CN109072600B - 3d打印 - Google Patents

3d打印 Download PDF

Info

Publication number
CN109072600B
CN109072600B CN201680085122.2A CN201680085122A CN109072600B CN 109072600 B CN109072600 B CN 109072600B CN 201680085122 A CN201680085122 A CN 201680085122A CN 109072600 B CN109072600 B CN 109072600B
Authority
CN
China
Prior art keywords
empty
layer
build material
printer
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680085122.2A
Other languages
English (en)
Other versions
CN109072600A (zh
Inventor
塞格欧·皮加德·阿拉门迪亚
帕布洛·多明格斯·帕斯托
塞巴斯蒂·科特斯·赫尔姆斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of CN109072600A publication Critical patent/CN109072600A/zh
Application granted granted Critical
Publication of CN109072600B publication Critical patent/CN109072600B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/387Composing, repositioning or otherwise geometrically modifying originals
    • H04N1/3872Repositioning or masking
    • H04N1/3873Repositioning or masking defined only by a limited number of coordinate points or parameters, e.g. corners, centre; for trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber

Abstract

根据一个方面,提供了一种三维打印机。该打印机包括控制器,该控制器用于:获得与构造模型的层有关的数据,根据第一操作模式来处理非空层,以及根据第二操作模式来处理空层。

