CN109054944B - 一种导体镶嵌的电流变液及其制备方法 - Google Patents

一种导体镶嵌的电流变液及其制备方法 Download PDF

Info

Publication number
CN109054944B
CN109054944B CN201810796959.9A CN201810796959A CN109054944B CN 109054944 B CN109054944 B CN 109054944B CN 201810796959 A CN201810796959 A CN 201810796959A CN 109054944 B CN109054944 B CN 109054944B
Authority
CN
China
Prior art keywords
electrorheological fluid
conductor
embedded
particles
dielectric particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810796959.9A
Other languages
English (en)
Other versions
CN109054944A (zh
Inventor
邱昭晖
熊小敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201810796959.9A priority Critical patent/CN109054944B/zh
Publication of CN109054944A publication Critical patent/CN109054944A/zh
Priority to JP2020571617A priority patent/JP7061406B2/ja
Priority to PCT/CN2019/094359 priority patent/WO2020015522A1/en
Priority to EP19837921.6A priority patent/EP3810737B1/en
Priority to US16/515,029 priority patent/US11162052B2/en
Application granted granted Critical
Publication of CN109054944B publication Critical patent/CN109054944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/16Dielectric; Insulating oil or insulators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

本发明提供一种电流变液体及其制备方法,所述的电流变液由电介质颗粒和绝缘油制成,所述电介质颗粒在制备过程中引入纳米导体微粒(例如:碳),使纳米导体微粒镶嵌在电介质颗粒表面或者内部或者表面和内部,由该电介质颗粒与硅油混合后得到的电流变液体,具有屈服强度高、使用寿命长、温度稳定性好、漏电流小的优点。

