CN109046453B - 一种CdSeS点配合物复合材料的制备方法及应用 - Google Patents

一种CdSeS点配合物复合材料的制备方法及应用 Download PDF

Info

Publication number
CN109046453B
CN109046453B CN201810718182.4A CN201810718182A CN109046453B CN 109046453 B CN109046453 B CN 109046453B CN 201810718182 A CN201810718182 A CN 201810718182A CN 109046453 B CN109046453 B CN 109046453B
Authority
CN
China
Prior art keywords
cdses
composite material
adm
complex composite
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810718182.4A
Other languages
English (en)
Other versions
CN109046453A (zh
Inventor
匡芮
解辉
李志�
张爱勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jiaotong University
Original Assignee
Shandong Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jiaotong University filed Critical Shandong Jiaotong University
Priority to CN201810718182.4A priority Critical patent/CN109046453B/zh
Publication of CN109046453A publication Critical patent/CN109046453A/zh
Application granted granted Critical
Publication of CN109046453B publication Critical patent/CN109046453B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/184Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine mixed aromatic/aliphatic ring systems, e.g. indoline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/27Cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/42Tin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Catalysts (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种CdSeS点配合物复合材料的制备方法及应用,属于纳米材料、金属有机配合物与电化学检测技术领域。具体是基于CdSeS点配合物复合材料CdSeS@Cu(II)‑ADM/Cu,制备化学传感器,用于检测乙烯雌酚。具体步骤包括:(1)制备金刚烷胺基配体ADM‑BP,(2)采用电化学沉积的方法制备配合物复合材料Cu(II)‑ADM/Cu,(3)制备CdSeS点配合物复合材料,(4)构建CdSeS点配合物复合材料CdSeS@Cu(II)‑ADM/Cu电化学传感器。由于CdSeS点配合物复合材料具有大的比表面积和更多的活性位点、优异的吸附性能,制备的化学传感器,具有检测乙烯雌酚灵敏度高、检测限低、稳定性高,易操作等优势。

Description

一种CdSeS点配合物复合材料的制备方法及应用
技术领域
本发明涉及一种CdSeS点配合物复合材料的制备方法及应用,属于纳米材料、金属有机配合物与电化学检测技术领域。
背景技术
近十年,环境内分泌干扰物成为各国学者关注的焦点,因为它们在环境中极低的浓度就能引起对野生动物的内分泌干扰效应,因此引起了人们的越来越多的关注,已经有研究表明,城市污水处理厂是环境地表水体中环境内分泌干扰物一个重要来源。城市污水含有大量污染物质,例如,雌酮、雌二醇、雌三醇,还有大量有毒有害、易燃易爆的气体。很难充分检测,开发新的检测手段和方法,为工作开展带来了深远的影响。
CdSeS量子点作为新型的半导体纳米材料具备着量子点的普遍特性:量子效应、表面效应、量子限域效应、宏观量子隧道效应、量子尺寸效应、高消光系数等。在制备方面,硫硒化镉量子点制备工艺多样、成熟且性能稳定。
电化学沉积法是将含有所需要的生长元素的溶液作为电解液,所需要沉积的基底作为阳极,惰性耐腐蚀材料作为阴极,在外加电场的作用下,阴阳离子在电极附近发生化学反应并形成沉淀的过程。因为操作简单,工艺成本低廉,室温下即可操作等优点,电化学沉积在制备纳米材料和纳米微加工技术中有着广阔的应用前景。
发明内容
本发明的技术任务之一是为了弥补现有技术的不足,提供一种CdSeS点配合物复合材料的制备方法,该方法所用原料成本低,制备工艺简单,反应能耗低,具有工业应用前景。
本发明的技术任务之二是提供所述CdSeS点配合物复合材料的用途,即将CdSeS点配合物复合材料用于检测环境雌激素乙烯雌酚,具有良好的电化学活性和稳定性。
为实现上述目的,本发明采用的技术方案如下:
1.一种CdSeS点配合物复合材料的制备方法,步骤如下:
(1)制备金刚烷胺基配体ADM-BP
将1.8771-2.8157g金刚烷胺盐酸盐,2-3g碳酸钾与60-80mL乙腈共混,加入1.3203-2.2005g 2,6-双(氯甲基)吡啶,剧烈搅拌;加热到80℃,反应24小时后,冷却到室温,过滤,依次用乙腈和水洗涤,60℃干燥;将得到的固体溶于20-30mL二氯甲烷中,再加入15mL水,充分振摇,静置,分离;将得到的有机层加入硫酸钠干燥,蒸馏,去除溶剂,得到金刚烷胺基配体ADM-BP粉末,产率为70-75%;
所述金刚烷胺盐酸盐,构造式如下:
Figure 100002_DEST_PATH_IMAGE002
所述2,6-双(氯甲基)吡啶,构造式如下:
Figure 100002_DEST_PATH_IMAGE004
所述金刚烷胺基配体ADM-BP,构造式如下:
Figure 100002_DEST_PATH_IMAGE006
(2)制备配合物复合材料Cu(II)-ADM/Cu
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,Hg/HgO电极为参比电极,在10mL、质量分数为0.5-1.5%金刚烷胺基配体ADM-BP的N,N-二甲基甲酰胺溶液中,采用恒电位法沉积,沉积8-12min后,将工作电极用超纯水洗涤、室温干燥,得到配合物复合材料Cu(II)-ADM/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位法,沉积电位为1.20V-1.60V;
(3)制备CdSeS点配合物复合材料
将0.03-0.09g Se粉、0.12-0.36g Na2SO3和10mL超纯水混合后调温至100℃回流反应2h后,得到浅黄色溶液,即硒代硫酸钠溶液,需避光保存;
将0.012-0.036g硝酸镉溶解在10mL水中,制得硝酸镉溶液;
将0.013-0.039g巯基丙酸溶解在10mL水中,制得巯基丙酸溶液;
将三种溶液共混,采用三电极体系,以配合物复合材料Cu(II)-ADM/Cu为工作电极,铂片为对电极,Hg/HgO电极为参比电极,用0.1M NaOH调节溶液pH值至9-10,采用循环伏安法电沉积,制得CdSeS量子点配合物复合材料,即CdSeS点配合物复合材料CdSeS@Cu(II)-ADM/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积30圈,扫速为0.05V/s。
2. 如上1所述的制备方法制备的CdSeS点配合物复合材料用于电化学检测乙烯雌酚的应用,步骤如下:
(1)制备电化学传感器
将上1制备的CdSeS点配合物复合材料CdSeS@Cu(II)-ADM/Cu作为工作电极、Hg/HgO电极为参比电极、铂丝电极为对电极连接在电化学工作站上,制得了CdSeS点配合物复合材料CdSeS@Cu(II)-ADM/Cu电化学传感器;
(2)电化学检测乙烯雌酚
将乙醇与水按1:1比例溶解,制得乙醇水溶液;
用乙醇水溶液溶解并定容乙烯雌酚,分别配制浓度为10-6~102µg/mL范围内不同浓度的乙烯雌酚溶液;
使用步骤(1)制得的电化学传感器,采用差分脉冲伏安法,分别对该不同浓度的乙烯雌酚溶液进行扫描,在-0.6-0.0V下进行扫描,记录电流变化;
根据所得电流值与乙烯雌酚浓度呈线性关系,绘制工作曲线;
将待测样品溶液代替乙烯雌酚标准溶液,进行样品的检测,检测结果从工作曲线中查得。
实验结果表明,本传感器的差分脉冲伏安氧化峰电流与乙烯雌酚在10-6~102µg/mL范围内保持良好的线性关系,相关系数在0.9932以上,检测限为3.5ng/mL。
本发明的有益的技术效果:
(1)本发明配合物复合材料Cu(II)-ADM/Cu的制备,是以泡沫铜为工作电极,仅仅加入金刚烷胺基配体ADM-BP,采用恒电位沉积,泡沫铜表面铜原子部分失去电子生成Cu(II)正离子,该正离子与溶液中的金刚烷胺基配体ADM-BP反应,生成粒径为小于100nm的金刚烷胺基配合物复合材料Cu(II)-ADM/Cu;该方法生成的复合材料均匀;沉积时间8-12min,时间短,效率高;制得的配合物复合材料Cu(II)-ADM/Cu比表面积高;电催化活性高。
(2)本发明CdSeS量子点的制备,没有加入其他的稳定剂,是采用恒电位沉积法,将硝酸镉、硒代硫酸钠、巯基丙酸反应生成CdSeS量子点,提高了生物相容性、电学特性和稳定性,将CdSeS量子点在线锚固到配合物复合材料Cu(II)-ADM/Cu上,量子点分布均匀;本方法制得的CdSeS点配合物复合材料CdSeS@Cu(II)-ADM/Cu电化学传感器,化学稳定性高,比表面积大;由于具有两种纳米材料,即CdSeS量子点和配合物复合材料Cu(II)-ADM的协同效应,电催化活性高。
(3)本发明制得的CdSeS点配合物复合材料CdSeS@Cu(II)-ADM/Cu电化学传感器,免除了传统工作电极采用全氟化树脂或其它胶黏剂黏结催化剂粉末,可以直接用于电化学检测乙烯雌酚,因此保留了更多的活性位点,使得基于该复合材料制得的传感器,具有检测乙烯雌酚灵敏度高、检测限低、稳定性高,易操作等优势。
具体实施方式
下面结合实施例对本发明作进一步描述,但本发明的保护范围不仅局限于实施例,该领域专业人员对本发明技术方案所作的改变,均应属于本发明的保护范围内。
实施例1 一种CdSeS点配合物复合材料的制备方法
(1)制备金刚烷胺基配体ADM-BP
将1.8771g金刚烷胺盐酸盐,2g碳酸钾与60mL乙腈共混,加入1.3203g 2,6-双(氯甲基)吡啶,剧烈搅拌;加热到80℃,反应24小时后,冷却到室温,过滤,依次用乙腈和水洗涤,60℃干燥;将得到的固体溶于20mL二氯甲烷中,再加入15mL水,充分振摇,静置,分离;将得到的有机层加入硫酸钠干燥,蒸馏,去除溶剂,得到金刚烷胺基配体ADM-BP粉末,产率为70 %;
所述金刚烷胺盐酸盐,构造式如下:
Figure 294705DEST_PATH_IMAGE002
所述2,6-双(氯甲基)吡啶,构造式如下:
Figure 772697DEST_PATH_IMAGE004
所述金刚烷胺基配体ADM-BP,构造式如下:
Figure 552434DEST_PATH_IMAGE006
(2)制备配合物复合材料Cu(II)-ADM/Cu
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,Hg/HgO电极为参比电极,在10mL、质量分数为0.5%金刚烷胺基配体ADM-BP的N,N-二甲基甲酰胺溶液中,采用恒电位法沉积,沉积8min后,将工作电极用超纯水洗涤、室温干燥,得到配合物复合材料Cu(II)-ADM/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位法,沉积电位为1.20V -1.60V;
(3)制备CdSeS点配合物复合材料
将0.03g Se粉、0.12g Na2SO3和10mL超纯水混合后调温至100℃回流反应2h后,得到浅黄色溶液,即硒代硫酸钠溶液,需避光保存;
将0.012g硝酸镉溶解在10mL水中,制得硝酸镉溶液;
将0.013g巯基丙酸溶解在10mL水中,制得巯基丙酸溶液;
将三种溶液共混,采用三电极体系,以配合物复合材料Cu(II)-ADM/Cu为工作电极,铂片为对电极,Hg/HgO电极为参比电极,用0.1M NaOH调节溶液pH值至9-10,采用循环伏安法电沉积,制得CdSeS量子点配合物复合材料,即CdSeS点配合物复合材料CdSeS@Cu(II)-ADM/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积30圈,扫速为0.05V/s。
实施例2 一种CdSeS点配合物复合材料的制备方法
(1)制备金刚烷胺基配体ADM-BP
将2.3464g金刚烷胺盐酸盐,2.5g碳酸钾与70mL乙腈共混,加入1.7604g 2,6-双(氯甲基)吡啶,剧烈搅拌;加热到80℃,反应24小时后,冷却到室温,过滤,依次用乙腈和水洗涤,60℃干燥;将得到的固体溶于25mL二氯甲烷中,再加入15mL水,充分振摇,静置,分离;将得到的有机层加入硫酸钠干燥,蒸馏,去除溶剂,得到金刚烷胺基配体ADM-BP粉末,产率为75%;
所述金刚烷胺盐酸盐,构造式如下:
Figure DEST_PATH_IMAGE007
所述2,6-双(氯甲基)吡啶,构造式如下:
Figure 72277DEST_PATH_IMAGE004
所述金刚烷胺基配体ADM-BP,构造式如下:
Figure DEST_PATH_IMAGE008
(2)制备配合物复合材料Cu(II)-ADM/Cu
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,Hg/HgO电极为参比电极,在10mL、质量分数为1%金刚烷胺基配体ADM-BP的N,N-二甲基甲酰胺溶液中,采用恒电位法沉积,沉积10min后,将工作电极用超纯水洗涤、室温干燥,得到配合物复合材料Cu(II)-ADM/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位法,沉积电位为1.20V -1.60V;
(3)制备CdSeS点配合物复合材料
将0.06g Se粉、0.24g Na2SO3和10mL超纯水混合后调温至100℃回流反应2h后,得到浅黄色溶液,即硒代硫酸钠溶液,需避光保存;
将0.024g硝酸镉溶解在10mL水中,制得硝酸镉溶液;
将0.026g巯基丙酸溶解在10mL水中,制得巯基丙酸溶液;
将三种溶液共混,采用三电极体系,以配合物复合材料Cu(II)-ADM/Cu为工作电极,铂片为对电极,Hg/HgO电极为参比电极,用0.1M NaOH调节溶液pH值至9-10,采用循环伏安法电沉积,制得CdSeS量子点配合物复合材料,即CdSeS点配合物复合材料CdSeS@Cu(II)-ADM/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积30圈,扫速为0.05V/s。
实施例3 一种CdSeS点配合物复合材料的制备方法
(1)制备金刚烷胺基配体ADM-BP
将2.8157g金刚烷胺盐酸盐,3g碳酸钾与80mL乙腈共混,加入2.2005g 2,6-双(氯甲基)吡啶,剧烈搅拌;加热到80℃,反应24小时后,冷却到室温,过滤,依次用乙腈和水洗涤,60℃干燥;将得到的固体溶于30mL二氯甲烷中,再加入15mL水,充分振摇,静置,分离;将得到的有机层加入硫酸钠干燥,蒸馏,去除溶剂,得到金刚烷胺基配体ADM-BP粉末,产率为72%;
所述金刚烷胺盐酸盐,构造式如下:
Figure 948966DEST_PATH_IMAGE002
所述2,6-双(氯甲基)吡啶,构造式如下:
Figure 335211DEST_PATH_IMAGE004
所述金刚烷胺基配体ADM-BP,构造式如下:
Figure 602244DEST_PATH_IMAGE006
(2)制备配合物复合材料Cu(II)-ADM/Cu
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,Hg/HgO电极为参比电极,在10mL、质量分数为1.5%金刚烷胺基配体ADM-BP的N,N-二甲基甲酰胺溶液中,采用恒电位法沉积,沉积12min后,将工作电极用超纯水洗涤、室温干燥,得到配合物复合材料Cu(II)-ADM/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm× 1cm;
所述恒电位法,沉积电位为1.20V -1.60V;
(3)制备CdSeS点配合物复合材料
将0.09g Se粉、0.36g Na2SO3和10mL超纯水混合后调温至100℃回流反应2h后,得到浅黄色溶液,即硒代硫酸钠溶液,需避光保存;
将0.036g硝酸镉溶解在10mL水中,制得硝酸镉溶液;
将0.039g巯基丙酸溶解在10mL水中,制得巯基丙酸溶液;
将三种溶液共混,采用三电极体系,以配合物复合材料Cu(II)-ADM/Cu为工作电极,铂片为对电极,Hg/HgO电极为参比电极,用0.1M NaOH调节溶液pH值至9-10,采用循环伏安法电沉积,制得CdSeS量子点配合物复合材料,即CdSeS点配合物复合材料CdSeS@Cu(II)-ADM/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60 V,沉积30圈,扫速为0.05V/s。
实施例4 实施例1-3所述的CdSeS点配合物复合材料用于电化学检测乙烯雌酚的应用
(1)制备电化学传感器
将实施例1、实施例2或实施例3制备的CdSeS点配合物复合材料CdSeS@Cu(II)-ADM/Cu作为工作电极、Hg/HgO电极为参比电极、铂丝电极为对电极连接在电化学工作站上,制得了CdSeS点配合物复合材料CdSeS@Cu(II)-ADM/Cu电化学传感器;
(2)电化学检测乙烯雌酚
将乙醇与水按1:1比例溶解,制得乙醇水溶液;
用乙醇水溶液溶解并定容乙烯雌酚,分别配制浓度为10-6~102µg/mL范围内不同浓度的乙烯雌酚溶液;
使用步骤(1)制得的电化学传感器,采用差分脉冲伏安法,分别对该不同浓度的乙烯雌酚溶液进行扫描,在-0.6-0.0 V下进行扫描,记录电流变化;
根据所得电流值与乙烯雌酚浓度呈线性关系,绘制工作曲线;
将待测样品溶液代替乙烯雌酚标准溶液,进行样品的检测,检测结果从工作曲线中查得;
实验结果表明,本传感器的差分脉冲伏安氧化峰电流与乙烯雌酚在10-6~102µg/mL范围内保持良好的线性关系,相关系数在0.9932以上,检测限为3.5ng/mL。

Claims (3)

1.一种CdSeS点配合物复合材料的制备方法,其特征在于,步骤如下:
(1)制备金刚烷胺基配体ADM-BP
将1.8771-2.8157g金刚烷胺盐酸盐,2-3g碳酸钾与60-80mL乙腈共混,加入1.3203-2.2005g 2,6-双(氯甲基)吡啶,剧烈搅拌;加热到80℃,反应24小时后,冷却到室温,过滤,依次用乙腈和水洗涤,60℃干燥;将得到的固体溶于20-30mL二氯甲烷中,再加入15mL水,充分振摇,静置,分离;将得到的有机层加入硫酸钠干燥,蒸馏,去除溶剂,得到金刚烷胺基配体ADM-BP粉末,产率为70-75%;
所述金刚烷胺盐酸盐,构造式如下:
Figure DEST_PATH_IMAGE002
所述2,6-双(氯甲基)吡啶,构造式如下:
Figure DEST_PATH_IMAGE004
所述金刚烷胺基配体ADM-BP,构造式如下:
Figure DEST_PATH_IMAGE006
(2)制备配合物复合材料Cu(II)-ADM/Cu
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,Hg/HgO电极为参比电极,在10mL、质量分数为0.5-1.5%金刚烷胺基配体ADM-BP的N,N-二甲基甲酰胺溶液中,采用恒电位法沉积,沉积8-12min后,将工作电极用超纯水洗涤、室温干燥,得到配合物复合材料Cu(II)-ADM/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位法,沉积电位为1.20V-1.60V;
(3)制备CdSeS点配合物复合材料
将0.03-0.09g Se粉、0.12-0.36g Na2SO3和10mL超纯水混合后调温至100℃回流反应2h后,得到浅黄色溶液,即硒代硫酸钠溶液,需避光保存;
将0.012-0.036g硝酸镉溶解在10mL水中,制得硝酸镉溶液;
将0.013-0.039g巯基丙酸溶解在10mL水中,制得巯基丙酸溶液;
将三种溶液共混,采用三电极体系,以配合物复合材料Cu(II)-ADM/Cu为工作电极,铂片为对电极,Hg/HgO电极为参比电极,用0.1M NaOH调节溶液pH值至9-10,采用循环伏安法电沉积,制得CdSeS量子点配合物复合材料,即CdSeS点配合物复合材料CdSeS@Cu(II)-ADM/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积30圈,扫速为0.05V/s。
2.如权利要求1所述的制备方法制备的CdSeS点配合物复合材料用于电化学检测乙烯雌酚的应用。
3.如权利要求2所述的用于电化学检测乙烯雌酚的应用,其特征在于,步骤如下:
(1)制备电化学传感器
将权利要求1制备的CdSeS点配合物复合材料CdSeS@Cu(II)-ADM/Cu作为工作电极、Hg/HgO电极为参比电极、铂丝电极为对电极连接在电化学工作站上,制得了CdSeS点配合物复合材料CdSeS@Cu(II)-ADM/Cu电化学传感器;
(2)电化学检测乙烯雌酚
将乙醇与水按1:1比例溶解,制得乙醇水溶液;
用乙醇水溶液溶解并定容乙烯雌酚,分别配制浓度为10-6~102µg/mL范围内不同浓度的乙烯雌酚溶液;
使用步骤(1)制得的电化学传感器,采用差分脉冲伏安法,分别对该不同浓度的乙烯雌酚溶液进行扫描,在-0.6-0.0V下进行扫描,记录电流变化;
根据所得电流值与乙烯雌酚浓度呈线性关系,绘制工作曲线;
将待测样品溶液代替乙烯雌酚标准溶液,进行样品的检测,检测结果从工作曲线中查得。
CN201810718182.4A 2018-07-03 2018-07-03 一种CdSeS点配合物复合材料的制备方法及应用 Expired - Fee Related CN109046453B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810718182.4A CN109046453B (zh) 2018-07-03 2018-07-03 一种CdSeS点配合物复合材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810718182.4A CN109046453B (zh) 2018-07-03 2018-07-03 一种CdSeS点配合物复合材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN109046453A CN109046453A (zh) 2018-12-21
CN109046453B true CN109046453B (zh) 2020-11-20

Family

ID=64818418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810718182.4A Expired - Fee Related CN109046453B (zh) 2018-07-03 2018-07-03 一种CdSeS点配合物复合材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN109046453B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101059480A (zh) * 2007-05-10 2007-10-24 上海交通大学 己烯雌酚的玻碳电极修饰的电化学检测方法
CN101191052A (zh) * 2005-11-30 2008-06-04 北京大学 CdSeS量子点纳米颗粒的制备方法
CN102608092A (zh) * 2012-03-28 2012-07-25 哈尔滨工业大学 高灵敏度的铜离子检测用荧光生物传感器及其检测方法
CN103923107A (zh) * 2014-04-11 2014-07-16 安徽师范大学 金刚烷基吡啶配合物、中间体及其制备方法和应用
CN105327714A (zh) * 2015-11-30 2016-02-17 山东师范大学 一种纳米Cu-有机配合物/Ag复合材料的制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100678285B1 (ko) * 2005-01-20 2007-02-02 삼성전자주식회사 발광 다이오드용 양자점 형광체 및 그의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191052A (zh) * 2005-11-30 2008-06-04 北京大学 CdSeS量子点纳米颗粒的制备方法
CN101059480A (zh) * 2007-05-10 2007-10-24 上海交通大学 己烯雌酚的玻碳电极修饰的电化学检测方法
CN102608092A (zh) * 2012-03-28 2012-07-25 哈尔滨工业大学 高灵敏度的铜离子检测用荧光生物传感器及其检测方法
CN103923107A (zh) * 2014-04-11 2014-07-16 安徽师范大学 金刚烷基吡啶配合物、中间体及其制备方法和应用
CN105327714A (zh) * 2015-11-30 2016-02-17 山东师范大学 一种纳米Cu-有机配合物/Ag复合材料的制备方法和应用

Also Published As

Publication number Publication date
CN109046453A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
Guo et al. Electrochemical upgrading of formic acid to formamide via coupling nitrite co-reduction
Li et al. Pulsed nitrate-to-ammonia electroreduction facilitated by tandem catalysis of nitrite intermediates
Peng et al. Electrochemical C–N coupling of CO 2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds
Dong et al. CuS-decorated GaN nanowires on silicon photocathodes for converting CO2 mixture gas to HCOOH
KR101762057B1 (ko) 환원 촉매 및 화학 반응 장치
Mishra et al. Electrochemical deposition of MWCNT-MnO2/PPy nano-composite application for microbial fuel cells
Dong et al. Efficient photoelectrochemical hydrogen generation from water using a robust photocathode formed by CdTe QDs and nickel ion
CN108745340A (zh) 一种碳负载铋纳米颗粒催化剂的制备方法及应用
CN109174192A (zh) 一种Cu-MOF/碳点纳米片阵列催化剂的制备方法和应用
Zhou et al. A new oxynitride-based solid state Z-scheme photocatalytic system for efficient Cr (VI) reduction and water oxidation
Ibrahim et al. Selective and sensitive visible-light-prompt photoelectrochemical sensor of Cu2+ based on CdS nanorods modified with Au and graphene quantum dots
CN106807349A (zh) 一种纳米金属单质修饰过渡金属氢氧化物阵列催化剂及其制备方法和应用
Wang et al. A novel electrochemical sensor based on Cu3P@ NH2-MIL-125 (Ti) nanocomposite for efficient electrocatalytic oxidation and sensitive detection of hydrazine
Guo et al. Evaluation of photocatalysts for water splitting through combined analysis of surface coverage and energy-level alignment
Hoogeveen et al. Photo-electrocatalytic hydrogen generation at dye-sensitised electrodes functionalised with a heterogeneous metal catalyst
CN109546168A (zh) 一种碳材料负载的银铂纳米合金复合材料及其制备方法
Jhong et al. Efficient aqueous electroreduction of CO2 to formate at low overpotential on indium tin oxide nanocrystals
CN108841378B (zh) 一种功能化修饰碳量子点的制备方法及应用
CN109930165A (zh) 用于二氧化碳电催化还原的Bi/C催化剂制备方法
Chen et al. Simultaneous H2 fuel evolution and value-added organic transformation from a one-dimensional noble-metal-free photocatalyst with spatially separated catalytic sites
Chen et al. Construction of embedded CdS nanosheets@ PEA2PbBr4 nanoplate pn heterojunction photocatalysts with spatial charge transfer for enhanced benzylic C (sp3)-H bond oxidation
CN109046453B (zh) 一种CdSeS点配合物复合材料的制备方法及应用
Hou et al. Facile synthesis and improved photocatalytic H2 production of ZnO/Zn2GeO4 and ZnO/Zn2GeO4-Cu composites
CN107694586A (zh) 一种石墨烯缠绕碳化钼/碳微球电催化剂及其制备方法以及在酸性条件下电解水制氢中应用
Peng et al. Preparation of nickel hexacyanoferrate/heterogeneous carbon composites for CO2 continuous electrocatalytic reduction to formic acid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201120

Termination date: 20210703

CF01 Termination of patent right due to non-payment of annual fee