Description

3D打印
背景技术
一般被称为3D打印系统的增材制造系统通常在生成少量的某些类型的物体时是有用的。为了帮助将这些系统转换到高生产率环境中,这种系统必须能够以高效的方式来生成物体。
附图说明
现在将参照附图仅通过非限制性示例的方式来描述示例,在附图中:
图1是示例3D打印系统的简化图;
图2是构造模型内的物体的示例空间布置;
图3示出了示例3D打印系统的框图;
图4是概述了操作3D打印系统的示例方法的流程图;
图5是根据一个示例的示出了一组物体模型切片的图示;
图6是概述了操作3D打印系统的示例方法的流程图;和
图7是概述了操作3D打印系统的示例方法的流程图。
具体实施方式
一些3D打印系统通过在构造平台上形成诸如粉末构造材料等构造材料的连续层并且通过经由适当的机制选择性地固化每个层的部分以逐层地形成物体来生成三维物体。
一种这样的3D打印技术在构造平台上形成粉末状的构造材料层,并对该构造材料层进行预热以接近其熔点。然后,可以以从待生成的物体的3D模型中导出的图案在所形成的构造材料层上选择性地打印熔合剂。然后将例如来自熔合灯的熔合能量施加到所形成的构造材料层上。在施加熔合剂的情况下,能量更容易被吸收,这使得构造材料的施加有熔合剂的那些部分融化和聚结,或熔合,并且随后在冷却时固化,从而形成3D物体的层。这样的系统可以附加地打印可能被使用例如以改善表面细节、控制被打印物体的其他机械属性、或者以预定方式与熔合剂相互作用的细化剂或冷却剂的图案。
图1中示出了示例3D打印系统100的简化图。打印系统100包括构造平台102,在构造平台102上形成诸如粉末状构造材料等构造材料层。构造平台102可沿z轴(即,竖直地)移动。构造材料层可以由安装在可沿y轴移动的托架上的构造材料分配器106来形成。例如,构造材料分配器106可以是重涂辊,其将预先准备好的一堆构造材料铺展在构造平台上。在另一示例中,构造材料分配器106可以铺展或沉积来自料斗(未示出)的构造材料,以在构造平台102上形成构造材料层。构造材料的初始层直接形成在构造平台102的上表面上,而构造材料的后续层形成在先前所形成的构造材料层上。
尽管未在图1中示出,但是构造平台102可以容纳在构造单元(未示出)内,该构造单元具有基部和侧壁以在3D打印过程期间容纳构造粉末和所生成的3D物体。
然后,例如,可以从也被安装在托架上的打印头108以独立的图案将一种或多种可打印试剂(例如,熔合剂和细化剂)选择性地打印在最新形成的构造材料层上。在其他示例中,打印头、熔合灯和重涂器可以以其他配置来布置,例如沿同一轴的多个托架上,在沿正交轴的多个托架中,或以任何其他合适的配置。
然后可以将来自熔合灯110的诸如光或红外辐射等熔合能量施加到构造材料的顶层,以使得构造材料根据如上所述的试剂的打印图案进行熔合。
所形成的构造材料层的预热可以减少由熔合灯供应以引起熔合的能量的量。例如,由于构造材料的改善的结晶,这种布置还可以有助于提高3D打印物体的物理性质。
在熔合之后,将构造平台102降低预定量,并且重复该过程直到逐层生成3D物体。
这种3D打印系统通常对所形成的构造材料层的不同部分之间的热失衡相对敏感。此外,这种系统的元件,例如熔合灯和预热灯,可能具有高的热惯性。因此,这种能量源的瞬时接通和切断可能不会导致打印系统内的热状况的瞬时变化。因此,可以控制这种系统以执行相同的操作(例如,形成具有常规层厚度的构造材料层、施加预热能量、施加熔合能量等),而不考虑所生成的3D物体的性质。
直到最近,3D打印技术在很大程度上限于生产用于原型制作环境中的少量物体。然而,随着技术的改进,使用一些3D打印系统来生产用于生产环境中的大量物体变得可行。
然而,为了从原型制作环境移动到生产环境,这种系统必须是高效的。
在一些情况下,可以通过在单个打印作业中3D打印多个物体来实现效率。例如,客户可能订购一批相同或不同的物体来进行3D打印。可以将订购物体成批在一起以有效地使用3D打印机的构造体积,使得生成将使得3D打印成批在一起的物体的3D打印作业。
通常,一批物体中的物体将与该批中的其他物体隔开合适的间距。该间距使每个3D物体能够在打印后轻易地分离,并且还有助于防止来自一个物体的热量流失影响其他物体。间距的大小可以取决于3D打印系统的特性,该特性可以包括:所使用的构造材料的类型、热流失特性、以及细化剂或冷却剂的使用。
例如,可以通过预处理系统来执行物体的成批,该预处理系统接收要被3D打印的物体的3D模型并且确定3D构造模型内的那些物体的空间布置。在一个示例中,构造模型可以由多个3D物体模型形成,每个物体模型表示要被生成的3D物体。设计者还可以手动地将构造模型中的多个物体成批在一起。