Description

一种导体镶嵌的电流变液及其制备方法
技术领域
本发明涉及电流变液材料技术领域,尤其涉及一种在电介质颗粒中镶嵌纳米导体微粒的电流变液及其制备方法。
背景技术
电流变液(Electrorheological Fluids简称ERF)是一种重要的智能材料,通常是由高介电常数、低电导率的电介质颗粒分散于低介电常数的绝缘油中而形成的悬浮体系。在没有外电场作用下,电流变液呈液体状态,当外加电场作用于电流变液时,电流变液的剪切应力随电场的增加而变大。当电场足够大时,电流变液转变成类似固体物质。且这种剪切应力转变是可逆、连续可调,响应时间为毫秒量级,因此电流变液可用于阻尼系统、减震器、无级变速器、阀门、机电控制耦合等。
目前,电流变液可分为两类:一是传统电流变液,即电介质型电流变液;二是巨电流变液,即极性分子型电流变液。前者从理论或者实验上得到的屈服强度都过低(<10kPa),无法满足实用化。后者的屈服强度很高(>100kPa),其在电场中产生高屈服强度的关键在于极性分子的作用,而极性分子会在机械摩擦、高温等作用下脱附、分解、挥发等,所以极性分子型巨电流变液的使用寿命和温度稳定性很差,也无法实用。
发明内容
为了克服现有技术的不足,本发提供一种导体镶嵌的电流变液,该电流变液具有屈服强度高,漏电流小、使用寿命长,温度稳定性好的特性,同时本发明提供了该电流变液的制备方法。
为了达到上述目的,本发明采用以下技术方案:
一种导体镶嵌的电流变液,其特征在于:由电介质颗粒与绝缘油混合后制成,所述电介质颗粒内部和表面镶嵌了纳米导体微粒。
作为优选,所述电介质颗粒的介电常数大于10,电阻率大于10欧·米。
作为优选,所述电介质颗粒包括TiO2、CaTiO3、BaTiO3、SrTiO3、LaTiO3的一种或多种。
作为优选,所述纳米导体微粒包括金属、碳、导电有机物中一种或多种。
作为优选,所述金属为Ag、Al、Au、Cu、Fe、Hf、In、Nd、Ni、Pd、Pt、Rh、Ru、Sm、Sn、Ti、V、Y、Zr中一种或多种;所述碳为无定形碳、石墨、石墨烯、还原氧化石墨烯中的一种或多种;所述导电有机物为聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙烯、聚双炔中的一种或多种。
作为优选,所述电介质颗粒形状可以为球形,长方体、四面体、不规则多面体或者任意形状。
本发明采用以下方法制备导体镶嵌的电流变液,包括以下步骤:
(1):将20~30ml蒸馏水和50-500ml无水乙醇溶解1-10g碳源有机物,配成A液;将10-100g钛酸丁酯溶解在100-1000ml无水乙醇中,配成B液;
(2)将A液缓慢滴入持续剧烈搅拌的B液,滴加完后将混合液离心得到沉淀物;
(3)将沉淀物洗涤后烘干,得到干燥的粉末;
(4)将干燥的粉末放入管式炉,在500~600℃内用真空气氛或氮气气氛处理,得到灰色至黑色粉末;
(5)将黑色粉末与绝缘油混合制成电流变液。
(6)将电流变液在150~170℃内热处理以去除水分。
作为优选,所述碳源有机物为葡萄糖或蔗糖。
作为优选,所述绝缘油为硅油、矿物油、机油和烃油中的一种。
与现有技术相比,本发明具有以下有益效果:
本发明所述的电流变液由电介质颗粒和绝缘油制成,所述电介质颗粒是在制备过程中引入纳米导体微粒(例如:碳),使纳米导体微粒镶嵌在电介质微粒表面或者内部或者表面和内部,由该电介质颗粒与硅油混合后得到的电流变液体,具有屈服强度高、使用寿命长、温度稳定性好、漏电流小的优点,可广泛应用在阻尼器,避震器,微流控制,机电一体化等领域。
附图说明
现结合附图与具体实施例对本发明作进一步说明。
图1为电介质颗粒结构示意图;
图2为实施例1中黑色粉末透射电镜图;
图3为实施例1中黑色粉末拉曼光谱;
图4为实施例1中黑色粉末失重曲线(气氛:空气);
图5为实施例1中电流变液,屈服强度与电场强度关系图;
图6为实施例1中电流变液,不同温度下屈服强度与电场强度关系图;
图7为实施例1中电流变液磨损前后屈服强度与电场强度关系图;
图8为实施例2中电流变液的屈服强度与电场强度关系图;
图9为实施例3中电流变液的屈服强度与电场强度关系图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细描述。以下实施例用于说明本发明,但不能用来限制本发明的范围。
本发明所述的电流变液,由镶嵌了纳米导体微粒的电介质颗粒和绝缘油混合后研磨组成。其中绝缘油为硅油、矿物油、机油和烃油中的一种,所述的纳米导体微粒在20℃下电阻率小于10-3欧·米的固体,该纳米导体微粒可以采用金属(如:
Ag,Al,Au,Cu,Fe,Hf,In,Nd,Ni,Pd,Pt,Rh,Ru,Sm,Sn,Ti,V,Y,Zr)、碳(如:无定形碳、石墨、石墨烯、还原氧化石墨烯)、导电有机物(如:聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙烯和聚双炔)中一种或几种材料。电介质颗粒的介电常数大于10,电阻率大于10欧·米,其中电介质为TiO2、CaTiO3、BaTiO3、SrTiO3、LaTiO3的一种或多种。
