CN109081927A - 一种水凝胶的制备方法 - Google Patents

一种水凝胶的制备方法 Download PDF

Info

Publication number
CN109081927A
CN109081927A CN201810659500.4A CN201810659500A CN109081927A CN 109081927 A CN109081927 A CN 109081927A CN 201810659500 A CN201810659500 A CN 201810659500A CN 109081927 A CN109081927 A CN 109081927A
Authority
CN
China
Prior art keywords
water
hydrogel
preparation
solution
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810659500.4A
Other languages
English (en)
Other versions
CN109081927B (zh
Inventor
刘泽华
徐力
张佳音
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN201810659500.4A priority Critical patent/CN109081927B/zh
Publication of CN109081927A publication Critical patent/CN109081927A/zh
Application granted granted Critical
Publication of CN109081927B publication Critical patent/CN109081927B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/40Cyclodextrins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Textile Engineering (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种水凝胶的制备方法,以TEMPO氧化纤维素纳米纤丝与水溶性阳离子β‑CD聚合物间的静电相互作用为基础,通过氨基化纳米银粒子与阳离子β‑CD聚合物的协同作用,进一步加强了静电相互作用,使水溶性阳离子β‑CD聚合物的含量成倍提高,从而大幅提高其吸附、载药性能。同时纳米银粒子和纤维素纳米纤丝还可作为增强相提高水凝胶的力学强度和粘弹性。水凝胶在组装过程中避免了有毒交联剂的使用,制备条件温和且交联速度快,制备得到的水凝胶具有良好的生物相容性、生物可降解性及一定的抗菌性,同时也保留了环糊精对疏水性分子的识别、包结性能,使水凝胶对疏水性药物具有极佳的承载能力以及不同pH条件下的缓释能力。

Description

一种水凝胶的制备方法
技术领域:
本发明涉及凝胶材料合成领域,特别是涉及一种水凝胶的制备方法。
背景技术:
智能水凝胶凭借其独特的刺激-响应机制、可逆体系的多样性等优异特性,逐渐成为当前化学与药学领域的研究热点之一。水凝胶在控制药物的释放速率与释放位置、提高药物在体内的生物利用度以及降低毒副作用等方面正在发挥越来越重要的作用。
纤维素纳米纤丝(CNF)是一种具有特殊网状结构且直径为纳米级的微细纤维。基于CNF天然高分子材料制备得到的水凝胶具有较好的生物相容性、生物可降解性以及与活体组织的相似性,更适合作为药物输送的载体。但在关于纤维素基水凝胶药物控释方面,因疏水性药物与水凝胶亲水性聚合物网络之间固有的不亲和性,导致该类材料多用于水溶性药物的输送,此外,疏水性药物从此类水凝胶中的释放不能长时间控制。
β-环糊精(β-CD)作为一种具有疏水性空腔结构的环状低聚糖,可用于提高疏水性药物的溶解度、稳定性及生物利用度。许多研究表明环糊精可凭借其自组装、分子识别和动态可逆能力与其他生物相容性材料构筑不同性能的智能药物载体。在现有报道中,多通过交联聚合方法制备得到β-CD与纤维素基材料相结合的水凝胶,但在制备过程中需使用有毒的交联剂及多种化学助剂,很大程度上影响了水凝胶的生物相容性。刘泽华等研究者(CMC/阳离子β-环糊精自组装材料的制备研究,造纸化学品,2009,21(5),7-12)报道了一种利用羧甲基纤维素(CMC)与阳离子β-CD之间的静电相互作用制备获得的纤维,可将其抄片成纸用于苯酚废水的处理。但该报道公开的技术方案中纤维形成的静电驱动力在整体上较弱,所引入的β-CD较少,制备获得的材料也不具备良好的体内药物输送特性,不适用于水凝胶等生物材料的制备。
发明内容:
针对上述问题,本发明的目的在于提供一种可作为药物载体且性能更优异的水凝胶的制备方法。
具体技术方案包括如下步骤:
1、纤维素纳米纤丝膜的制备:
取适量TEMPO氧化纤维素纳米纤丝(即通过TEMPO氧化法制备获得的纤维素纳米纤丝)溶于水中,再加入甘油,之后将溶液进行脱泡处理,脱泡后的溶液经干燥处理后即获得纤维素纳米纤丝膜;
优选地,反应体系中各原料添加量的质量份数分别为:TEMPO氧化纤维素纳米纤丝1~2份,甘油5~7份,余量为水。
2、水凝胶的制备:
将水溶性阳离子β-CD聚合物的水溶液与氨基化纳米银粒子的水溶液混合得到浸泡液;将步骤1制备获得的纤维素纳米纤丝膜在浸泡液中浸泡反应10~20min后取出,即获得水凝胶产品;
优选地,所述水溶性阳离子β-CD聚合物在其水溶液中的浓度为10~30%,氨基化纳米银粒子(Ag-NH2NPs)在其水溶液中的浓度为0.03~0.04mg/mL;用以混合制备所述浸泡液的水溶性阳离子β-CD聚合物水溶液与氨基化纳米银粒子水溶液的体积比为35~40:1;用以浸泡的纤维素纳米纤丝膜与浸泡液的质量比为0.01~0.03:1。
进一步地,上述步骤2中,所述水溶性阳离子β-CD聚合物通过如下步骤制备获得:
(1)将β-CD溶于NaOH溶液中,之后加入2,3-环氧丙基三甲基氯化铵溶液、环氧氯丙烷以及聚乙二醇600,加热搅拌反应至少3h;
优选地,上述反应体系中各原料添加量的质量份数分别为:β-CD12~15份、NaOH4~6份、2,3-环氧丙基三甲基氯化铵18~20份、环氧氯丙烷9~12份、聚乙二醇600 5~9份,余量为水。
(2)向反应后的体系中加入无水乙醇并快速搅拌至产生白色沉淀,静置一段时间后对沉淀进行倾析分离。
(3)倾析获得的固体用水重溶并调节pH至7,之后于50℃加热至少12h,最后将溶液转入截留分子量为6000~8000的透析袋,在蒸馏水中透析至少48h,将透析后的溶液进行冷冻干燥处理即得到水溶性阳离子β-CD聚合物。
上述步骤2中,所述氨基化纳米银粒子的制备方法为:在室温下,将适量AgNO3完全溶解在聚乙烯吡咯烷酮/乙二醇溶液中,随后以1℃/min的升温速率将混合溶液加热至120℃,之后保持120℃反应1h;自然冷却后加入丙酮以产生沉淀。超速离心获得银纳米粒子,之后在100mL0.5mol/L的NaOH溶液中70℃下反应12h,所得产物超速离心、洗涤后在甲醇/水溶液中再分散,之后于70℃下用3-氨丙基三乙氧基硅烷氨化12h,收集固体,用蒸馏水洗涤后在30℃下真空干燥,得到氨基化纳米银粒子。具体制备方法还可参考以下现有技术:
文献1:Wang,J.,Gao,X.,et al.(2016).Monodispersed graphene quantum dotsencapsulated Ag nanoparticles for surface-enhanced Raman scattering.MaterialsLetters,162(Suppl.C),142–145.
文献2:Zhang,F.,Braun,G.B.,et al.(2010).Fabrication of Ag@SiO2@Y2O3:Ernanostructures for bioimaging:Tuning of the upconversion fluorescence withsilver nanoparticles.Journal of the American Chemical Society,132(9),2850–2851.
本发明提供的水凝胶制备方法,以TEMPO氧化纤维素纳米纤丝与水溶性阳离子β-CD聚合物间的静电相互作用为基础,通过加入的氨基化纳米银粒子与水溶性阳离子β-CD聚合物的协同作用,进一步加强了阴阳离子间的静电相互作用,使水溶性阳离子β-CD聚合物的含量成倍提高,从而大幅提高其吸附、载药性能,同时纳米银粒子和纤维素纳米纤丝还可在体系中作为增强相提高水凝胶的力学强度和粘弹性。另外,在制备原料及方法上,水凝胶在组装过程中避免了有毒交联剂的使用,制备条件温和且交联速度快,制备得到的CNF/阳离子β-CD聚合物/纳米银粒子水凝胶具有良好的生物相容性、生物可降解性及一定的抗菌性,同时也保留了环糊精对疏水性分子的识别、包结性能,使水凝胶对疏水性药物具有极佳的承载能力以及不同pH条件下的缓释能力。
附图说明:
图1阳离子β-CD聚合物在水凝胶中的含量随凝胶组装时间的变化图。
具体实施方式:
以下通过实施例对本发明技术方案做进一步详细说明。
实施例1
1、纤维素纳米纤丝膜的制备:
取适量TEMPO氧化纤维素纳米纤丝加入水中,40℃快速搅拌至完全溶解,再加入甘油并继续于40℃下快速搅拌至溶液均一透明,之后将溶液进行离心脱泡及超声脱泡处理,脱泡后的溶液于55℃烘箱中干燥6~12h后即获得纤维素纳米纤丝膜。
反应体系中各原料添加量的质量份数分别为:TEMPO氧化纤维素纳米纤丝1.5份,甘油6份,余量为水。
2、水凝胶的制备:
将水溶性阳离子β-CD聚合物溶于水,配制成浓度为20%的溶液,再取适量Ag-NH2NPs(参照前述文献1和文献2中记载的方法制备获得)溶于水,配制成浓度为0.03mg/mL的溶液,将水溶性阳离子β-CD聚合物水溶液与Ag-NH2NPs水溶液按照体积比38:1进行混合得到浸泡液;将步骤1制备获得的纤维素纳米纤丝膜在浸泡液中浸泡反应12min后取出,即获得水凝胶产品。用以浸泡的纤维素纳米纤丝膜与混合溶液的质量比为0.03:1。
实施例2
1、纤维素纳米纤丝膜的制备:
取适量TEMPO氧化纤维素纳米纤丝加入水中,40℃快速搅拌至完全溶解,再加入甘油并继续于40℃下快速搅拌至溶液均一透明,之后将溶液进行离心脱泡及超声脱泡处理,脱泡后的溶液于55℃烘箱中干燥10h即获得纤维素纳米纤丝膜。
反应体系中各原料添加量的质量份数分别为:TEMPO氧化纤维素纳米纤丝2份,甘油7份,余量为水。
2、水溶性阳离子β-CD聚合物的制备:
(1)将适量β-CD加入浓度为220g/L的NaOH溶液中,60℃搅拌至完全溶解,之后加入浓度为900g/L的2,3-环氧丙基三甲基氯化铵溶液、环氧氯丙烷以及聚乙二醇600,55~60℃搅拌反应至少3h;
上述反应体系中各原料添加量的质量份数分别为:β-CD 14份、NaOH 5份、2,3-环氧丙基三甲基氯化铵18份、环氧氯丙烷10份、聚乙二醇600 8份,余量为水。
(2)向反应后的体系中加入至少2倍体积的无水乙醇并快速搅拌至产生白色沉淀,静置12h后进行倾析分离。
(3)倾析获得的固体用水重溶并用6mol/L盐酸调节pH至7,之后于50℃加热至少12h,最后将溶液转入截留分子量为6000~8000的透析袋,在蒸馏水中透析至少48h,将透析后的溶液进行冷冻干燥处理即得到水溶性阳离子β-CD聚合物。
通过上述方法制备获得的水溶性阳离子β-CD聚合物的电荷密度为1.73mmol/g,可进一步加强水凝胶自组装的静电相互作用。
3、水凝胶的制备:
将步骤2制备获得的水溶性阳离子β-CD聚合物溶于水,配制成浓度为25%的溶液,再取适量Ag-NH2NPs(参照前述文献1和文献2中记载的方法制备获得)溶于水,配制成浓度为0.035mg/mL的溶液,将水溶性阳离子β-CD聚合物水溶液与Ag-NH2NPs水溶液按照体积比39:1进行混合得到浸泡液;将步骤1制备获得的纤维素纳米纤丝膜在浸泡液中浸泡反应15min后取出,即获得水凝胶产品。用以浸泡的纤维素纳米纤丝膜与混合溶液的质量比为0.03:1。
图1显示了实施例2步骤3中,水溶性阳离子β-CD聚合物在水凝胶中的含量随凝胶自组装时间的变化趋势。从图中可以看出,阳离子β-CD聚合物的含量在前15min内迅速上升,接近130mg/g;在20min时阳离子β-CD聚合物的含量达到132.60mg/g;在20min后阳离子β-CD聚合物的含量随时间延长基本保持不变,达到平衡。该结果说明了CNF、阳离子β-CD聚合物及Ag-NH2NPs多组分间的静电自组装是一个快速交联过程,与常规化学交联过程相比时间大大缩短,后者通常需要数小时。
实施例3
1、纤维素纳米纤丝膜的制备:
取适量TEMPO氧化纤维素纳米纤丝加入水中,40℃快速搅拌至完全溶解,再加入甘油并继续于40℃下快速搅拌至溶液均一透明,之后将溶液进行离心脱泡及超声脱泡处理,脱泡后的溶液于55℃烘箱中干燥10h即获得纤维素纳米纤丝膜。
反应体系中各原料添加量的质量份数分别为:TEMPO氧化纤维素纳米纤丝1份,甘油5份,余量为水。
2、水溶性阳离子β-CD聚合物的制备:方法与实施例2相同。
3、水凝胶的制备:
将步骤2制备获得的水溶性阳离子β-CD聚合物溶于水,配制成浓度为30%的溶液,再取适量Ag-NH2NPs(参照前述文献1和文献2中记载的方法制备获得)溶于水,配制成浓度为0.04mg/mL的溶液,将水溶性阳离子β-CD聚合物水溶液与Ag-NH2NPs水溶液按照体积比36:1进行混合得到浸泡液;将步骤1制备获得的纤维素纳米纤丝膜在浸泡液中浸泡反应20min后取出,即获得水凝胶产品。用以浸泡的纤维素纳米纤丝膜与混合溶液的质量比为0.02:1。
实施例4
制备不含纳米银粒子的水凝胶,将其作为对照组,与实施例2的水凝胶产品进行阳离子β-CD聚合物含量的比较。对照组水凝胶的制备方法与实施例2基本相同,不同之处仅在于浸泡液为25%的水溶性阳离子β-CD聚合物溶液,其中不含有Ag-NH2NPs,浸泡时间至少30min。
结果表明:对照组水凝胶中阳离子β-CD聚合物的含量在初始10min内迅速上升,10min后随时间的延长基本保持不变,维持在58mg/g左右。具体比较结果如表1所示:对照组水凝胶中阳离子β-CD聚合物的含量在30min后的含量为58.12mg/g,远低于实施例2的水凝胶产品(自组装15min时的阳离子β-CD聚合物含量为132.60mg/g)。
实施例5
载药试验:将前述对照组水凝胶及实施例2、3制备的水凝胶分别于40mL浓度为1mg/mL的氯霉素水溶液中浸泡24h后取出,通过对比浸泡前后氯霉素水溶液的吸光度变化计算凝胶载药量。结果如表1所示:实施例2和实施例3的水凝胶产品对疏水性药物氯霉素的载药量远高于对照组,是对照组的5倍左右。
表1水凝胶的阳离子β-CD聚合物的含量及载药量对比
a组装时间:即纤维素纳米纤丝膜在浸泡液中的浸泡反应时间
b聚合物含量:即阳离子β-CD聚合物的含量
实施例6
不同pH环境下的释药试验:将实施例2、3制备的水凝胶进行冷冻干燥处理,之后于40mL浓度为1mg/mL的氯霉素水溶液中浸泡24h,最后分别置于50mL不同pH的缓冲液中(pH分别为4、6、7、8、10),于摇床中以37.5±0.5℃、150rpm持续振荡处理。根据缓冲液振荡处理12h后的吸光度变化计算药物释放浓度,再根据释放浓度进一步计算释放率。试验结果表明,实施例2、3制备的水凝胶对疏水性药物具有良好的缓释能力,且在不同pH刺激响应下的控释能力差异明显(具体结果见表2)。
表2载药水凝胶在不同pH环境下持续缓释12h后的平均累积释放率
实施例7
压缩应力测试:将实施例2制备的水凝胶制成直径20mm、高5mm的圆柱形样品,使用流变仪进行压缩应力-应变测试,压缩样品时压力达到最大装载量50N时结束。测试结果表明:实施例2制备的水凝胶可承受的最大应力达到6~9Kpa。

Claims (4)

1.一种水凝胶的制备方法,其特征在于包括以下步骤:
(1)纤维素纳米纤丝膜的制备:
取适量TEMPO氧化纤维素纳米纤丝溶于水中,再加入甘油,之后将溶液进行脱泡处理,脱泡后的溶液经干燥处理后即获得纤维素纳米纤丝膜;
(2)水凝胶的制备:
将水溶性阳离子β-CD聚合物的水溶液与氨基化纳米银粒子的水溶液混合得到浸泡液;将步骤(1)制备获得的纤维素纳米纤丝膜在浸泡液中浸泡反应10~20min后取出,即获得水凝胶产品。
2.根据权利要求1所述的水凝胶的制备方法,其特征在于:所述步骤(1)中,反应体系中各原料添加量的质量份数分别为:TEMPO氧化纤维素纳米纤丝1~2份,甘油5~7份,余量为水;所述步骤(2)中,所述水溶性阳离子β-CD聚合物在其水溶液中的浓度为10~30%,氨基化纳米银粒子(Ag-NH2NPs)在其水溶液中的浓度为0.03~0.04mg/mL;用以混合制备所述浸泡液的水溶性阳离子β-CD聚合物水溶液与氨基化纳米银粒子水溶液的体积比为35~40:1。
3.根据权利要求1或2所述的水凝胶的制备方法,其特征在于:所述水溶性阳离子β-CD聚合物的制备方法包括如下步骤:
(1)将β-CD溶于NaOH溶液中,之后加入2,3-环氧丙基三甲基氯化铵溶液、环氧氯丙烷以及聚乙二醇600,加热搅拌反应至少3h;
(2)向反应后的体系中加入无水乙醇并快速搅拌至产生白色沉淀,静置一段时间后对沉淀进行倾析分离;
(3)倾析获得的固体用水重溶并调节pH至7,之后于50℃加热至少12h,最后将溶液转入截留分子量为6000~8000的透析袋,在蒸馏水中透析至少48h,将透析后的溶液进行冷冻干燥处理即得到水溶性阳离子β-CD聚合物。
4.根据权利要求3所述的水凝胶的制备方法,其特征在于:所述水溶性阳离子β-CD聚合物的制备方法,其步骤(1)中,反应体系中各原料添加量的质量份数分别为:β-CD 12~15份、NaOH 4~6份、2,3-环氧丙基三甲基氯化铵18~20份、环氧氯丙烷9~12份、聚乙二醇6005~9份,余量为水。
CN201810659500.4A 2018-06-25 2018-06-25 一种水凝胶的制备方法 Active CN109081927B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810659500.4A CN109081927B (zh) 2018-06-25 2018-06-25 一种水凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810659500.4A CN109081927B (zh) 2018-06-25 2018-06-25 一种水凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN109081927A true CN109081927A (zh) 2018-12-25
CN109081927B CN109081927B (zh) 2020-07-03

Family

ID=64840182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810659500.4A Active CN109081927B (zh) 2018-06-25 2018-06-25 一种水凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN109081927B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483810A (zh) * 2019-07-26 2019-11-22 广西大学 一种纳米纤维素抗菌水凝胶的制备方法
JP2020050804A (ja) * 2018-09-28 2020-04-02 大王製紙株式会社 ゲル状洗浄剤組成物及び洗浄剤製品
CN112941913A (zh) * 2021-03-31 2021-06-11 温州医科大学 一种治疗慢性难愈合创面的水凝胶及其制备方法
CN114085390A (zh) * 2021-11-26 2022-02-25 南京林业大学 一种可超长拉伸超分子水凝胶的制备方法
CN114948774A (zh) * 2022-07-29 2022-08-30 山东新华莎罗雅生物技术有限公司 阴阳离子共存的消毒洗手液及其制备方法
CN116178075A (zh) * 2023-03-17 2023-05-30 江西辉隆生态肥业有限公司 一种高效尿基复合肥及其制备方法
US11857632B1 (en) * 2019-10-24 2024-01-02 Innosense Llc Nanocellulose as an embedding matrix and applications thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101111335A (zh) * 2005-02-02 2008-01-23 同和电子科技有限公司 银粒子粉末及其制造方法
US20090214604A1 (en) * 2005-02-25 2009-08-27 Universidade De Santiago De Compostela Method of obtaining hydrogels of cyclodextrins with glycidyl ethers, compositions thus obtained and applications thereof
CN103012811A (zh) * 2012-12-21 2013-04-03 北京林业大学 自修复纤维素水凝胶的制备方法及制备得到的水凝胶
EP2817359A1 (en) * 2012-02-20 2014-12-31 Cambridge Enterprise Limited Cucurbituril-based hydrogels
CN106832388A (zh) * 2017-03-10 2017-06-13 天津科技大学 一种气凝胶的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101111335A (zh) * 2005-02-02 2008-01-23 同和电子科技有限公司 银粒子粉末及其制造方法
US20090214604A1 (en) * 2005-02-25 2009-08-27 Universidade De Santiago De Compostela Method of obtaining hydrogels of cyclodextrins with glycidyl ethers, compositions thus obtained and applications thereof
EP2817359A1 (en) * 2012-02-20 2014-12-31 Cambridge Enterprise Limited Cucurbituril-based hydrogels
CN103012811A (zh) * 2012-12-21 2013-04-03 北京林业大学 自修复纤维素水凝胶的制备方法及制备得到的水凝胶
CN106832388A (zh) * 2017-03-10 2017-06-13 天津科技大学 一种气凝胶的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEEMA SAINI等: ""b-Cyclodextrin-grafted TEMPO-oxidized cellulose nanofibers for sustained release of essential oil"", 《J. MATER. SCI.》 *
杨志恒等: ""纳米TiO2/β-CDP复合物的制备及表征"", 《天津科技大学学报》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020050804A (ja) * 2018-09-28 2020-04-02 大王製紙株式会社 ゲル状洗浄剤組成物及び洗浄剤製品
WO2020066731A1 (ja) * 2018-09-28 2020-04-02 大王製紙株式会社 ゲル状洗浄剤組成物及び洗浄剤製品
CN110483810A (zh) * 2019-07-26 2019-11-22 广西大学 一种纳米纤维素抗菌水凝胶的制备方法
CN110483810B (zh) * 2019-07-26 2022-03-04 广西大学 一种纳米纤维素抗菌水凝胶的制备方法
US11857632B1 (en) * 2019-10-24 2024-01-02 Innosense Llc Nanocellulose as an embedding matrix and applications thereof
CN112941913A (zh) * 2021-03-31 2021-06-11 温州医科大学 一种治疗慢性难愈合创面的水凝胶及其制备方法
CN114085390A (zh) * 2021-11-26 2022-02-25 南京林业大学 一种可超长拉伸超分子水凝胶的制备方法
CN114085390B (zh) * 2021-11-26 2023-09-26 南京林业大学 一种可超长拉伸超分子水凝胶的制备方法
CN114948774A (zh) * 2022-07-29 2022-08-30 山东新华莎罗雅生物技术有限公司 阴阳离子共存的消毒洗手液及其制备方法
CN114948774B (zh) * 2022-07-29 2022-11-01 山东新华莎罗雅生物技术有限公司 阴阳离子共存的消毒洗手液及其制备方法
CN116178075A (zh) * 2023-03-17 2023-05-30 江西辉隆生态肥业有限公司 一种高效尿基复合肥及其制备方法
CN116178075B (zh) * 2023-03-17 2024-05-14 江西辉隆生态肥业有限公司 一种高效尿基复合肥及其制备方法

Also Published As

Publication number Publication date
CN109081927B (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
CN109081927A (zh) 一种水凝胶的制备方法
Cascone et al. Effect of chitosan and dextran on the properties of poly (vinyl alcohol) hydrogels
Wei et al. Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels
Lin et al. Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres
Ma et al. Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan
Wang et al. The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules
Spaic et al. Characterization of anionic and cationic functionalized bacterial cellulose nanofibres for controlled release applications
US10086086B2 (en) Payload molecule delivery using molecular rebar
Hebeish et al. Thermal responsive hydrogels based on semi interpenetrating network of poly (NIPAm) and cellulose nanowhiskers
Deng et al. Cellulose nanofibril as a crosslinker to reinforce the sodium alginate/chitosan hydrogels
Qi et al. Cationic Salecan-based hydrogels for release of 5-fluorouracil
Kumar et al. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering
DE69635127T2 (de) Verfahren zur herstellung von vernetzten wasserlöslichen polymerpartikel, die partikel und ihre verwendung
Seera et al. Physical and chemical crosslinked microcrystalline cellulose-polyvinyl alcohol hydrogel: Freeze–thaw mediated synthesis, characterization and in vitro delivery of 5-fluorouracil
Wei et al. Nanocellulose based hydrogel or aerogel scaffolds for tissue engineering
Monfared et al. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications
Nawawi et al. Surface properties of chitin-glucan nanopapers from Agaricus bisporus
CN109970998B (zh) 一种以Pickering乳液法制备GelMA大孔水凝胶的方法及应用
Badakhshanian et al. Enhancement of mechanical properties of nanohydrogels based on natural gum with functionalized multiwall carbon nanotube: study of swelling and drug release
CN106492284B (zh) 一种生物可降解充填材料的制备方法及其产品和应用
Khandal et al. Tailoring cellulose nanocrystals rheological behavior in aqueous suspensions through surface functionalization with polyethyleneimine
CN105348548A (zh) 一种基于葡聚糖的水凝胶微球及其制备方法
WO2011123760A2 (en) Whey protein isolate hydrogels and their uses
CN103705987B (zh) 一种具有ct造影功能的葡聚糖栓塞微球的制备方法
Oves et al. Polysaccharide-based nanocomposites for gene delivery and tissue engineering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: No.9, 13th Street, economic and Technological Development Zone, Binhai New Area, Tianjin

Patentee after: Tianjin University of Science and Technology

Address before: 300222 No. 1038 South Dagu Road, Tianjin, Hexi District

Patentee before: Tianjin University of Science and Technology

CP02 Change in the address of a patent holder