图2中示出了构造模型内的物体的示例空间布置200。图2示出了构造模型的外部界限202。构造模型可以与可以由3D打印机在其中生成物体的物理构造体积相对应。在构造模型202内布置有多个物体204a至204n。在该示例中,物体204a至204n彼此相同,但是在其他示例中,至少一些物体可以是不同的。
在构造模型202内,物体204a至204n已经在空间上布置成使得它们沿z轴(即,竖直轴)彼此竖直地隔开距离dv。每个物体也彼此水平地隔开距离dh。物体204a至204n的分隔可以由预处理系统执行,或者可以由人类操作员例如使用合适的计算机辅助设计(CAD)软件应用程序来确定。
现在参考图3,示出了根据一个示例的3D打印系统300的简化图。如下面将更详细描述的,3D打印系统300被配置为在处理包括非熔合构造材料的空层的3D打印作业时特别有效。
3D打印系统300包括3D打印机模块302,诸如如上所述并且如图1所示的3D打印机系统。然而,在其他示例中,3D打印机模块302可以是任何其他适当类型的3D打印系统,例如选择性激光烧结(SLS)3D打印机、立体光刻打印机(SLA)等。
3D打印系统300的操作由3D打印机控制器304控制。控制器304包括处理器306,例如微处理器。处理器306例如通过合适的通信总线(未示出)耦接到存储器308。存储器308存储处理器可理解的3D打印机控制指令310,该3D打印机控制指令310在由处理器306执行时使控制器304如本文所述地控制3D打印机。现在将附加地参考图4、图5和图6来描述3D打印系统300的示例操作。
现在参考图4,在框402处,3D打印机控制器304的处理器306执行3D打印机控制指令310,以控制处理器306来获得构造模型的切片数据。例如,可以通过将构造模型变换为多个二维图像来获得切片数据,其中每个图像表示构造模型的平行平面中的切片,如图5所示。每个切片图像表示该切片中存在的任何物体的截面(如果有的话)。每个切片图像可以表示要由3D打印机302处理的构造材料层。
构造模型的每个切片表示将由3D打印机处理的构造材料层。例如,每个切片可以表示或基于该切片中的任何物体的截面,如图5所示。
构造模型所划分成的切片图像的数量可以取决于众多因素。一个因素是可由3D打印系统形成的每个构造材料层的厚度。根据所使用的3D打印系统的类型,每个所形成的构造材料层的厚度可以在约50微米至200微米的范围内。每个构造材料层越薄,所打印的3D物体的分辨率就越高。但是,需要处理以生成物体的构造材料层的数量可能增加其处理3D打印作业所花费的时间。
例如,每个切片图像可以由具有合适的比特深度的光栅图像来表示,其中比特深度基于可以由3D打印系统产生的属性的类型(颜色、机械属性等)。在一个示例中,每个切片图像可以具有1比特深度,其中图像中的每个像素可以表示待固化的构造材料层的一部分,或者可以表示不被固化的构造材料层的一部分。
由3D打印系统顺序地处理每个切片图像,以生成用于控制3D打印机302来选择性地固化每个所形成的构造材料层的部分的数据。例如,切片数据可以被转化成打印头控制数据,以使打印剂的适当的图案被打印在构造材料层上。如在图5中可以看到的,第一组切片502每个都示出了构造材料层的部分将被选择性地固化以生成3D物体的部分。然而,另一组空切片504没有任何物体截面,并且因此表示构造材料的空层,在该空层上没有构造材料要被固化。在该示例中,该组层504可以表示图2中所示的竖直间距dv。根据由3D打印机302形成的每个构造材料层的厚度,并且根据竖直间距dv,空切片504的数量可以变化。例如,如果竖直间距dv是5mm,并且由3D打印机302形成的每个层的厚度是0.1mm,则可以有50个空层504。
在框404处,处理器306执行3D打印机控制指令310,以控制处理器306来确定正被处理的当前层的切片图像是空的还是非空的。如前所述,空层表示没有构造材料层的任何部分要被固化。
如果当前层不是空的,则在框406处,处理器306执行3D打印机控制指令310,以控制处理器306根据常规操作模式来处理该层。常规操作模式可以包括在处理每个构造材料层时执行的一组“常规”处理操作。例如,如上所述,一组常规处理操作可以包括:
a.使构造平台102竖直移动常规层高度;
b.准备将被铺展在构造平台上的对应体积的构造材料
c.将所准备的体积的构造材料铺展在构造平台上,以在其上形成构造材料层;
d.将预热能量施加到所形成的层;
e.在所形成的层上方移动打印头,同时控制打印头根据切片数据对打印剂的图案进行打印;和