纳米导体微粒分散在电介质颗粒表面或内部或表面和内部,纳米导体微粒的半径为0.2nm~100nm,电介质颗粒半径为50nm~5μm,纳米导体微粒和电介质颗粒的形状可以为任意形状,如:球形,长方体、四面体、不规则多面体等。
本发明所述的电流变液的制备方法为:
1)在钛酸丁酯水解法中引入碳源,该碳源可以为有机物(如:葡萄糖、脂类)和无机物(如:无定形碳、石墨、石墨烯、还原氧化石墨烯。将20~30ml蒸馏水和50-500ml无水乙醇溶解1-10g碳源有机物,配成A液;
2)将10-100g钛酸丁酯溶解在100-1000ml无水乙醇中,配成B液;
3)将A液缓慢滴入持续剧烈搅拌的B液,将沉淀洗涤次后烘干得到干燥粉末。将干燥的粉末放入管式炉,在高温下处理,得到灰色至黑色粉末。
4)将粉末与硅油混合,仔细研磨后得到电流变液,最后将电流变液在150~170℃下热处理1~3小时除去水分。以上所述的各物质按质量分数计。
实施例1
本发明所述电流变液的制备方法如下:
首先用30ml蒸馏水和200ml无水乙醇溶解1g葡萄糖,配成A液;将30g钛酸丁酯溶解在300ml无水乙醇中,配成B液;将A液缓慢滴入持续剧烈搅拌的B液,滴加完半小时后将混合液离心得到白色沉淀,将沉淀用水和无水乙醇各洗涤两次后烘干得到干燥粉末。将干燥的粉末放入管式炉,在600℃氮气气氛下处理3h,得到黑色粉末;黑色粉末的透射电镜图如图2所示,颜色较深部分为碳颗粒;拉曼光谱如图3所示,二氧化钛为锐钛矿相,碳为不定型碳。
热重失重曲线如图4所示,190℃为物理吸附水的失重,290℃以后为碳的失重。将2g黑色粉末与1ml粘度为300cst的硅油混合,仔细研磨后得到电流变液,最后将电流变液在170℃下热处理2小时除去水分。
电流变液的屈服强度与电场强度的关系如图5,图5下面的曲线为不加碳的情况,说明加碳后屈服强度有很大提升;图6为不同温度下屈服强度与电场强度关系图(质量分数较图5中的稍低),说明此电流变液在25-170℃温度内具有很好的稳定性;图7为磨损前后屈服强度与电场强度关系图,说明其使用寿命长。
实施例2
本发明所述电流变液的制备方法如下:
首先用30ml蒸馏水和200ml无水乙醇溶解1g蔗糖,配成A液;将30g钛酸丁酯溶解在300ml无水乙醇中,配成B液;将A液缓慢滴入持续剧烈搅拌的B液,滴加完半小时后将混合液离心得到白色沉淀,将沉淀物无水乙醇各洗涤两次后烘干得到干燥粉末。将干燥的粉末放入管式炉,在500℃氮气气氛下处理3h,得到灰色粉末。将2g黑色粉末与1g粘度为50cst的硅油混合,仔细研磨后得到电流变液,最后将电流变液在150℃下热处理2小时除去水分。
其屈服强度与电场强度的关系如图8所示,说明加入碳后,屈服强度较不加碳的(图5下面的曲线为不加碳的情况)有较大提升。
实施例3
本发明所述电流变液的制备方法如下:
首先用20ml蒸馏水和200ml无水乙醇溶解1g蔗糖,配成A液;将30g钛酸丁酯溶解在300ml无水乙醇中,配成B液;将A液缓慢滴入持续剧烈搅拌的B液,滴加完半小时后将混合液离心得到白色沉淀,将沉淀物用水和无水乙醇各洗涤两次后烘干得到干燥粉末。将干燥的粉末放入管式炉,在500℃真空气氛下处理3h,得到灰色粉末。将1g黑色粉末与1ml粘度为20cst的硅油混合,仔细研磨后得到电流变液,最后将电流变液在150℃下热处理2小时除去水分。
其屈服强度与电场强度的关系如图9所示,说明加入碳后,屈服强度较不加碳的(图5下面的曲线为不加碳的情况)有较大提升。
实施例4
本发明所述电流变液的制备方法如下:
首先用22ml蒸馏水和50ml无水乙醇溶解2g蔗糖,配成A液;将10g钛酸丁酯溶解在100ml无水乙醇中,配成B液;将A液缓慢滴入持续剧烈搅拌的B液,滴加完半小时后将混合液离心得到白色沉淀,将沉淀物用水和无水乙醇各洗涤两次后烘干得到干燥粉末。将干燥的粉末放入管式炉,在500℃真空气氛下处理3h,得到灰色粉末。将1g黑色粉末与1ml粘度为100cst的硅油混合,仔细研磨后得到电流变液,最后将电流变液在170℃下热处理1小时除去水分。
实施例5
本发明所述电流变液的制备方法如下:
首先用28ml蒸馏水和500ml无水乙醇溶解10g蔗糖,配成A液;将100g钛酸丁酯溶解在1000ml无水乙醇中,配成B液;将A液缓慢滴入持续剧烈搅拌的B液,滴加完半小时后将混合液离心得到白色沉淀,将沉淀物用水和无水乙醇各洗涤两次后烘干得到干燥粉末。将干燥的粉末放入管式炉,在500℃真空气氛下处理3h,得到灰色粉末。将1g黑色粉末与1ml粘度为200cst的硅油混合,仔细研磨后得到电流变液,最后将电流变液在170℃下热处理3小时除去水分。
本发明并不局限于上述实施方式,如果对本发明的各种改动或变型不脱离本发明的精神和范围,倘若这些改动和变型属于本发明的权利要求和等同技术范围之内,则本发明也意图包含这些改动和变动。

Claims (9)

1.一种导体镶嵌的电流变液,其特征在于:由电介质颗粒与绝缘油混合后制成,所述电介质颗粒内部和表面镶嵌了纳米导体微粒;
所述导体镶嵌的电流变液其制备方法包括以下步骤:
1)将20~30ml蒸馏水和50-500ml无水乙醇溶解1-10g碳源有机物,配成A液;将10-100g钛酸丁酯溶解在100-1000ml无水乙醇中,配成B液;
2)将A液缓慢滴入持续剧烈搅拌的B液,滴加完后将混合液离心得到沉淀物;
3)将沉淀物洗涤后烘干,得到干燥的粉末;
4)将干燥的粉末放入管式炉,在500~600℃内用真空气氛或氮气气氛处理,得到灰色至黑色粉末;
5)将粉末与绝缘油混合制成电流变液;
6)将电流变液在150~170℃内热处理以去除水分。
2.根据权利要求1所述的导体镶嵌的电流变液,其特征在于:所述电介质颗粒的介电常数大于10,电阻率大于10欧·米。
3.根据权利要求2所述的导体镶嵌的电流变液,其特征在于:所述电介质颗粒包括TiO2、CaTiO3、BaTiO3、SrTiO3、LaTiO3的一种或多种。
4.根据权利要求1所述的导体镶嵌的电流变液,其特征在于:所述纳米导体微粒包括金属、碳、导电有机物中一种或多种。
5.根据权利要求4所述的导体镶嵌的电流变液,其特征在于:所述金属为Ag、Al、Au、Cu、Fe、Hf、In、Nd、Ni、Pd、Pt、Rh、Ru、Sm、Sn、Ti、V、Y、Zr中一种或多种;
所述碳为无定形碳、石墨、石墨烯中的一种或多种;
所述导电有机物为聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙烯、聚双炔中的一种或多种。
6.根据权利要求1所述的导体镶嵌的电流变液,其特征在于:所述电介质颗粒形状为球形、长方体、四面体或者不规则多面体。
7.根据权利要求1所述的导体镶嵌的电流变液,其特征在于:所述纳米导体微粒的半径为0.2nm~100nm,电介质颗粒的半径为50nm~5μm。
8.根据权利要求1所述的导体镶嵌的电流变液,其特征在于:所述碳源有机物为葡萄糖或蔗糖。
9.根据权利要求1~8中任一项所述的导体镶嵌的电流变液,其特征在于:所述绝缘油为硅油、矿物油、机油和烃油中的一种。
CN201810796959.9A 2018-07-19 2018-07-19 一种导体镶嵌的电流变液及其制备方法 Active CN109054944B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201810796959.9A CN109054944B (zh) 2018-07-19 2018-07-19 一种导体镶嵌的电流变液及其制备方法
JP2020571617A JP7061406B2 (ja) 2018-07-19 2019-07-02 電気粘性流体
PCT/CN2019/094359 WO2020015522A1 (en) 2018-07-19 2019-07-02 Electrorheological fluid
EP19837921.6A EP3810737B1 (en) 2018-07-19 2019-07-02 Electrorheological fluid
US16/515,029 US11162052B2 (en) 2018-07-19 2019-07-18 Electrorheological fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810796959.9A CN109054944B (zh) 2018-07-19 2018-07-19 一种导体镶嵌的电流变液及其制备方法

Publications (2)

Publication Number Publication Date
CN109054944A CN109054944A (zh) 2018-12-21
CN109054944B true CN109054944B (zh) 2021-05-11

Family

ID=64817360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810796959.9A Active CN109054944B (zh) 2018-07-19 2018-07-19 一种导体镶嵌的电流变液及其制备方法

Country Status (1)

Country Link
CN (1) CN109054944B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7061406B2 (ja) * 2018-07-19 2022-04-28 中山大学 電気粘性流体
CN113916959B (zh) * 2021-09-30 2023-05-30 宁德师范学院 多孔道聚苯胺/石墨烯基复合微球负载的Pt-Au催化剂
CN114574274B (zh) * 2022-03-24 2022-12-13 中国科学院物理研究所 一种导体微团主导型巨电流变液的制备方法及其巨电流变液
CN114774188B (zh) * 2022-05-19 2023-04-18 上海大学 碳镶嵌型中空TiO2微球的制备方法及基于TiO2微球的电流变液

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435931A (en) * 1993-11-04 1995-07-25 Wisconsin Alumni Research Foundation Protein enhanced electrorheological fluids
US5736064A (en) * 1993-07-15 1998-04-07 Fujikura Kasei Co., Ltd. Electrorheological fluid composition containing inorganic/organic composite particles
CN105733766A (zh) * 2016-02-01 2016-07-06 云南科威液态金属谷研发有限公司 一种高导性电流变液及其制备方法
CN107043647A (zh) * 2016-12-06 2017-08-15 天诺光电材料股份有限公司 一种巨电流变液用介电颗粒及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736064A (en) * 1993-07-15 1998-04-07 Fujikura Kasei Co., Ltd. Electrorheological fluid composition containing inorganic/organic composite particles
US5435931A (en) * 1993-11-04 1995-07-25 Wisconsin Alumni Research Foundation Protein enhanced electrorheological fluids
CN105733766A (zh) * 2016-02-01 2016-07-06 云南科威液态金属谷研发有限公司 一种高导性电流变液及其制备方法
CN107043647A (zh) * 2016-12-06 2017-08-15 天诺光电材料股份有限公司 一种巨电流变液用介电颗粒及其制备方法

Also Published As

Publication number Publication date
CN109054944A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
CN109054944B (zh) 一种导体镶嵌的电流变液及其制备方法
Cho et al. Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels
JP7061406B2 (ja) 電気粘性流体
Lee et al. Enhanced electroresponsive performance of double-shell SiO2/TiO2 hollow nanoparticles
Hiraoka et al. Compact and light supercapacitor electrodes from a surface‐only solid by opened carbon nanotubes with 2 200 m2 g− 1 surface area
Yin et al. Titanate nano-whisker electrorheological fluid with high suspended stability and ER activity
CN108865384B (zh) 一种导体分散型的电流变液及其制备方法
Yin et al. Electrorheology of nanofiber suspensions
Wu et al. TiO2-nanorod decorated carbon nanotubes for high-permittivity and low-dielectric-loss polystyrene composites
Liu et al. Fabrication of semiconducting polyaniline/nano-silica nanocomposite particles and their enhanced electrorheological and dielectric characteristics
JP7442336B2 (ja) 高誘電率及び高絶縁破壊電界強度を有する誘電体薄膜を含む金属-ポリマーコンデンサー
EP2039743A1 (en) Electrorheological fluid of polar molecule type
JPH1081889A (ja) 電気粘性流体用粉体
Li et al. Giant electrorheological fluid comprising nanoparticles: Carbon nanotube composite
Chae et al. Synthesized palygorskite/polyaniline nanocomposite particles by oxidative polymerization and their electrorheology
Zhang et al. Unveiling the critical role of surface oxidation of electroresponsive behaviors in two-dimensional Ti3C2T x MXenes
Kim et al. Dispersion‐Polymerized Carbon Nanotube/Poly (methyl methacrylate) Composite Particles and their Electrorheological Characteristics
Zhao et al. In situ sol–gel preparation of polysaccharide/titanium oxide hybrid colloids and their electrorheological effect
Tang et al. Achieving enhanced dielectric performance of reduced graphene oxide/polymer composite by a green method with pH as a stimulus
Attia et al. Conduction mechanism and dielectric properties of pure and composite resorcinol formaldehyde aerogels doped with silver
Lu et al. Electrorheological behaviors of polyaniline-montmorillonite clay nanocomposite
KR100593483B1 (ko) 전도성 입자로서 폴리아닐린/타이타늄 다이옥사이드복합체를 구성한 전기유변유체 및 그 제조 방법
Gao et al. Enhancement on electric responses of BaTiO3 particles with polymer‐coating
US5536426A (en) Electrorheological fluid containing carbonaceous particles
Alam et al. Dielectric Behavior of PZT/Graphene Oxide Composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant