CN109037310B - A superjunction power device terminal structure and preparation method thereof - Google Patents
A superjunction power device terminal structure and preparation method thereof Download PDFInfo
- Publication number
- CN109037310B CN109037310B CN201810898315.0A CN201810898315A CN109037310B CN 109037310 B CN109037310 B CN 109037310B CN 201810898315 A CN201810898315 A CN 201810898315A CN 109037310 B CN109037310 B CN 109037310B
- Authority
- CN
- China
- Prior art keywords
- type semiconductor
- conductive type
- doping
- region
- gradient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 239000004065 semiconductor Substances 0.000 claims abstract description 149
- 230000015556 catabolic process Effects 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 25
- 238000005468 ion implantation Methods 0.000 claims description 18
- 230000007423 decrease Effects 0.000 claims description 17
- 239000012535 impurity Substances 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 238000000137 annealing Methods 0.000 claims description 11
- 238000009826 distribution Methods 0.000 claims description 7
- 150000002500 ions Chemical class 0.000 claims description 7
- 238000000407 epitaxy Methods 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 claims 3
- 238000009740 moulding (composite fabrication) Methods 0.000 claims 1
- 230000005684 electric field Effects 0.000 abstract description 13
- 230000035945 sensitivity Effects 0.000 abstract description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 239000010703 silicon Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 2
- 210000000746 body region Anatomy 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004151 rapid thermal annealing Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/109—Reduced surface field [RESURF] PN junction structures
- H10D62/111—Multiple RESURF structures, e.g. double RESURF or 3D-RESURF structures
Landscapes
- Electrodes Of Semiconductors (AREA)
- Thyristors (AREA)
Abstract
一种超结功率器件终端结构及其制备方法,属于功率半导体技术领域。本发明包括衬底、外延层、截止环和多层渐变掺杂区;通过在终端区的外延层内沿横向自上而下设置多层渐变掺杂区,并使其掺杂浓度和延伸深度渐变。沿器件横向,表面掺杂浓度在接近沟道截止环的方向达到最低,有效减小结边缘的电场峰值,同时,渐变掺杂区从体内向表面沿横向延伸深度递增,有利于缓解结边缘曲率效应对击穿电压的影响;沿器件纵向,硅体内掺杂浓度小于表面,有利于体内空间电荷区向渐变掺杂区一侧扩展。本发明改善了终端区的击穿电压对电荷不平衡的敏感程度,提高了终端耐压能力。
A superjunction power device terminal structure and a preparation method thereof belong to the technical field of power semiconductors. The invention includes a substrate, an epitaxial layer, a cut-off ring and a multi-layer graded doping region; the multi-layer graded doping region is arranged from top to bottom in the lateral direction in the epitaxial layer of the terminal region, and its doping concentration and extension depth are adjusted. gradient. Along the lateral direction of the device, the surface doping concentration reaches the lowest in the direction close to the channel cut-off ring, which effectively reduces the electric field peak at the junction edge. At the same time, the depth of the graded doping region extends from the body to the surface along the lateral direction, which is conducive to alleviating the curvature of the junction edge. The influence of the effect on the breakdown voltage; along the longitudinal direction of the device, the doping concentration in the silicon body is lower than that on the surface, which is conducive to the expansion of the space charge region in the body to the side of the graded doping region. The invention improves the sensitivity of the breakdown voltage of the terminal region to the charge imbalance, and improves the withstand voltage capability of the terminal.
Description
技术领域technical field
本发明属于功率半导体技术领域,具体涉及一种超结功率器件终端结构及其制备方法。The invention belongs to the technical field of power semiconductors, and in particular relates to a terminal structure of a superjunction power device and a preparation method thereof.
背景技术Background technique
功率半导体器件是进行功率处理的半导体器件,其结合微电子技术与电力电子技术,构成了电力电子技术的基础和核心。功率器件的主要发展方向一直是沿着提高频率和提高功率两方面进行的。超结器件作为中高压领域的重要功率器件,其基本结构由交替排列的p柱和n柱组成,且p柱和n柱遵循电荷平衡的基本原理。该结构的提出突破了“硅极限”,并由此成为了功率器件发展史的一个重大里程碑。超结MOSFET通过在传统功率MOSFET的漂移区中引入超结结构,因其显著改善了功率MOSFET中击穿电压与导通电阻之间的折中关系,而被广泛应用在功率系统中。在器件阻断状态下,超结结构中p柱和n柱相互完全耗尽,在漂移区横向电场的调制下,器件纵向电场趋于均匀分布。因此,超结结构中p柱和n柱相互完全耗尽,漂移区就相当于一个本征层,理论上超结器件击穿电压(耐压能力)仅依赖于漂移区的厚度,而与漂移区掺杂浓度无关。这样在相同的击穿电压下,可以适当提高漂移区的掺杂浓度,从而有效降低器件导通电阻。Power semiconductor devices are semiconductor devices for power processing, which combine microelectronics technology and power electronics technology to form the foundation and core of power electronics technology. The main development direction of power devices has been along the two aspects of increasing frequency and increasing power. As an important power device in the field of medium and high voltage, the basic structure of superjunction devices is composed of alternately arranged p-columns and n-columns, and the p-columns and n-columns follow the basic principle of charge balance. The proposal of this structure breaks through the "silicon limit" and thus becomes a major milestone in the development history of power devices. Superjunction MOSFETs are widely used in power systems by introducing a superjunction structure into the drift region of conventional power MOSFETs because they significantly improve the trade-off between breakdown voltage and on-resistance in power MOSFETs. In the blocking state of the device, the p-column and n-column in the superjunction structure are completely depleted from each other, and the longitudinal electric field of the device tends to be uniformly distributed under the modulation of the lateral electric field in the drift region. Therefore, in the superjunction structure, the p-column and the n-column are completely depleted of each other, and the drift region is equivalent to an intrinsic layer. In theory, the breakdown voltage (withstand voltage) of the superjunction device only depends on the thickness of the drift region, which is different from the drift region. Region doping concentration is irrelevant. In this way, under the same breakdown voltage, the doping concentration of the drift region can be appropriately increased, thereby effectively reducing the on-resistance of the device.
在实际应用过程中,由于pn结在器件终端区域出现弯曲会增大电场强度(即表现为电场在结附近聚集),在工艺过程中器件表面会引入固定电荷从而影响到击穿电压,使器件的实际击穿电压低于理想平面pn结的击穿电压。因此,器件的终端结构设计一直是提高器件击穿电压的关键技术。已开发的高压终端结构包括电场限制环技术、场板技术、表面成形技术等。其中,电场限制环技术是通过减小主结处的表面电场来提高器件的击穿电压,制备工艺与元胞制作相兼容,并不需要增加多余的工艺步骤,然而电场限制环结构的终端面积占用较大。为此,研究人员在电场限制环的基础上提出许多改进结构,诸如具有P+偏移区的轻掺杂场限环、浅槽场限环、3D RESURF场限环等。1977年Temple提出JTE(JunctionTermination Extension)结构,是一种通过在重掺杂的主结附近进行离子注入获得轻掺杂P型区的方法,但实际上JTE需要对离子注入剂量做精确控制。出于减小对注入剂量敏感的目的,1985年R.Stengl等人提出一种横向变掺杂(Varied Lateral Doping,VLD)终端结构,VLD通过逐渐减小掩膜窗口令离子一次性注入,再退火形成可控的渐变杂质分布区域。相比于场限环结构,VLD终端结构可实现占用较小终端面积的同时获得较高的平面结击穿电压,使终端的击穿电压提高。In the actual application process, since the bending of the pn junction in the terminal region of the device will increase the electric field strength (that is, the electric field will be concentrated near the junction), fixed charges will be introduced on the surface of the device during the process, which will affect the breakdown voltage and make the device The actual breakdown voltage of is lower than that of an ideal planar pn junction. Therefore, the terminal structure design of the device has always been a key technology to improve the breakdown voltage of the device. The developed high voltage termination structures include electric field confinement ring technology, field plate technology, surface forming technology, etc. Among them, the electric field confinement ring technology improves the breakdown voltage of the device by reducing the surface electric field at the main junction. The fabrication process is compatible with cell fabrication and does not require additional process steps. However, the terminal area of the electric field confinement ring structure is Occupy large. To this end, researchers have proposed many improved structures based on the electric field confinement ring, such as a lightly doped field confinement ring with a P+ offset region, a shallow trench field confinement ring, and a 3D RESURF field confinement ring. In 1977 Temple proposed the JTE (Junction Termination Extension) structure, which is a method of obtaining a lightly doped P-type region by ion implantation near the heavily doped main junction, but in fact, JTE requires precise control of the ion implantation dose. For the purpose of reducing sensitivity to implantation dose, in 1985 R. Stengl et al. proposed a Varied Lateral Doping (VLD) termination structure. VLD gradually reduced the mask window to allow ions to be implanted at one time. The annealing forms a controllable graded impurity distribution region. Compared with the field limiting ring structure, the VLD terminal structure can achieve a higher planar junction breakdown voltage while occupying a smaller terminal area, so that the breakdown voltage of the terminal is improved.
因为超结器件具有特殊的元胞结构和制造工艺,以及漂移区厚度较小、掺杂浓度较高的特点,导致普通的高压功率器件终端结构无法适用于超结器件。目前应用较为广泛的超结器件终端结构与其元胞结构一样,采用p柱和n柱交替排列,且同样遵循电荷平衡的基本原理。但是,超结器件的击穿电压对于电荷不平衡非常敏感,终端区掺杂柱的宽度、间距、浓度等工艺偏差均可能造成终端表面电场增大,进而发生器件终端提前击穿而损毁的现象。综上所述,常规终端结构不仅制作工艺难度较大,而且终端可靠性受电荷不平衡影响较大,因此需要发展一种能够降低电荷不平衡影响且制作简单的超结功率器件终端结构。Because superjunction devices have special cell structures and manufacturing processes, as well as the characteristics of small drift region thickness and high doping concentration, the common terminal structure of high-voltage power devices cannot be applied to superjunction devices. At present, the terminal structure of the widely used superjunction device is the same as its cell structure, which adopts p-pillars and n-pillars alternately arranged, and also follows the basic principle of charge balance. However, the breakdown voltage of superjunction devices is very sensitive to charge imbalance, and process deviations such as the width, spacing, and concentration of the doping pillars in the terminal region may cause the surface electric field of the terminal to increase, and the device terminal will break down in advance and be damaged. . In summary, the conventional terminal structure is not only difficult to manufacture, but also greatly affected by the charge imbalance. Therefore, it is necessary to develop a superjunction power device terminal structure that can reduce the influence of the charge imbalance and is simple to manufacture.
发明内容SUMMARY OF THE INVENTION
鉴于上文所述,本发明针对现有超级终端结构可靠性受电荷不平衡影响大以及制作难度大的问题,提供了一种超结功率器件终端结构,通过在终端区的外延层内自上而下设置掺杂浓度依次递减且为横向设置的多层渐变掺杂区,并使得多层渐变掺杂区沿器件横向的延伸深度自上而下依次递减,且多层渐变掺杂区沿器件横向的延伸深度相同的位置的掺杂浓度自上而下依次递减。由此改善终端区的击穿电压对电荷不平衡的敏感程度,提高了终端耐压能力;另外本发明还提供了该终端结构的制备方法,制备工艺简单可控,兼容性强,有利于实现工业化生产。In view of the above, the present invention provides a super junction power device termination structure in view of the problems that the reliability of the existing super terminal structure is greatly affected by the charge imbalance and the manufacturing difficulty A multi-layer graded doping region with a doping concentration that decreases sequentially and is arranged laterally is arranged at the bottom, so that the extension depth of the multi-layer graded doping region along the lateral direction of the device decreases sequentially from top to bottom, and the multi-layer graded doping region is arranged along the device. The doping concentration of the positions with the same extension depth in the lateral direction decreases sequentially from top to bottom. Therefore, the sensitivity of the breakdown voltage of the terminal region to the charge imbalance is improved, and the withstand voltage capability of the terminal is improved; in addition, the present invention also provides a preparation method of the terminal structure, which is simple and controllable, and has strong compatibility, which is conducive to the realization of Industrial production.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一方面本发明提供了一种超结功率器件终端结构,包括第一导电类型半导体衬底1和位于第一导电类型半导体衬底1上表面的第一导电类型半导体外延层2;所述第一导电类型半导体外延层2顶层一端设置有第一导电类型半导体截止环3,其特征在于:所述第一导电类型半导体外延层2顶层另一端自上而下设置有多层第二导电类型半导体渐变掺杂区4,所述多层第二导电类型半导体渐变掺杂区4沿器件横向的延伸深度自上而下依次递减,所述第二导电类型半导体渐变掺杂区4的掺杂浓度随着距离所述第一导电类型半导体截止环3的横向距离的减小而依次递减,所述多层第二导电类型半导体渐变掺杂区4与所述第一导电类型半导体截止环3垂直距离相同的位置的掺杂浓度自上而下依次递减;通过调整多层第二导电类型半导体渐变掺杂区4的掺杂分布,使得反向耐压达到击穿电压时多层第二导电类型半导体渐变掺杂区4完全耗尽。In one aspect, the present invention provides a superjunction power device terminal structure, comprising a first conductive
进一步地,本发明中任意两个相邻的第二导电类型半导体渐变掺杂区4之间相互接触或者通过第一导电类型半导体外延层2隔离。Further, in the present invention, any two adjacent second-conductivity-type semiconductor graded doped regions 4 are in contact with each other or are separated by the first-conductivity-type semiconductor
进一步地,本发明中各个第二导电类型半导体渐变掺杂区4的内部均具有第一导电类型半导体渐变掺杂调节区5,所述第一导电类型半导体渐变掺杂调节区5的掺杂浓度小于对应的第二导电类型半导体渐变掺杂区4的掺杂浓度。Further, in the present invention, each second conductive type semiconductor graded doping region 4 has a first conductive type semiconductor graded doping adjustment region 5 inside, and the first conductive type semiconductor graded doping adjustment region 5 has a doping concentration. It is smaller than the doping concentration of the corresponding second conductivity type semiconductor graded doping region 4 .
进一步地,本发明中第一导电类型半导体为N型半导体,第二导电类型半导体为P型半导体,使得所述终端结构用作N沟道超结器件的终端结构;或者第一导电类型半导体为P型半导体,第二导电类型半导体为N型半导体,使得所述终端结构用作P沟道超结器件的终端结构。Further, in the present invention, the first conductive type semiconductor is an N-type semiconductor, and the second conductive type semiconductor is a P-type semiconductor, so that the terminal structure is used as the terminal structure of the N-channel superjunction device; or the first conductive type semiconductor is A P-type semiconductor, the second conductivity type semiconductor is an N-type semiconductor, so that the termination structure is used as a termination structure of a P-channel superjunction device.
另一方面本发明提供了一种超结功率器件终端结构的制备方法,其特征在于,包括如下步骤:On the other hand, the present invention provides a method for preparing a terminal structure of a superjunction power device, which is characterized by comprising the following steps:
选择第一导电类型半导体衬底1,并在所述第一导电类型半导体衬底1上外延生长第一导电类型半导体外延层2;在终端区域的第一导电类型半导体外延层2上使用掩膜板,所掩膜板包括多个窗口,将第二导电类型半导体杂质离子通过掩膜板窗口注入到所述第一导电类型半导体外延层2中形成掺杂区域;重复上述步骤,经过多次外延和离子注入,合理调整掩膜板窗口使用的个数、大小和离子注入能量及剂量,最后经退火工艺在第一导电类型半导体外延层2的顶层自上而下形成多层第二导电类型半导体渐变掺杂区4;并使得多层第二导电类型半导体渐变掺杂区4沿器件横向的延伸深度自上而下依次递减,且对于每一层第二导电类型半导体渐变掺杂区4其掺杂浓度随着其横向延伸而逐渐降低,同时对于相同横向延伸深度的第二导电类型半导体渐变掺杂区4其掺杂浓度自器件表面向体内依次递减;最后在第一导电类型半导体外延层2的顶层另一端使用掩膜板,经离子注入及退火工艺形成第一导电类型半导体截止环3。Select the first conductive
相比现有技术,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明通过在超结功率器件终端区的外延层内部设计多层结构的渐变掺杂区,从而在沿器件横向方向、纵向方向形成浓度渐变以及沿器件横向方向深度渐变的三维渐变掺杂终端结构。本发明在不影响超结器件电学性能的同时,改善了终端区击穿电压对电荷不平衡的敏感程度,也降低了制作终端结构的工艺难度,提高了终端结构的可靠性。In the present invention, a graded doping region of a multi-layer structure is designed inside the epitaxial layer of the terminal region of the super junction power device, thereby forming a three-dimensional graded doping terminal structure with a concentration gradient along the lateral direction and a longitudinal direction of the device and a depth gradient along the lateral direction of the device. . The invention improves the sensitivity of the breakdown voltage of the terminal region to the charge imbalance while not affecting the electrical performance of the super junction device, reduces the technological difficulty of fabricating the terminal structure, and improves the reliability of the terminal structure.
附图说明Description of drawings
图1是本发明实施例1提供的一种超结功率器件终端结构示意图;1 is a schematic structural diagram of a terminal structure of a superjunction power device provided in
图2是本发明实施例1提供的一种超结功率器件终端结构的横向、纵向浓度分布示意图;2 is a schematic diagram of lateral and vertical concentration distributions of a superjunction power device termination structure provided in
图3是本发明实施例2提供的实施例2的超结功率器件终端结构示意图;3 is a schematic structural diagram of a terminal structure of a superjunction power device according to
图4是本发明实施例3提供的实施例3的超结功率器件终端结构示意图;4 is a schematic structural diagram of a terminal structure of a superjunction power device according to
图5是本发明超结功率器件终端结构在超结平面栅器件中的应用实例。FIG. 5 is an application example of the superjunction power device termination structure of the present invention in a superjunction planar gate device.
图6至图14是本实施例5提供的一种超结功率器件终端结构的工艺制造流程的结构示意图。6 to 14 are schematic structural diagrams of a process manufacturing process of a superjunction power device termination structure provided in Embodiment 5.
图中,1为第一导电类型半导体衬底,2为第一导电类型半导体外延层,3为截止环,41为第二导电类型半导体渐变掺杂区一,42为第二导电类型半导体渐变掺杂区二,43为第二导电类型半导体渐变掺杂区三,4n为第二导电类型半导体渐变掺杂区n,51为第一导电类型半导体渐变掺杂调节区一,52为第一导电类型半导体渐变掺杂调节区二,53为第一导电类型半导体渐变掺杂调节区三,5n为第一导电类型半导体渐变掺杂调节区n,6为第二导电类型半导体柱区,7为第二导电类型半导体体区,8为第一导电类型半导体重掺杂源区,9为栅氧化层,10为多晶硅栅。In the figure, 1 is the first conductive type semiconductor substrate, 2 is the first conductive type semiconductor epitaxial layer, 3 is the cut-off ring, 41 is the second conductive type semiconductor graded
具体实施方式Detailed ways
为了使本发明的内容以及原理更加清楚,下面结合附图和具体实施例,对本发明的技术方案进行详细描述。In order to make the content and principle of the present invention clearer, the technical solutions of the present invention are described in detail below with reference to the accompanying drawings and specific embodiments.
实施例1:Example 1:
本实施例提供一种如图1所示的超结功率器件终端结构,包括第一导电类型半导体衬底1和位于第一导电类型半导体衬底1上表面的第一导电类型半导体外延层2;所述第一导电类型半导体外延层2顶层一端具有重掺杂的第一导电类型半导体截止环3,其特征在于:所述第一导电类型半导体外延层2顶层的另一端自上而下依次设置有第二导电类型半导体渐变掺杂区一41、第二导电类型半导体渐变掺杂区二42、第二导电类型半导体渐变掺杂区三43……第二导电类型半导体渐变掺杂区4n;n个第二导电类型半导体渐变掺杂区41、42、43……4n沿器件横向的延伸深度自上而下依次递减,且其掺杂浓度随着距离所述第一导电类型半导体截止环3的横向距离的减小而依次递减,所述n个第二导电类型半导体渐变掺杂区41、42、43……4n与所述第一导电类型半导体截止环3垂直距离相同的位置的掺杂浓度自上而下依次递减;通过调整n个第二导电类型半导体渐变掺杂区41、42、43……4n的掺杂分布,使得施加在所述终端结构的反向耐压达到击穿电压时,n个第二导电类型半导体渐变掺杂区41、42、43……4n完全耗尽。This embodiment provides a superjunction power device terminal structure as shown in FIG. 1 , including a first conductive
本文以N沟道超结功率器件终端结构为例结合实施例1进一步对原理进行说明,本领域技术人员可根据下文公开内容得到N沟道超结功率器件终端结构的原理。This paper takes the terminal structure of the N-channel superjunction power device as an example to further illustrate the principle in combination with
传统超结功率器件终端结构是采用p柱和n柱交替排列的形式来达到额定的击穿电压,然而,由于击穿电压对于电荷平衡较为敏感,终端区p柱的宽度、间距、掺杂浓度等工艺稍有偏差都会导致电荷不平衡,从而使得终端结构表面的电场增大,发生器件终端结构被提前击穿而损毁的现象。也正是因为击穿电压对于电荷平衡敏感,使得传统超结功率器件终端结构对于工艺水平的要求非常高,并且终端结构的可靠性也会由于电荷不平衡影响而受到限制。为此,本发明在超结器件终端区的N型外延层2内部设置n层P型渐变掺杂区41、42、43……4n,n层P型渐变掺杂区在器件横向方向和纵向上均为渐变掺杂且沿器件横向方向的延伸深度渐变,从而形成三维渐变结构。n层P型渐变掺杂区41、42、43……4n的掺杂浓度在同一水平线上从左至右都是逐渐减小的,在同一个竖直线上,n层P型渐变掺杂区41、42、43……4n的掺杂浓度自上而下逐渐减小;且n层P型渐变掺杂区41、42、43……4n沿器件横向的延伸深度自上而下逐渐减小。本发明三维渐变结构的浓度分布图如图2所示,AA'表示横向(从过渡区到终端区),BB'表示纵向(从硅表面到体内),就横向来看,表面掺杂浓度在接近沟道截止环3的方向达到最低,有效减小结边缘的电场峰值;进一步地,P型渐变掺杂区从体内向表面沿器件横向的延伸深度逐渐增大,以实现表面耗尽层边界往截止环3一侧展宽,有利于缓解结边缘曲率效应对击穿电压的影响;就纵向来看,与截止环3相同垂直距离处的半导体体内掺杂浓度小于半导体表面,有利于体内空间电荷区向渐变掺杂区一侧扩展。当施加在终端结构上的反向耐压接近击穿电压时,n层P型渐变掺杂区41、42、43……4n将会被全部耗尽,形成一个大的耗尽区以承受更高的反向耐压。相比于传统的p柱、n柱交替排列的超结器件终端结构,本发明所提出具有三维渐变掺杂的超结功率终端缓解了因工艺偏差导致的电荷不平衡对击穿电压的影响。因此本发明提出的三维渐变终端结构,在不影响超结器件电学性能的同时,改善终端区击穿电压对电荷不平衡的敏感程度,提高终端耐压。The terminal structure of traditional superjunction power devices adopts the alternate arrangement of p-columns and n-columns to achieve the rated breakdown voltage. However, since the breakdown voltage is more sensitive to charge balance, the width, spacing and doping concentration of the p-columns in the termination region are limited. A slight deviation in the process will lead to charge imbalance, thereby increasing the electric field on the surface of the terminal structure, and the phenomenon that the terminal structure of the device is prematurely broken down and damaged. It is precisely because the breakdown voltage is sensitive to the charge balance that the traditional superjunction power device terminal structure has very high requirements on the technological level, and the reliability of the terminal structure is also limited due to the influence of the charge imbalance. To this end, the present invention provides n-layer P-type graded
实施例2:Example 2:
本发明实施例相比实施例1的不同在于,将n个相互接触的第二导电类型半导体渐变掺杂区41、42、43……4n替换为n个相互隔离的第二导电类型半导体渐变掺杂区41、42、43……4n,即提供一种如图3所示具有不连续渐变掺杂区的终端结构。本实施例中任意两个相邻的第二导电类型半导体渐变掺杂区之间具有第一导电类型半导体外延层2,其余结构均与实施例1相同。The difference between the embodiment of the present invention and the
同实施例1一样,n个相互隔离的第二导电类型半导体渐变掺杂区41、42、43……4n的掺杂浓在同一水平线上从左至右依次逐渐减小,可通过控制离子注入窗口来实现其渐变掺杂。As in
实施例3:Example 3:
本实施例提供一种如图4所示两次离子注入的终端结构,通过在多个相互接触的第二导电类型半导体渐变掺杂区41、42、43……4n内部分别引入多个第一导电类型半导体渐变掺杂调节区51、52、53……5n,其余结构均与实施例1相同。This embodiment provides a terminal structure with two ion implantations as shown in FIG. 4 , by introducing a plurality of first conductive type semiconductor graded
每一层第二导电类型半导体渐变掺杂区41、42、43……4n均是通过一次外延生长及离子注入,然后再经退火处理热扩散而成,而本实施例还需要额外的一次离子注入步骤,由此在每一个第二导电类型半导体渐变掺杂区中掺入第一导电类型半导体杂质,经退火处理热扩散形成第一导电类型半导体掺杂调节区51、52、53……5n。与实施例1相比,本实施例两次注入后结构的掺杂浓度可得到很好的调节,在不增加工艺复杂度和成本的同时增加了器件设计的灵活性。Each layer of the second conductive type semiconductor graded doped
实施例4:Example 4:
本发明可用作很多种超结功率器件的终端结构,本实施例给出了在平面栅超结器件的一种应用实例,如图5所示,其包括第一导电类型半导体衬底1和设置在第一导电类型半导体衬底1上的第一导电类型半导体外延层2,所述第一导电类型半导体外延层2包括有源区(即元胞区)和终端区,所述终端区的结构即为本实施例1提供的结构,所述有源区包括:第一导电类型半导体衬底1、第一导电类型半导体外延层2、第二导电类型半导体柱区6、第二导电类型半导体体区7、第一导电类型半导体重掺杂源区8、栅氧化层9和多晶硅栅10,有源区的设置为现有技术,实施例对此不再赘述。The present invention can be used as a terminal structure of many kinds of superjunction power devices. This embodiment provides an application example in a planar gate superjunction device, as shown in FIG. 5 , which includes a first conductive
实施例5:Example 5:
本实施例提供了超结功率器件终端结构的一种工艺制造流程,以实施例1(以N沟道超结器件的终端结构为例)进行说明,具体工艺步骤如下:This embodiment provides a process manufacturing process for a terminal structure of a superjunction power device, and takes Embodiment 1 (taking the terminal structure of an N-channel superjunction device as an example) for description, and the specific process steps are as follows:
第一步:单晶硅衬底准备及外延层生长:The first step: single crystal silicon substrate preparation and epitaxial layer growth:
如图6所示,采用N型重掺杂单晶硅衬底1,并在该衬底的上表面气相外延生长具有一定厚度和掺杂浓度的N型外延层2。As shown in FIG. 6 , an N-type heavily doped single
第二步:离子注入:Step 2: Ion Implantation:
如图7所示,在N型外延层2表面使用掩模版,将P型杂质离子注入到所述N型外延层2顶层左侧,掩模版窗口大小以及离子注入的能量、剂量可根据需要进行调整;As shown in FIG. 7, a mask is used on the surface of the N-
第三步:再次外延生长及离子注入:The third step: epitaxial growth and ion implantation again:
如图8所示,重复上述两步中生长外延和离子注入P型杂质的步骤,掩模版窗口大小和离子注入的能量、剂量可根据需要进行调整,要保证退火后该步骤形成的P型掺杂区为横向渐变掺杂,其掺杂浓度自左向右依次递减,并且其沿器件横向的延伸深度较第二步形成的P型掺杂区更大,以及沿器件横向的延伸深度相同位置的P型杂质掺杂浓度较第二步形成的P型掺杂区更高;As shown in Figure 8, repeat the steps of growing epitaxy and ion implanting P-type impurities in the above two steps. The size of the mask window and the energy and dose of ion implantation can be adjusted as needed. It is necessary to ensure that the P-type impurities formed in this step after annealing are The impurity region is laterally graded doping, and its doping concentration decreases sequentially from left to right, and its extension depth along the lateral direction of the device is larger than that of the P-type doped region formed in the second step, and the extension depth along the lateral direction of the device is the same position The P-type impurity doping concentration is higher than that of the P-type doping region formed in the second step;
第四步:多次外延生长及离子注入:Step 4: Multiple epitaxial growth and ion implantation:
如图9至图12所示,多次重复第三步的过程,每次外延生长后紧跟着进行离子注入,掩模版窗口大小和离子注入的能量、剂量可根据需要进行调整,要保证退火后该步骤形成的P型掺杂区不仅为横向渐变掺杂,而且其沿器件横向的延伸深度较第二步形成的P型掺杂区更大,沿器件横向的延伸深度相同位置的P型杂质掺杂浓度较第二步形成的P型掺杂区更高,最终形成多层P型渐变掺杂区41、42、43……4n;As shown in Figures 9 to 12, the process of the third step is repeated several times. Each epitaxial growth is followed by ion implantation. The size of the mask window and the energy and dose of ion implantation can be adjusted as needed. Ensure that annealing is performed. The P-type doped region formed in the latter step is not only laterally graded doping, but also has a larger extension depth along the lateral direction of the device than the P-type doped region formed in the second step. The impurity doping concentration is higher than the P-type doping region formed in the second step, and finally multi-layer P-type graded
第五步:高温退火:Step 5: High temperature annealing:
如图13所示,将多次外延生长及离子注入后的硅片进行高温退火,激活杂质的同时,使间断的P型区域趋于连续,浓度分布更加均匀,形成横向和纵向均为渐变掺杂的终端结构;As shown in Figure 13, the silicon wafer after multiple epitaxial growth and ion implantation is subjected to high temperature annealing to activate the impurities while making the discontinuous P-type region continuous and the concentration distribution more uniform. complex terminal structure;
第五步:形成沟道截止环3:Step 5: Form Channel Stop Ring 3:
如图14所示,使用掩模版离子注入低剂量、高剂量的N型杂质,快速热退火后在N型外延层2上层一端形成沟道截止环3。该步骤可与元胞区的N+源极接触区一起形成。As shown in FIG. 14 , a mask ion is used to implant low-dose and high-dose N-type impurities, and after rapid thermal annealing, a
本发明提供的超结功率器件终端结构的工艺制造过程与超结器件元胞的工艺兼容,终端区中三维渐变掺杂的结构可与元胞区的掺杂柱区一起形成,沟道截止环3可与元胞源极接触区一起形成。本发明制作工艺与现有元胞区制作工艺相兼容,无需额外的工艺步骤,降低了终端制作的工艺难度。The manufacturing process of the terminal structure of the super junction power device provided by the present invention is compatible with the process of the cell of the super junction device, the three-dimensional gradient doping structure in the terminal region can be formed together with the doping column region of the cell region, and the
以上结合附图对本发明的实施例进行了详细阐述,但是本发明并不局限于上述的具体实施方式,上述具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,不脱离本发明宗旨和权利要求所保护范围的情况下还可以做出很多变形,这些均属于本发明的保护。The embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned specific embodiments. The above-mentioned specific embodiments are only illustrative rather than restrictive. Under the inspiration of the present invention, many modifications can be made without departing from the spirit of the present invention and the protection scope of the claims, which all belong to the protection of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810898315.0A CN109037310B (en) | 2018-08-08 | 2018-08-08 | A superjunction power device terminal structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810898315.0A CN109037310B (en) | 2018-08-08 | 2018-08-08 | A superjunction power device terminal structure and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109037310A CN109037310A (en) | 2018-12-18 |
CN109037310B true CN109037310B (en) | 2020-12-29 |
Family
ID=64632280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810898315.0A Expired - Fee Related CN109037310B (en) | 2018-08-08 | 2018-08-08 | A superjunction power device terminal structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109037310B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112382653B (en) * | 2020-07-13 | 2024-02-23 | 电子科技大学 | Transverse variable doping terminal structure, design method and preparation method |
CN112820628A (en) * | 2020-12-31 | 2021-05-18 | 广州粤芯半导体技术有限公司 | Method for preparing epitaxial layer |
CN113078206A (en) * | 2021-03-30 | 2021-07-06 | 电子科技大学 | Power semiconductor device |
CN113517336A (en) * | 2021-07-13 | 2021-10-19 | 电子科技大学 | Terminal structure of MOS type super junction power device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101510561A (en) * | 2009-03-30 | 2009-08-19 | 东南大学 | Ultra-junction longitudinal bilateral diffusion metal oxide semiconductor tube |
US7682955B1 (en) * | 2008-10-03 | 2010-03-23 | Vanguard International Semiconductor Corporation | Method for forming deep well of power device |
CN104183626A (en) * | 2014-08-20 | 2014-12-03 | 佛山芯光半导体有限公司 | Terminal structure of super junction semiconductor device and manufacturing method of terminal structure |
CN204632762U (en) * | 2015-02-06 | 2015-09-09 | 中国科学院微电子研究所 | Terminal layout structure for junction terminal extension and terminal structure thereof |
CN105304688A (en) * | 2015-11-04 | 2016-02-03 | 中国工程物理研究院电子工程研究所 | Junction termination structure for silicon carbide power device and fabrication method |
CN107482050A (en) * | 2017-08-18 | 2017-12-15 | 珠海格力电器股份有限公司 | Terminal structure of power device and manufacturing method thereof |
CN107994068A (en) * | 2017-12-20 | 2018-05-04 | 上海南麟电子股份有限公司 | A kind of junction of semiconductor device termination extension structure and preparation method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7999315B2 (en) * | 2009-03-02 | 2011-08-16 | Fairchild Semiconductor Corporation | Quasi-Resurf LDMOS |
US8637386B2 (en) * | 2009-05-12 | 2014-01-28 | Cree, Inc. | Diffused junction termination structures for silicon carbide devices and methods of fabricating silicon carbide devices incorporating same |
-
2018
- 2018-08-08 CN CN201810898315.0A patent/CN109037310B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7682955B1 (en) * | 2008-10-03 | 2010-03-23 | Vanguard International Semiconductor Corporation | Method for forming deep well of power device |
CN101510561A (en) * | 2009-03-30 | 2009-08-19 | 东南大学 | Ultra-junction longitudinal bilateral diffusion metal oxide semiconductor tube |
CN104183626A (en) * | 2014-08-20 | 2014-12-03 | 佛山芯光半导体有限公司 | Terminal structure of super junction semiconductor device and manufacturing method of terminal structure |
CN204632762U (en) * | 2015-02-06 | 2015-09-09 | 中国科学院微电子研究所 | Terminal layout structure for junction terminal extension and terminal structure thereof |
CN105304688A (en) * | 2015-11-04 | 2016-02-03 | 中国工程物理研究院电子工程研究所 | Junction termination structure for silicon carbide power device and fabrication method |
CN107482050A (en) * | 2017-08-18 | 2017-12-15 | 珠海格力电器股份有限公司 | Terminal structure of power device and manufacturing method thereof |
CN107994068A (en) * | 2017-12-20 | 2018-05-04 | 上海南麟电子股份有限公司 | A kind of junction of semiconductor device termination extension structure and preparation method |
Also Published As
Publication number | Publication date |
---|---|
CN109037310A (en) | 2018-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11588016B2 (en) | Semiconductor device having a super junction structure and method of manufacturing the same | |
CN103021863B (en) | Preparation method of super junction device with accurate calibration and self-balancing | |
US8525260B2 (en) | Super junction device with deep trench and implant | |
JP6135178B2 (en) | Manufacturing method of super junction semiconductor device | |
CN103730372B (en) | A kind of superjunction manufacture method improving device withstand voltage | |
CN109037310B (en) | A superjunction power device terminal structure and preparation method thereof | |
US8183666B2 (en) | Semiconductor device including semiconductor zones and manufacturing method | |
CN109166922B (en) | A trench type superjunction power terminal structure and preparation method thereof | |
CN111989778B (en) | Small-pitch superjunction MOSFET structure and method | |
CN102148163B (en) | Methods for manufacturing superjunction structure and superjunction semiconductor device | |
JP2006510198A (en) | Trench MOSFET with implanted drain drift region and process for manufacturing the same | |
CN103178088A (en) | Semiconductor device and fabricating method thereof | |
CN105590844B (en) | The manufacturing method of super-junction structure deep trench | |
CN108493247A (en) | A kind of SJ-VDMOS devices and manufacturing method with P post region and N columns area Doping | |
CN102142378A (en) | Method for manufacturing super-junction semiconductor device with extended groove | |
CN109119460A (en) | A kind of terminal structure of super-junction power device and preparation method thereof | |
US6969657B2 (en) | Superjunction device and method of manufacture therefor | |
CN108074963B (en) | Super junction device and manufacturing method thereof | |
KR20040071722A (en) | Semiconductor devices with localized reduced lifetime regions and their manufacture | |
CN110010694A (en) | Structure and manufacturing method of high-voltage multiple epitaxial superjunction MOSFET | |
CN110047930A (en) | VDMOS device | |
TW202005084A (en) | Super-junction corner and termination structure with improved breakdown and robustness | |
JP5996611B2 (en) | Junction field effect transistor cell with lateral channel region | |
CN102130013B (en) | A kind of SOI superjunction LDMOS device fabrication method with buffer layer | |
CN109994550A (en) | A low-voltage trench gate superjunction MOS device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201229 |