f.施加熔合能量以使所形成的层的部分根据切片图像进行熔合和固化。
在框404处,重复该过程。
然而,如果在框406处,处理器306确定当前切片图像为空,则在框408处,处理器306确定下一切片图像是否也为空。重复该过程直到确定连续空切片的数量。在一个示例中,处理器306通过在切片图像中检查某些预定像素值的存在或不存在来确定切片图像是否为空。例如,在切片图像是二进制图像的情况下,如果图像的所有像素都具有值零,则处理器306可以确定该切片图像为空。
在框410处,3D打印机控制器304控制3D打印机100以基于不同于常规操作模式的第二操作模式来处理相应的空层。在一个示例中,可以基于所确定的空切片的数量来确定在第二操作模式中执行的操作。
通过基于要处理的空层的存在或不存在来使用不同的操作模式,可以使得一些3D打印系统的效率得以提高,这可以导致更快的物体生成时间。例如,当要处理多个连续的空层时,继续执行所有上述“常规”处理操作可能是低效的。在第一操作模式和第二操作模式中执行的操作的确切性质可以根据所使用的3D打印技术的类型而变化。然而,基于空切片的存在或不存在来使用不同的处理模式的一般原理可以适用于不同种类的3D打印技术,其可以包括基于试剂和粉末的3D打印系统、选择性激光烧结系统、立体光刻打印和直接金属烧结系统。
现在参考图6,示出了处理空层的示例方法。
在602处,处理器306确定切片数据中的空切片的数量。在604处,处理器306基于多个空层的数量来确定如何处理对应的空层。在所示的示例中,当空层的数量小于空层的预定阈值数量时,在606处,处理器306控制3D打印机302以使用第一组处理操作来处理所有空层。在一个示例中,第一组处理操作可以包括所有上述“常规的”处理操作。当空层的数量大于或等于空层的预定阈值数量时,在608处,处理器306控制3D打印机302以使用第一组处理操作来处理空层的第一部分。在610处,处理器306控制3D打印机302使用第二组处理操作来处理空层的第二部分。在612处,处理器306控制3D打印机302以使用第三组处理操作来处理空层的第三部分。在一个示例中,空层的每个部分是一组连续的空层。
例如,可以基于3D打印系统的特性来选择层的预定阈值数量。例如,在一个示例中,可以选择5层的阈值,或10层的阈值,或20层的阈值。在其他示例中,可以选择不同的预定阈值。
现在将描述更详细的示例。以下给出的示例基于如上所述的基于粉末和熔合剂型3D打印系统。然而,可以在其他示例中进行合适的修改以便与其他合适的3D打印系统(例如,选择性激光烧结系统)一起使用。
在606处,在空层的数量低于预定阈值的情况下,第一空层处理模式可以对上述常规层处理操作进行一些修改。例如,第一空层处理模式可以仅执行以下的层处理操作:
a.使构造平台102竖直移动常规层高度;
b.准备要被铺展在构造平台上的对应体积的构造材料;
c.将该体积的构造材料铺展在构造平台上以在其上形成构造材料层;
d.将预热能量施加到所形成的层;
以这种方式,3D打印系统100可以不执行以下的常规层处理操作:
e.在所形成的层上方移动打印头,同时控制打印头根据切片数据对打印剂的图案进行打印;和
f.施加熔合能量以使所形成的层的部分根据切片图像进行熔合和固化。在框404处,重复该过程。
在该模式中,由于没有施加熔合能量,因此这将导致被处理的每个空层的少量省电。在一些示例中,与执行常规层处理操作时相比,打印头也可以被停用(即,不移动)达更长的持续时间,这可以使得能够在打印头上执行维护操作。这也可以使得在某一时间期间处理要被执行的打印作业而此时通常不是执行打印头维护操作的时间时能够进行打印头维护操作。
一旦处理了空层,操作就在图4的框402处继续。
在608处,在空层的数量大于或等于预定阈值的情况下,第一组处理操作可以用于处理空层的第一部分。
在一个示例中,空层的第一部分是空层的20%,空层的第二部分是空层的80%,并且空层的第三部分是20%。然而,在其他示例中,例如,可以基于3D打印系统100的特性来修改这些部分。
如前所述,在上述粉末和熔合剂型的3D打印系统中,构造材料层的温度均匀性在生成高质量的3D打印物体时是重要的。如前所述,3D打印系统的元件的热惯性使得突然改变执行3D打印系统内的操作的方式变得不实用。因此,在该示例中,第一组处理操作可以被认为是使得构造材料层的目标温度能够平缓地下降或降低的模式。第二组处理操作可以被认为是使得构造材料层能够快速形成的模式,并且第三组处理操作可以被认为是使得构造材料层的目标温度能够平缓地升高或增大的模式。
在常规操作模式中,构造平台以均匀的步长向下移动,以使得每个形成的构造材料层能够具有相同的厚度。这对于确保所生成的3D物体的质量和机械属性是非常重要的。然而,在610处,在第二组处理操作中,可以增加构造平台向下移动的距离,以使得与使用第一组处理操作来生成空层相比,能够更快地生成空层。例如,如果在第一组处理操作中,构造平台以50微米的步长向下移动,则形成20个空层将导致执行如上所述的操作a)、b)、c)和d)二十次。然而,在610处,第二组处理操作执行一组不同的处理操作以更快速地生成多个空层。
例如,通过将构造平台移动大于常规层厚度的距离使得能够形成更厚的构造材料层,并且因此可以显著减少形成所需数量的层所花费的时间。例如,如果构造平台移动100微米的距离,则可以形成数量减少的较厚的构造材料层,该数量减少的较厚的构造材料层在完成时提供与空层的常规处理等同厚度的构造材料。如果构造平台移动更大的距离,则可以实现更大的时间缩短。因此,在610处,第二组处理操作可以包括以下操作:
a.确定空层的第二部分的组合厚度;
b.将构造平台102竖直移动大于常规层厚度的量;
c.准备将在构造平台上铺展的对应体积的构造材料;
d.将该体积的构造材料铺展在构造平台上以在其上形成构造材料层。
上述其他操作可以不是第二组处理操作的一部分。在其他示例中,第一组处理操作、第二组处理操作和第三组处理操作可以使构造材料分配器和可移动构造平台形成比处理非空层时所形成的构造材料层更厚的构造材料层。
如果构造平台102移动的量大于常规层厚度,则准备在构造平台上铺展的构造材料的体积也必须增加对应的量。例如,形成100微米厚的层将需要两倍于50微米厚的层的构造材料。
在612处,第三组处理操作可以用于处理空层的第三部分。在由第三组处理操作执行的操作结束时,所处理的空层的特性应该与已经使用的常规处理模式的特性相同或至少非常接近。例如,最后的空层的温度和温度均匀性不应过度偏离预期温度和预期温度均匀性。
以这种方式,在612处,第三组处理操作可以包括与上述第一组处理操作相同的处理操作。
现在参考图7,示出了描绘基于上述原理操作3D打印系统的另外的示例方法的流程图。
在框702处,处理器306确定由3D打印机302处理的当前切片的当前数量或索引。处理器306确定当前切片上方的空切片的数量以及当前切片上方的空切片的数量。基于正在处理的当前切片上方的空切片的数量和下方的空切片的数量,可以对上述常规处理操作进行修改。
例如,在704处,当在当前切片上方和下方存在多于五个的空切片时,在706处,处理器306修改常规处理操作以不对熔合灯供电。
例如,在706处,当在当前切片上方和下方存在多于十五个的空切片时,在708处,处理器306附加地修改常规处理操作以不移动打印头托架。
例如,在710处,当在当前切片上方和下方存在多于20个的空切片时,在712处,处理器306附加地修改常规处理操作以增加所形成的每个层的厚度,以使得能够在打印头上执行扩展的打印头维护操作,并将所形成的构造材料层的目标温度降低预定量。
应理解,关于图6和图7所描述的方法是关于图4所描述的方法的示例实施方式。将进一步理解,还可以设想另外的示例方法。
尽管上述示例涉及使用熔合剂和熔合能量的3D打印系统,但是可以使用处理连续构造材料层的任何3D打印技术。选择性固化构造材料层的部分的另一3D打印技术是选择性激光烧结(SLS)。
应当理解,本文描述的示例可以以硬件、软件或硬件和软件的组合的形式来实现。任何这样的软件可以以易失性或非易失性存储装置的形式(例如,诸如ROM的存储设备,无论是否是可擦除或可重写的)来存储,或者可以以存储器的形式(例如RAM、存储器芯片、设备或集成电路)来存储,或者可以存储在光学或磁性可读介质(例如CD、DVD,磁盘或磁带)上。应当理解,存储设备和存储介质是适合于存储当被执行时实现本文所描述的示例的一个或多个程序的机器可读存储装置的示例。因此,一些示例提供包含用于实现如所附的任一权利要求所要求保护的系统或方法的代码的程序,以及存储这种程序的机器可读存储装置。更进一步地,一些示例可以经由任何介质(例如,通过有线连接或无线连接承载的通信信号)以电子方式传送。
本说明书(包括任何所附的权利要求、摘要和附图)中公开的所有特征和/或如此公开的任何方法或过程的所有步骤可以以任何组合来进行组合,除了这些特征和/或步骤中的至少一些相互排斥的组合之外。
除非另有明确说明,否则本说明书(包括任何所附的权利要求、摘要和附图)中公开的每个特征可以由用于相同、等同或类似目的的替代特征进行替换。因此,除非另有明确说明,否则所公开的每个特征仅是通用的一系列等效或类似特征的一个示例。

Claims (12)

1.一种三维打印机,包括:
控制器,用于:
获得与构造模型的层相关的数据;
根据第一操作模式来处理非空层;
根据第二操作模式来处理空层,
其中所述控制器进一步用于确定所获得的数据中的连续空层的数量,并且
其中所述第二操作模式的处理操作基于所确定的连续空层的数量。
2.根据权利要求1所述的打印机,其中,所述控制器用于:
使用第一组处理操作来处理一组连续空层的第一部分;和
使用第二组处理操作来处理一组连续空层的第二部分。
3.根据权利要求2所述的打印机,进一步包括:
构造材料分配器,用于在可移动构造平台上形成构造材料层;
打印头,用于在所形成的构造材料层上选择性地打印可打印熔合剂的图案;
熔合灯,用于将熔合能量施加到所形成的构造材料层上,以使构造材料的施加有熔合剂的部分进行熔合并固化。
4.根据权利要求3所述的打印机,其中,所述控制器用于控制所述构造材料分配器和所述可移动构造平台以便在以所述第一操作模式操作时形成具有第一厚度的构造材料层,并且控制所述构造材料分配器和所述可移动构造平台以便在以所述第二操作模式操作时形成具有大于所述第一厚度的第二厚度的构造材料层。
5.根据权利要求3所述的打印机,其中,至少所述第二组处理操作使所述构造材料分配器和所述可移动构造平台形成比在处理非空层时形成的构造材料层更厚的构造材料层。
6.根据权利要求4所述的打印机,其中,所述控制器基于所述连续空层的数量来确定所述第二厚度。
7.根据权利要求1所述的打印机,其中,所述控制器用于:
确定当前切片的索引;
确定所述当前切片上方的空切片的数量;
确定所述当前切片下方的空切片的数量;和
基于所述当前切片上方的空切片的数量和下方的空切片的数量来执行预定操作。
8.根据权利要求7所述的打印机,其中:
如果所述控制器确定所述当前切片上方的空切片的数量和下方的空切片的数量大于第一阈值,则所述控制器执行第一操作;
如果所述控制器确定所述当前切片上方的空切片的数量和下方的空切片的数量大于第二阈值,则所述控制器执行第二操作;和
如果所述控制器确定所述当前切片上方的空切片的数量和下方的空切片的数量大于第三阈值,则所述控制器执行第三操作。
9.一种控制三维打印机的操作的方法,包括:
获得与构造模型的切片相关的数据;
确定切片是空切片还是非空切片;
控制所述打印机以根据第一操作模式来处理非空切片;和
控制所述打印机以根据不同于所述第一操作模式的第二操作模式来处理空切片,
其中所述方法进一步包括:确定连续空切片的数量,并且其中所述第二操作模式的处理操作基于所确定的连续空切片的数量。
10.根据权利要求9所述的方法,进一步包括:根据所述第一操作模式形成具有预定厚度的构造材料层,以及根据所述第二操作模式形成具有大于所述预定厚度的厚度的构造材料层。
11.根据权利要求10所述的方法,其中,根据所述第二操作模式形成的层的厚度基于所确定的连续空切片的数量。
12.一种在基于粉末的3D打印系统中逐层生成三维物体的方法,包括:
获得数据以控制熔合剂到在构造平台上形成的未熔合粉末的连续层上的选择性施加;
在常规操作模式下控制所述打印系统,用于:
形成具有预定厚度的粉末的连续层;
根据所获得的数据将熔合剂选择性地施加到每一层;和
向每一层施加熔合能量;以及
识别一组连续的空层并控制所述打印系统以便以不同的操作模式来处理所述空层,
其中,控制所述打印系统以便以不同的操作模式来处理所述空层基于所识别的连续空层的数量。
CN201680085122.2A 2016-07-21 2016-07-21 3d打印 Active CN109072600B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2016/043342 WO2018017099A1 (en) 2016-07-21 2016-07-21 3d printing

Publications (2)

Publication Number Publication Date
CN109072600A CN109072600A (zh) 2018-12-21
CN109072600B true CN109072600B (zh) 2020-11-10

Family

ID=60996020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680085122.2A Active CN109072600B (zh) 2016-07-21 2016-07-21 3d打印

Country Status (7)

Country Link
US (1) US11390032B2 (zh)
EP (1) EP3433436B1 (zh)
JP (1) JP6689411B2 (zh)
KR (1) KR102163831B1 (zh)
CN (1) CN109072600B (zh)
BR (1) BR112018072273B1 (zh)
WO (1) WO2018017099A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11292202B2 (en) 2018-06-18 2022-04-05 Hewlett-Packard Development Company, L.P. Applying an additive manufacturing agent based on actual platform displacement
WO2019245520A1 (en) * 2018-06-18 2019-12-26 Hewlett-Packard Development Company, L.P. Controlling energy source in three-dimensional printing
EP3762218B1 (en) 2018-07-23 2023-07-12 Hewlett-Packard Development Company, L.P. Adapting printing parameters during additive manufacturing processes
US20210178666A1 (en) * 2018-08-08 2021-06-17 Hewlett-Packard Development Company, L.P. Build material compaction
WO2020153941A1 (en) * 2019-01-22 2020-07-30 Hewlett-Packard Development Company, L.P. Generating barriers in additive manufacturing
JP7328024B2 (ja) 2019-06-26 2023-08-16 キヤノン株式会社 3次元造形装置、立体物の造形方法、プログラムおよびコンピュータ読み取り可能な記憶媒体
US20220143912A1 (en) * 2019-08-02 2022-05-12 Hewlett-Packard Development Company, L.P. Build unit with a heater
US20220184879A1 (en) * 2019-08-27 2022-06-16 Hewlett-Packard Development Company, L.P. Modifying Print Data Near And/Or At Overlap Areas Between Printhead Dies
WO2021154284A1 (en) * 2020-01-31 2021-08-05 Hewlett-Packard Development Company, L.P. Annealing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103009631A (zh) * 2011-09-22 2013-04-03 株式会社其恩斯 三维成形设备及方法、用于三维成形设备的设置数据创建设备及程序
GB2532470A (en) * 2014-11-19 2016-05-25 Digital Metal Ab Manufacturing method, manufacturing apparatus, data processing method, data processing apparatus, data carrier

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334583A (ja) * 2000-05-25 2001-12-04 Minolta Co Ltd 三次元造形装置
US7306758B2 (en) * 2003-03-13 2007-12-11 Hewlett-Packard Development Company, L.P. Methods and systems for controlling printhead temperature in solid freeform fabrication
US7435072B2 (en) * 2003-06-02 2008-10-14 Hewlett-Packard Development Company, L.P. Methods and systems for producing an object through solid freeform fabrication
US7296990B2 (en) * 2005-10-14 2007-11-20 Hewlett-Packard Development Company, L.P. Systems and methods of solid freeform fabrication with translating powder bins
US20090051977A1 (en) * 2007-08-20 2009-02-26 Vistaprint Technologies Limited Image processing to reduce image printing time
JP5543740B2 (ja) 2009-08-07 2014-07-09 株式会社コンピュータシステム研究所 立体模型製造方法および立体模型
US20120133080A1 (en) 2010-11-29 2012-05-31 3D Systems, Inc. Additive Manufacturing Methods for Improved Curl Control and Sidewall Quality
JP5772668B2 (ja) * 2012-03-08 2015-09-02 カシオ計算機株式会社 3次元造形方法及び造形物複合体並びに3次元造形装置
DE102013004940A1 (de) 2012-10-15 2014-04-17 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf
WO2014092651A1 (en) * 2012-12-16 2014-06-19 Blacksmith Group Pte. Ltd. A 3d printer with a controllable rotary surface and method for 3d printing with controllable rotary surface
JP6270353B2 (ja) * 2013-06-28 2018-01-31 シーメット株式会社 三次元造形体およびサポート形成方法
US9688024B2 (en) 2013-08-30 2017-06-27 Adobe Systems Incorporated Adaptive supports for 3D printing
US20150251351A1 (en) 2014-03-10 2015-09-10 Michael Feygin Remove and refill method and apparatus for laminated object manufacturing
TWI601627B (zh) * 2014-03-17 2017-10-11 三緯國際立體列印科技股份有限公司 立體列印方法、立體列印裝置及電子裝置
US20170197366A1 (en) 2014-07-16 2017-07-13 Hewlett-Packard Development Company, L.P. Consolidating a build material substrate for additive manufacturing
US9688029B2 (en) 2014-08-19 2017-06-27 Autodesk, Inc. Support posts for improved flexural strength in 3D-printed objects

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103009631A (zh) * 2011-09-22 2013-04-03 株式会社其恩斯 三维成形设备及方法、用于三维成形设备的设置数据创建设备及程序
GB2532470A (en) * 2014-11-19 2016-05-25 Digital Metal Ab Manufacturing method, manufacturing apparatus, data processing method, data processing apparatus, data carrier

Also Published As

Publication number Publication date
JP6689411B2 (ja) 2020-04-28
US20190111629A1 (en) 2019-04-18
WO2018017099A1 (en) 2018-01-25
JP2019521007A (ja) 2019-07-25
KR20180125000A (ko) 2018-11-21
US11390032B2 (en) 2022-07-19
KR102163831B1 (ko) 2020-10-13
CN109072600A (zh) 2018-12-21
BR112018072273B1 (pt) 2022-05-03
EP3433436A4 (en) 2020-01-01
EP3433436B1 (en) 2021-11-17
EP3433436A1 (en) 2019-01-30
BR112018072273A2 (pt) 2019-02-12

Similar Documents

Publication Publication Date Title
CN109072600B (zh) 3d打印
EP3429825B1 (en) Temperature correction via print agent application
US10618111B2 (en) Heat treatment to anneal residual stresses during additive manufacturing
CN105939836B (zh) 构造材料简档
US10220471B2 (en) Spatter reduction laser scanning strategy in selective laser melting
EP3426465B1 (en) Temperature control prior to fusion
EP3429824B1 (en) 3d print definition procedures
US10583647B2 (en) Method of controlling warping in 3D printing
US11914341B2 (en) Exposure strategy in multiple-beam am systems
CN108437470A (zh) 构造材料简档
EP3386723B1 (en) Configuring layer generation time in additive manufacturing
US20170144328A1 (en) High temperature additive manufacturing print head
US20210008805A1 (en) Additive manufacturing system
CN112823090A (zh) 确定3d打印中的熔融能量曲线
US11383448B2 (en) Generating objects in additive manufacturing utilizing a predefined portion within a threshold distance of a wall of fabrication chamber
WO2019209327A1 (en) Modifying object volumes based on locally predicted temperatures
US11884021B2 (en) Modifying object geometries based on radiant heating distribution
US11338520B2 (en) Layering of a three-dimensional object
US11654632B2 (en) Validation of object model dimensions for additive manufacturing
KR20200093661A (ko) 3d 인쇄에서 크기 변화에 대한 보정
EP3094473B1 (en) Build material profile

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant