比较模块和捕获结果确定模块。
其中,该信号捕获装置接收到射频形式的定位信号后,可对定位信号进行模数转换,并将模数转换后的定位信号分为多组,由频率补偿模块分别对每组定位信号进行频率补偿,之后再由块平均处理模块对频率补偿后的每组定位信号进行块平均处理,再由PMF-FFT捕获模块对块平均处理后的每组定位信号进行捕获运算,然后峰值比较模块根据捕获运算的结果确定峰均比最大的一组定位信号的峰均比,然后捕获结果确定模块根据峰均比最大的一组定位信号的峰均比,确定捕获结果。
本发明实施例中,电子设备可以是具有定位功能的计算机、手机或平板电脑等电子设备。
结合图1,本发明实施例提供的一种信号捕获方法流程图,如图2所示,包括如下步骤:
步骤201,接收基站发送的定位信号。
步骤202,将定位信号分为至少两组,分别对每组定位信号进行频率补偿。
一种实现方式中,结合图1,可以由频率补偿模块将定位信号经过模数转换,并按照预设采样速率进行采样后,分为X组,每组信号中包含相同数量的采样点,然后将X组定位信号分别与本地载波发生器生成的X组不同频率的本地载波相乘,以得到X组经过频率补偿后的定位信号。其中,频率补偿的范围不超过一个通带周期,X≥2。
步骤203,将经过频率补偿的每组定位信号分为至少两个信号块,分别对每组信号中的信号块进行平均运算,得到经过块平均处理后的每组定位信号。
结合图1,块平均处理的方法为:将经过频率补偿的每组定位信号由块平均处理模块分为至少两个信号块,每个信号块中包括相同数量的采样点;对于每组定位信号,分别对各信号块中各相同位置的采样点进行平均运算,得到经过块平均处理后的每组定位信号。
其中,信号块的长度通常为定位信号中PRN(Pseudo Random Noise Code,伪随机噪声码)长度的整数倍。此外,由于块平均处理是将每一组定位信号中,各个信号块中对应位置的采样点进行平均运算,这就要求每一信号块中包含相同数量的采样点。
参见图3,图3为本发明实施例提供的块平均处理方法流程图。一种实现方式中,可以将每组定位信号分别分为M个信号块,每个信号块中包含N个采样点;在每组信号的第一个信号块中选取一个采样点n,再选取其它信号块中与采样点n位置对应的其它采样点(n+iN),对采样点n和(n+iN)进行平均运算,得到块平均处理后的每组定位信号。其中,i=0,1,…,(M-1),块平均处理后的每组定位信号为:
其中,n为采样点的序号,为第i组定位信号中第n个采样点块平均处理后的信号,A为信号幅度,d(nTs)为第n个采样点的导航电文,c(nTs)为第n个采样点的伪噪声码,为第i组定位信号的频率,Ts为信号采样周期,为载波相位。
公式(1)中的vB(nTs)为第n个采样点的噪声经过块平均处理后的分量,考虑到定位信号中的噪声主要为高斯白噪声,经过块平均处理后定位信号的高斯白噪声的功率为:
从公式(3)可见,块平均处理后高斯白噪声的功率减小为块平均处理前的1/M,同时定位信号功率保持不变。信噪比的计算公式为:
10*log10(S/N) (4)
其中,S为定位信号的功率,N为高斯白噪声的功率,根据图3中的描述可知,由于每组定位信号功率不变,但每组定位信号的高斯白噪声功率减小为块平均处理前的1/M,所以相当于接收由基站发送的定位信号的信噪比提高了10log10(M),因此块平均处理能够提高捕获弱信号的能力。
步骤104,根据经过块平均处理后的每组定位信号,确定捕获结果。
可选的,本申请实施例中可采用PMF-FFT方式、快速傅里叶变换与快速傅里叶反变换结合的方式或串行捕获方式确定捕获结果,但本申请实施例不限于此,也可采用其他捕获定位信号的方法来根据本申请实施例中经过块平均处理后的每组定位信号确定捕获结果。
可见,应用本发明实施例提供的一种信号捕获方法,可以通过对定位信号进行频率补偿及块平均处理,再利用预设的信号捕获方法捕获定位信号;这样,由于块平均处理后每组定位信号的噪声功率降低,所以应用本发明实施例能够减少接收的定位信号的噪声功率,从而提高了接收的定位信号的信噪比,提高了接收机的捕获灵敏度,能够提高弱信号的捕获成功率。
参见图4,图4为本发明实施例提供的一种信号捕获方法中频率补偿的方法流程图,包括如下步骤:
步骤401,对所述基站发送的定位信号进行模数转换,并根据预设采样速率对所述定位信号进行采样。
可选的,根据图2中的描述可知,块平均信号长度通常选择定位信号中PRN码长度的整数倍,所以采样速率可以为定位信号中PRN码速率的整数倍,在TC-OFDM系统中,PRN码周期时长为2.5ms,其中,速率和周期互为倒数。
步骤402,根据所述采样结果,将所述定位信号分为至少两组。
可选的,可以将定位信号分为X组,每组定位信号中包含M*N个采样点;其中,M是预设的,M为块平均处理时信号块的数量,N为系统的固定参数,N为块平均处理时信号块中采样点的数量,*表示相乘运算。
其中,由于信号块的长度为定位信号中PRN码周期长度的整数倍,信号块长度可以取定位信号的一个PRN码周期;TC-OFDM系统中使用的PRN码为码长为10230的weil码,接收机对weil码的采样倍数为4.4倍,因此每个PRN码周期中含有45012个采样点,即每个信号块中含有45012个采样点。
其中,weil码是由勒让德序列生成的一种测距码。
需要说明的是,M和X是预设的,通过如下方法确定:
结合图5所示的块平均响应的示意图,块平均响应的通带主瓣宽度为2/NMTs,在信号块频率与快平均响应主瓣中心频率之差固定的情况下,M越大,定位信号衰减越快,为了避免定位信号的快速衰减,频率补偿的组数X应该增大。先获得X组信号中定位信号的多普勒频率与块平均响应通带中心频率差最小的一组定位信号,根据该组定位信号确定由频率偏差引起的定位信号幅度最大衰减函数(5):
当信号组数X的取值远小于信号块数M时,会导致定位信号衰减严重,使得每组定位信号在块平均处理后,无法提高接收到由基站发出的定位信号的信噪比。所以,需要限定由于频率偏差引起的定位信号幅度衰减值不能超过衰减阈值,衰减阈值可以设置为3分贝,当衰减阈值为3分贝时,M和X的取值限制条件如公式(6):
满足公式(6)的(M,X)的取值组合都能够实现本发明实施例。
示例性的,X可以为10,M可以为10。
步骤403,分别对每组定位信号进行频率补偿,频率补偿的范围不超过一个通带周期。
下面分析需要进行频率补偿的原因:
如图5所示,块平均处理中落在阻带内的噪声分量将被抑制,所以块平均处理可以看作一个梳妆滤波器。从图5中可知,块平均响应的通带周期为1/NTs,可见,通带周期与采样速率及信号块内采样点数有关,与块平均的信号块数量无关。从图5中可知,块平均响应的通带主瓣宽度为2/NMTs,信号块数量越多,通带越窄且阻带越宽,同时阻带衰减也越高;可见,信号块数量决定了通带宽度和阻带衰减。定位信号若经过基带处理后直接进入块平均处理,由于定位信号的多普勒频率fd未知,则无法保证fd恰好落在块平均响应的通带以内,所以需要在块平均处理之前对定位信号进行频率补偿。
下面说明频率补偿的范围选择在一个通带周期内的原因:
将接收到的定位信号分为X组,每组定位信号进行频率补偿的频率为δf(i),若频率补偿的范围为(0,1/NTs),使得频率补偿后每组定位信号间的频率差值为1/XNTs,即δf(i)=i/XNTs。由于X组定位信号频率共补偿了1/NTs,所以X组定位信号中必定有一组定位信号的频率落在块平均响应的通带以内,即可以保证有一组定位信号的fd恰好落在块平均响应的通带以内。
具体的,频率补偿的方法可以为:参见图1,将定位信号分为X组,每组定位信号分别与本地载波发生器发出的本地载波相乘,得到每组定位信号频率补偿后的信号。经过频率补偿后的每组定位信号为公式(7):
其中,n为采样点的序号,r(i)(n)为第i组定位信号中第n个采样点的信号,A为信号幅度,d(nTs)为第n个采样点的导航电文,c(nTs)为第n个采样点的伪噪声码,为第i组定位信号经过频率补偿后的频率,Ts为信号采样周期,为载波相位,v(nTs)为第n个采样点的噪声。
可见,应用本发明实施例,能够通过分组进行频率补偿,使得每组定位信号在经过块平均处理后能够保证至少有一组定位信号落在块平均响应的通带以内,该组定位信号在经过PMF-FFT运算后会得到最大峰均比,根据最大峰均比判断定位信号是否捕获成功。这样,由于块平均处理模块处理后的定位信号的噪声功率降低,所以提高了定位信号的信噪比,提高了定位信号的捕获成功率。
在本发明实施例中,定位信号在经过块平均和频率补偿后,可以经过如下方式捕获定位信号并确定捕获结果:
方式一,可以利用PMF-FFT的方式确定捕获结果,具体步骤如下:
分别对经过块平均处理之后的每组定位信号进行PMF-FFT运算,得到每组定位信号的幅频响应;
根据每组定位信号的幅频响应确定每组定位信号的峰均比,第i组定位信号的峰均比为第i组幅频响应中的幅值最大值与幅值均值的比值:
所述幅值平均值为每组定位信号的幅频响应中预设数量的幅值的平均值;其中,预设数量为F。
若峰均比最大的一组定位信号的峰均比大于预设阈值,则捕获结果为捕获成功;若峰均比最大的一组定位信号的峰均比不大于预设阈值,则捕获结果为捕获失败。
图6为图1中的PMF-FFT捕获模块、峰值比较模块和确定捕获结果模块进行信号捕获的过程的示意图。如图6所示,先将块平均处理后的每组定位信号进行部分匹配滤波处理。假设每个相关器的长度为P,共有L个相关器,则每组定位信号被分为L块,每块定位信号中包含P个采样点。每个相关器对每块定位信号中的P个采样点进行相关累加,部分匹配滤波的过程如公式(9):
其中,为第i组定位信号的第n个采样点滤波处理后的信号,n为采样点序号,为频率补偿后的第i组定位信号的频率,k为相关器的序号,k=0,1,…,L-1,为第i组定位信号中第n个采样点块平均处理后的信号,l(n)为本地伪码发生器发出的第n个本地码。
若不考虑比特反转和噪声的影响,当本地码与接收到的定位信号的PRN码相同且相位一致时,公式(9)可化为:
再将部分匹配滤波处理后得到的L个滤波处理后的采样点进行补0操作,得到F个采样点,并对F个采样点进行FFT运算,其中,F为2的整数次幂。得到FFT运算后的每组定位信号的幅频响应为公式(11)。示例性地,其中一组定位信号的PMF-FFT幅频响应曲线如图7。
其中,为第i组定位信号第k个采样点的幅频响应,k为相关器的序号,k=0,1,…,L-1,为频率补偿后的第i组定位信号的频率,为第i组定位信号的第n个采样点滤波处理后的信号,为第i组定位信号的块平均响应。
根据FFT的计算结果可知,第i组定位信号的频率分辨率为1/2PFTs,频率搜索范围为±1/2PTs。当本地码与定位信号的伪码相同且相位一致时,通过FFT得到的第i组定位信号的幅频响应曲线会在处产生最大峰值。
根据FFT输出的幅频响应,计算X组信号峰均比最大的一组;每组定位信号的峰均比为各自组定位信号幅频响应中的幅值最大值与幅值平均值的比值;幅值平均值为每组定位信号的幅频响应中预设数量的幅值的平均值,将峰均比最大的一组定位信号的峰均比与预设门限值比较。
示例性的,门限值可以设置为1.5;
若峰均比最大的一组定位信号的峰均比大于1.5,则捕获结果为捕获成功;
若峰均比最大的一组定位信号的峰均比不大于1.5,则捕获结果为捕获失败。
在本发明实施例中,定位信号的捕获存在四种情况:信号存在且捕获成功,信号存在但捕获失败,信号不存在但捕获成功,信号不存在且捕获失败。其中,信号存在且捕获成功的概率为实警率,信号不存在但捕获成功的概率为虚警率,在设置门限值时需要权衡实警率和虚警率,设置合理的门限值。
在部分匹配滤波处理后,得到的L个采样点的的噪声均呈均值为0,方差为σ2的正态分布,则这L个采样点经过FFT运算后,噪声会呈现均值为0,方差为的正态分布。根据概率论的知识,在定位信号存在时FFT的幅频响应曲线呈莱斯分布,在定位信号不存在时FFT的幅频响应曲线呈瑞利分布,假设在定位信号存在时FFT幅频响应曲线的概率密度函数为fs(v),定位信号不存在时FFT幅频响应曲线的概率密度函数为fn(v),则虚警率Pfa满足公式(12):
实警率Pd满足公式(13):
其中,F为参与FFT运算的采样点的数量,v为定位信号的幅值,vt为门限值。
门限值vt需要满足Pfa小于虚警率阈值和Pd大于实警率阈值。
例如,虚警率阈值可以设置为0.1%或1%,实警率阈值可以设置为95%或90%。
方式二,利用快速傅里叶变换和快速傅里叶逆变换结合的方式捕获定位信号,具体步骤如下:
参见图8,图8为本发明实施例提供的快速傅里叶变换和快速傅里叶逆变换结合的运算方法流程图,包括:
将载波振荡器发出的载波信号经过正弦处理和预先处理后分别与经过频率补偿及块平均处理后的定位信号进行快速傅里叶变换,将经过快速傅里叶变换后的定位信号与本地伪码发生器发出的本地伪码经过快速傅里叶变换和复数共轭运算后相乘,将相乘后的定位信号进行快速傅里叶逆变换,得到码相位和多普勒频率,根据码相位和多普勒频率判断定位信号是否捕获成功。
进一步的,在判断接收的定位信号是否捕获成功后,还可以计算接收的定位信号码相位估计值,包括:
根据方式一中描述,本地码与块平均处理后的每组信号相乘,对乘积进行FFT运算,获得块平均处理后的每组信号的幅频响应;当一组定位信号的本地码与该组定位信号伪码粗对齐时,该组定位信号幅频响应曲线将出现峰值,在该组定位信号幅频响应的最大幅值处,此时对应的本地码相位即为该组定位信号码相位估计值;
一般情况下,M组定位信号的码相位估计值会近似相等,所以可以选择任意一组定位信号的码相位估计值或峰均比最大的一组定位信号的码相位估计值确定为接收到的基站发送的定位信号的码相位估计值;但当M组定位信号的码相位估计值不同时,取M组定位信号中峰均比最大的一组定位信号的码相位估计值确定为接收的定位信号的码相位估计值。
进一步的,在判断定位信号是否捕获成功之后,还可以计算接收到的基站发送的定位信号的频率估计值,即接收到的基站发送的定位信号的多普勒频率估计值,包括:
其中,k为相关器的序号,P为相关器中采样点的数量,F为参与FFT运算的采样点数量,Ts为定位信号的采样周期。
根据步骤403中的描述可知,峰均比最大的一组定位信号必定在块平均响应的通带以内,则可以认为该组信号的频率是1/NTs的整数倍,因此能够得到定位信号的多普勒频率估计值fd′为:
根据公式(15)可知,估计出的多普勒频率的精度取决于1/XNTs,由于δf(i)=i/XNTs,所以频率补偿的步进越小,估计出的多普勒频率估计值越准确。
需要说明的是,传统的PMF-FFT捕获方法中的多普勒频率估计值是根据公式(14)计算的,由公式(14)可知,传统的多普勒频率估计精度为1/XNTs。而本发明实施例得到的多普勒频率估计值的精度为1/XNTs,由于1/PFTs>1/XNTs,所以本发明实施例能够得到更精确的多普勒频率估计值。
下面证明1/PFTs>1/XNTs:
由于P为相关器中的采样点数量,L为相关器数量,N为信号块中的采样点数量,X为每组定位信号中信号块数量。
根据步骤204方式一中的描述可知,N=PL,L个采样点需要补零成为F个采样点,可以得到:L<F<2L,因此,PF<2PL=2N;当X≥2时,即可满足PF<XN,由于定位信号至少被分为两组,可得X≥2,所以1/PFTs>1/XNTs成立。
可见,应用本发明实施例得到的定位信号的多普勒频率估计值相对于传统的PMF-FFT捕获方法得到的定位信号的多普勒频率估计值更为精确,更精确的多普勒频率估计值一方面能够使得接收机在定位信号捕获成功后,更快速的进入精确跟踪状态;另一方面当接收的定位信号为弱信号时,更精确的多普勒频率估计值能够完成对信号的牵入从而更快的转入精确跟踪阶段;使得能够更快的获得精确的测距信息。
参见图9,图9为本发明实施例提供的一种信号捕获装置,所述装置包括:
信号接收模块901,用于接收基站发送的定位信号;
频率补偿模块902,用于将所述信号接收模块接收的所述定位信号分为至少两组,分别对每组定位信号进行频率补偿;
块平均处理模块903,用于将经过所述频率补偿模块处理后的每组定位信号分为至少两个信号块,分别对每组信号中的信号块进行平均运算,得到经过块平均处理后的每组定位信号;
确定模块904,用于根据经过所述块平均处理模块处理后的每组定位信号,确定捕获结果。
具体的,所述频率补偿模块902,可以包括:采样单元、分组单元和频率补偿单元;
所述采样单元,用于对所述基站发送的定位信号进行模数转换,并根据预设采样速率对所述定位信号进行采样;
所述分组单元,用于根据所述采样单元确定的所述采样结果,将所述定位信号分为至少两组;
所述频率补偿单元,用于分别对所述分组单元拆分的每组定位信号进行频率补偿,频率补偿的范围不超过一个通带周期。
具体的,所述块平均处理模块903,可以具体用于:
将经过频率补偿的每组定位信号分为至少两个信号块,每个信号块中包括相同数量的采样点;
对于每组定位信号,分别对各信号块中各相同位置的采样点进行平均运算,得到经过块平均处理后的每组定位信号。
具体的,所述经过频率补偿后的每组定位信号可以为:
其中,n为采样点的序号,r(i)(n)为第i组定位信号中第n个采样点的信号,A为信号幅度,d(nTs)为第n个采样点的导航电文,c(nTs)为第n个采样点的伪噪声码,为第i组定位信号经过频率补偿后的频率,Ts为信号采样周期,为载波相位,v(nTs)为第n个采样点的噪声;
所述经过块平均处理后的每组定位信号可以为:
其中,n为采样点的序号,为第i组定位信号中第n个采样点块平均处理后的信号,A为信号幅度,d(nTs)为第n个采样点的导航电文,c(nTs)为第n个采样点的伪噪声码,为第i组定位信号的频率,Ts为信号采样周期,为载波相位,为第i组定位信号的块平均响应,vB(nTs)为第n个采样点的噪声经过块平均处理后的分量。
具体的,所述确定模块904,可以包括:运算单元、峰均比确定单元、确定单元、判断单元和参数估计单元;
所述运算单元,用于分别对经过块平均处理之后的每组定位信号进行部分匹配滤波-快速傅里叶变换PMF-FFT运算,得到每组定位信号的幅频响应;
所述峰均比确定单元,用于根据所述运算单元计算的每组定位信号的幅频响应确定每组定位信号的峰均比,所述每组定位信号的峰均比为各自组定位信号幅频响应中的幅值最大值与幅值平均值的比值;所述幅值平均值为每组定位信号的幅频响应中预设数量的幅值的平均值;
所述确定单元,用于从所述峰均比确定单元确定的所述至少两组定位信号的峰均比中确定峰均比最大的一组定位信号;
所述判断单元,用于若所述确定单元确定的峰均比最大的一组定位信号的峰均比大于预设阈值,则所述捕获结果为捕获成功;若所述确定单元确定的峰均比最大的一组定位信号的峰均比不大于预设阈值,则所述捕获结果为捕获失败;
参数估计单元,用于若捕获结果为捕获成功,则根据所述确定单元确定的至少两组定位信号中峰均比最大的一组定位信号,确定所述接收到的基站发送的定位信号的码相位估计值和频率估计值。
本发明实施例提供的一种信号捕获装置,可以将接收到的由基站发出的定位信号分为至少两组,分别对每组定位信号进行频率补偿;将频率补偿后的每组定位信号分为至少两个信号块,对每组信号中信号块进行平均运算;根据块平均处理后的每组定位信号,确定捕获结果。这样,由于块平均处理后每组定位信号的噪声功率降低,所以应用本发明实施例能够减少接收的定位信号的噪声功率,从而提高了接收的定位信号的信噪比,提高了接收机的捕获灵敏度,能够提高弱信号的捕获成功率。
由于频率补偿和块平均处理与捕获模块结合能够提高频率估计精度,所以应用本发明实施例能够在捕获阶段获得更加精确的频率估计值。
本发明实施例还提供了一种电子设备,如图10所示,包括处理器1001、通信接口1002、存储器1003和通信总线1004,其中,处理器1001,通信接口1002,存储器1003通过通信总线1004完成相互间的通信,
存储器1003,用于存放计算机程序;
处理器1001,用于执行存储器1003上所存放的程序时,实现上述方法实施例中由电子设备执行的步骤。
本发明实施例提供的一种信号捕获电子设备,可以将接收到的由基站发出的定位信号分为至少两组,分别对每组定位信号进行频率补偿;将频率补偿后的每组定位信号分为至少两个信号块,对每组信号中信号块进行平均运算;根据块平均处理后的每组定位信号,确定捕获结果。这样,由于块平均处理后每组定位信号的噪声功率降低,所以应用本发明实施例能够减少接收的定位信号的噪声功率,从而提高了接收的定位信号的信噪比,提高了接收机的捕获灵敏度,能够提高弱信号的捕获成功率。
由于频率补偿和块平均处理与捕获模块结合能够提高频率估计精度,所以应用本发明实施例能够在捕获阶段获得更加精确的频率估计值。
上述电子设备提到的通信总线可以是外设部件互连标准(Peripheral ComponentInterconnect,PCI)总线或扩展工业标准结构(Extended Industry StandardArchitecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信接口用于上述电子设备与其他设备之间的通信。
存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital SignalProcessing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
在本发明提供的又一实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述任一信号捕获方法的步骤。
在本发明提供的又一实施例中,还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中任一信号捕获方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。
Claims (8)
1.一种信号捕获方法,其特征在于,所述方法包括:
接收基站发送的定位信号;
将所述定位信号分为至少两组,分别对每组定位信号进行频率补偿;
将经过频率补偿的每组定位信号分为至少两个信号块,分别对每组信号中的信号块进行平均运算,得到经过块平均处理后的每组定位信号;
根据经过块平均处理后的每组定位信号,确定捕获结果;
其中,信号块数M和信号组数X的取值限制条件为:
所述根据经过块平均处理后的每组定位信号,确定捕获结果,包括:
分别对经过块平均处理之后的每组定位信号进行部分匹配滤波-快速傅里叶变换PMF-FFT运算,得到每组定位信号的幅频响应;
根据每组定位信号的幅频响应确定每组定位信号的峰均比,所述每组定位信号的峰均比为各自组定位信号幅频响应中的幅值最大值与幅值平均值的比值;所述幅值平均值为每组定位信号的幅频响应中预设数量的幅值的平均值;
从所述至少两组定位信号的峰均比中确定峰均比最大的一组定位信号;
若峰均比最大的一组定位信号的峰均比大于预设阈值,则所述捕获结果为捕获成功;若峰均比最大的一组定位信号的峰均比不大于预设阈值,则所述捕获结果为捕获失败;
若捕获结果为捕获成功,则根据所述至少两组定位信号中峰均比最大的一组定位信号,确定所述接收到的基站发送的定位信号的码相位估计值和频率估计值。
2.根据权利要求1所述的方法,其特征在于,所述将所述定位信号分为至少两组,分别对每组定位信号进行频率补偿,包括:
对所述基站发送的定位信号进行模数转换,并根据预设采样速率对所述定位信号进行采样;
根据所述采样结果,将所述定位信号分为至少两组;
分别对每组定位信号进行频率补偿,频率补偿的范围不超过一个通带周期。
3.根据权利要求2所述的方法,其特征在于,所述将经过频率补偿的每组定位信号分为至少两个信号块,分别对每组信号中的信号块进行平均运算,得到经过块平均处理后的每组定位信号,包括:
将经过频率补偿的每组定位信号分为至少两个信号块,每个信号块中包括相同数量的采样点;
对于每组定位信号,分别对各信号块中各相同位置的采样点进行平均运算,得到经过块平均处理后的每组定位信号。
4.根据权利要求3所述的方法,其特征在于,
所述经过频率补偿的每组定位信号为:
其中,n为采样点的序号,r(i)(n)为第i组定位信号中第n个采样点的信号,A为信号幅度,d(nTs)为第n个采样点的导航电文,c(nTs)为第n个采样点的伪噪声码,为第i组定位信号经过频率补偿后的频率,Ts为信号采样周期,为载波相位,v(nTs)为第n个采样点的噪声;
所述经过块平均处理后的每组定位信号为:
5.一种信号捕获装置,其特征在于,所述装置包括:
信号接收模块,用于接收基站发送的定位信号;
频率补偿模块,用于将所述信号接收模块接收的所述定位信号分为至少两组,分别对每组定位信号进行频率补偿;
块平均处理模块,用于将经过所述频率补偿模块处理后的每组定位信号分为至少两个信号块,分别对每组信号中的信号块进行平均运算,得到经过块平均处理后的每组定位信号;
确定模块,用于根据经过所述块平均处理模块处理后的每组定位信号,确定捕获结果;
其中,信号块数M和信号组数X的取值限制条件为:
所述确定模块,包括:运算单元、峰均比确定单元、确定单元、判断单元和参数估计单元;
所述运算单元,用于分别对经过块平均处理之后的每组定位信号进行部分匹配滤波-快速傅里叶变换PMF-FFT运算,得到每组定位信号的幅频响应;
所述峰均比确定单元,用于根据所述运算单元计算的每组定位信号的幅频响应确定每组定位信号的峰均比,所述每组定位信号的峰均比为各自组定位信号幅频响应中的幅值最大值与幅值平均值的比值;所述幅值平均值为每组定位信号的幅频响应中预设数量的幅值的平均值;
所述确定单元,用于从所述峰均比确定单元确定的所述至少两组定位信号的峰均比中确定峰均比最大的一组定位信号;
所述判断单元,用于若所述确定单元确定的峰均比最大的一组定位信号的峰均比大于预设阈值,则所述捕获结果为捕获成功;若所述确定单元确定的峰均比最大的一组定位信号的峰均比不大于预设阈值,则所述捕获结果为捕获失败;
参数估计单元,用于若捕获结果为捕获成功,则根据所述确定单元确定的至少两组定位信号中峰均比最大的一组定位信号,确定所述接收到的基站发送的定位信号的码相位估计值和频率估计值。
6.根据权利要求5所述的装置,其特征在于,所述频率补偿模块,包括:采样单元、分组单元和频率补偿单元;
所述采样单元,用于对所述基站发送的定位信号进行模数转换,并根据预设采样速率对所述定位信号进行采样;
所述分组单元,用于根据所述采样单元确定的所述采样结果,将所述定位信号分为至少两组;
所述频率补偿单元,用于分别对所述分组单元拆分的每组定位信号进行频率补偿,频率补偿的范围不超过一个通带周期。
7.根据权利要求6所述的装置,其特征在于,所述块平均处理模块,具体用于:
将经过频率补偿的每组定位信号分为至少两个信号块,每个信号块中包括相同数量的采样点;
对于每组定位信号,分别对各信号块中各相同位置的采样点进行平均运算,得到经过块平均处理后的每组定位信号。
8.根据权利要求7所述的装置,其特征在于,
所述经过频率补偿的每组定位信号为:
其中,n为采样点的序号,r(i)(n)为第i组定位信号中第n个采样点的信号,A为信号幅度,d(nTs)为第n个采样点的导航电文,c(nTs)为第n个采样点的伪噪声码,为第i组定位信号经过频率补偿后的频率,Ts为信号采样周期,为载波相位,v(nTs)为第n个采样点的噪声;
所述经过块平均处理后的每组定位信号为:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810949427.4A CN109085630B (zh) | 2018-08-20 | 2018-08-20 | 一种信号捕获方法及装置 |
PCT/CN2019/077451 WO2020037974A1 (zh) | 2018-08-20 | 2019-03-08 | 一种信号捕获方法及装置 |
US16/647,171 US11303485B2 (en) | 2018-08-20 | 2019-03-08 | Signal acquisition method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810949427.4A CN109085630B (zh) | 2018-08-20 | 2018-08-20 | 一种信号捕获方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109085630A CN109085630A (zh) | 2018-12-25 |
CN109085630B true CN109085630B (zh) | 2021-04-30 |
Family
ID=64793863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810949427.4A Active CN109085630B (zh) | 2018-08-20 | 2018-08-20 | 一种信号捕获方法及装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11303485B2 (zh) |
CN (1) | CN109085630B (zh) |
WO (1) | WO2020037974A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109085630B (zh) * | 2018-08-20 | 2021-04-30 | 北京邮电大学 | 一种信号捕获方法及装置 |
CN111082873B (zh) * | 2019-12-17 | 2022-02-11 | 北京邮电大学 | 一种超长距离光纤高精度射频信号传递系统和方法 |
CN113691344B (zh) * | 2021-10-25 | 2021-12-28 | 长沙海格北斗信息技术有限公司 | 一种多路Weil码发生方法及装置 |
CN114399884B (zh) * | 2021-12-22 | 2023-10-20 | 核动力运行研究所 | 报警、解除报警的方法及装置 |
CN115133953B (zh) * | 2022-05-31 | 2024-02-20 | 南京邮电大学 | 一种基于pmf-fft算法在fpga上实现信号捕获的方法 |
CN115333554B (zh) * | 2022-08-01 | 2023-05-12 | 北京信息科技大学 | 一种基于距离感应的透地通信方法和通信装置 |
CN116647251B (zh) * | 2023-07-27 | 2023-10-03 | 天地信息网络研究院(安徽)有限公司 | 适合mc-cdma系统的信号捕获方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102087361A (zh) * | 2009-12-08 | 2011-06-08 | 北京邮电大学 | 一种卫星导航信号的捕获方法和装置 |
CN102608626A (zh) * | 2012-03-09 | 2012-07-25 | 暨南大学 | 一种高灵敏度卫星导航信号捕获方法及系统 |
CN106646546A (zh) * | 2016-12-20 | 2017-05-10 | 南京六九零二科技有限公司 | 一种卫星信号多维快速捕获方法及系统 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6006108A (en) * | 1996-01-31 | 1999-12-21 | Qualcomm Incorporated | Digital audio processing in a dual-mode telephone |
US7197243B1 (en) * | 2000-03-31 | 2007-03-27 | Nortel Networks Limited | Optical waveform for use in a DWDM optical network and systems for generating and processing same |
KR20050087784A (ko) * | 2002-10-04 | 2005-08-31 | 시그네이브 피티와이 엘티디. | 위성 기반 위치 지정 시스템 |
US7702002B2 (en) * | 2004-01-28 | 2010-04-20 | Qualcomm Incorporated | Rapid acquisition methods and apparatus for GPS signals |
US8013789B2 (en) * | 2004-10-06 | 2011-09-06 | Ohio University | Systems and methods for acquisition and tracking of low CNR GPS signals |
US8212720B2 (en) * | 2008-09-24 | 2012-07-03 | Texas Instruments Incorporated | Detecting lack of movement to aid GNSS receivers |
US20160245923A1 (en) * | 2008-12-11 | 2016-08-25 | Hemisphere Gnss Inc. | Global navigation satellite system superband processing device and method |
GB201016361D0 (en) * | 2010-09-29 | 2010-11-10 | Motorola Inc | Adaptive off-channel detector for receivers |
EP2746814A1 (en) * | 2012-12-24 | 2014-06-25 | u-blox AG | A method of processing a radio frequency signal, a signal processing device for carrying out the method, a radio frequency front-end, a radio receiver and a GNSS receiver |
CN104113502A (zh) | 2013-04-17 | 2014-10-22 | 意法-爱立信有限公司 | 频率偏移补偿的方法和装置 |
US20150097729A1 (en) * | 2013-07-30 | 2015-04-09 | Texas Instruments Incorporated | Method and apparatus for gnss signal tracking |
GB2537751A (en) * | 2015-04-16 | 2016-10-26 | Iposi Inc | Using LORAN for terrestrial time transfer |
CN107968757B (zh) | 2016-10-20 | 2020-12-18 | 国民技术股份有限公司 | 一种频移键控调制信号的解调方法及系统 |
CN109085630B (zh) | 2018-08-20 | 2021-04-30 | 北京邮电大学 | 一种信号捕获方法及装置 |
-
2018
- 2018-08-20 CN CN201810949427.4A patent/CN109085630B/zh active Active
-
2019
- 2019-03-08 WO PCT/CN2019/077451 patent/WO2020037974A1/zh active Application Filing
- 2019-03-08 US US16/647,171 patent/US11303485B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102087361A (zh) * | 2009-12-08 | 2011-06-08 | 北京邮电大学 | 一种卫星导航信号的捕获方法和装置 |
CN102608626A (zh) * | 2012-03-09 | 2012-07-25 | 暨南大学 | 一种高灵敏度卫星导航信号捕获方法及系统 |
CN106646546A (zh) * | 2016-12-20 | 2017-05-10 | 南京六九零二科技有限公司 | 一种卫星信号多维快速捕获方法及系统 |
Non-Patent Citations (3)
Title |
---|
Acquisition of Weak GNSS Signals Using a New Block Averaging Pre-Processing;Mohamed Sahmoudi等;《2008 IEEE/ION Position,Location and Navigation Symposium》;20080903;第1362-1372页 * |
基于块累加和频率补偿的GPS快速捕获算法;杨鹏举等;《电子设计工程》;20130630;第21卷(第12期);第187-190、193页 * |
杨鹏举等.基于块累加和频率补偿的GPS快速捕获算法.《电子设计工程》.2013,第21卷(第12期),第187-190、193页. * |
Also Published As
Publication number | Publication date |
---|---|
US20200241148A1 (en) | 2020-07-30 |
US20210231816A9 (en) | 2021-07-29 |
US11303485B2 (en) | 2022-04-12 |
CN109085630A (zh) | 2018-12-25 |
WO2020037974A1 (zh) | 2020-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109085630B (zh) | 一种信号捕获方法及装置 | |
CN104155663B (zh) | 一种应用于卫星导航系统的反欺骗攻击的方法及系统 | |
CN107817506B (zh) | 扩频无线电通信信号的基于倒谱的多径抑制 | |
CN112034419B (zh) | 一种用于5g定位的传播时延估计方法和装置 | |
CN113219504B (zh) | 定位信息确定方法及装置 | |
CN116760433B (zh) | 基带脉冲响应信号测量方法、装置、电子设备及介质 | |
CN108776326B (zh) | 一种多径效应抑制方法、装置及设备 | |
CN111722251A (zh) | 微弱信号捕获方法、装置、计算机设备和存储介质 | |
López-Risueño et al. | CN/sub 0/estimation and near-far mitigation for GNSS indoor receivers | |
CA2893723A1 (en) | System and method for determining location of an interfering signal source | |
Lv et al. | An improved method based on time-frequency distribution to detect time-varying interference for GNSS receivers with single antenna | |
CN107843885B (zh) | 多径时延估计的方法、装置、计算机设备和可读存储介质 | |
EP3021130B1 (fr) | Procédé et système pour la localisation d'un émetteur | |
CN111665528A (zh) | 卫星信号捕捉方法、装置及存储介质 | |
Zhang et al. | Sparsity-based time delay estimation through the matched filter outputs | |
CN107181708B (zh) | 频率估计方法及定位接收机 | |
CN104993844B (zh) | 一种频域搜索方法及装置 | |
CN110346818B (zh) | 一种gnss信号捕获中抑制互相关的方法及装置 | |
WO2013140910A1 (ja) | 信号サーチ方法、信号サーチプログラム、信号サーチ装置、gnss信号受信装置、および情報機器端末 | |
CN115078845B (zh) | 脉冲重复周期的采集方法、设备及计算机存储介质 | |
CN111510852B (zh) | 一种共频带定位系统中定位信号的捕获方法及装置 | |
US20240036159A1 (en) | Pulse parameter detection for radar and communications using trained neural networks | |
WO2012120126A1 (en) | Radio frequency digital receiver system and method | |
US20050069061A1 (en) | Cross-correlation signal detector | |
Zhu et al. | GPS signal acquisition using the repeatability of successive code phase measurements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |