CN109031958B - 分数阶多智能体追踪一致性的迭代学习控制方法 - Google Patents

分数阶多智能体追踪一致性的迭代学习控制方法 Download PDF

Info

Publication number
CN109031958B
CN109031958B CN201811204100.0A CN201811204100A CN109031958B CN 109031958 B CN109031958 B CN 109031958B CN 201811204100 A CN201811204100 A CN 201811204100A CN 109031958 B CN109031958 B CN 109031958B
Authority
CN
China
Prior art keywords
matrix
fractional order
iterative learning
tracking
order multi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811204100.0A
Other languages
English (en)
Other versions
CN109031958A (zh
Inventor
王立明
李小健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dragon Totem Technology Hefei Co ltd
Original Assignee
Langfang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Langfang Normal University filed Critical Langfang Normal University
Priority to CN201811204100.0A priority Critical patent/CN109031958B/zh
Publication of CN109031958A publication Critical patent/CN109031958A/zh
Application granted granted Critical
Publication of CN109031958B publication Critical patent/CN109031958B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Complex Calculations (AREA)
  • Feedback Control In General (AREA)

Abstract

一种分数阶多智能体追踪一致性的迭代学习控制方法,包括以下步骤:a.将阶数不同的分数阶多智能体系统协调追踪的控制问题转化为追踪误差系统在一定时间区间内的稳定性控制问题;b.设计具有初始状态学习能力的分布式P‑型迭代学习控制器;c.求解迭代学习控制器中待定的初始状态学习矩阵和迭代学习增益矩阵。本发明利用迭代学习控制方法解决了阶数不同的分数阶多智能体系统中初始状态偏移与模型未知同时存在情形下的协调追踪问题,所提出的迭代学习控制器不仅设计求解简单,可以抵制初始状态的偏移,而且能够保证阶数不同的分数阶多智能体系统经过一定迭代次数之后在整个运动过程中的一致性,具有很强的实用性。

Description

分数阶多智能体追踪一致性的迭代学习控制方法
技术领域
本发明涉及一种利用迭代学习控制方法解决含有阶数差异、初始状态偏移和模型未知的分数阶多智能体系统协调追踪控制方法,属于控制技术领域。
背景技术
近年来的研究发现,一些特殊条件的物理系统,如在沙地或泥泞的道路上运行的车辆和在雨、雪、冰雹等天气中飞行的飞行器等,应该用分数阶系统描述。此外,许多自然现象,如在分形环境中智能体的同步行为,高分子流体和多孔介质等,也必须利用具有分数阶动力学的智能体模型才能合理解释。由于在工程、生物和社会经济等领域均具有广泛的应用前景,分数阶多智能体系统成为当前系统控制领域的一个研究热点。控制领域的研究人员主要关注分数阶多智能体系统的分布式协调控制,即如何基于分数阶智能个体之间的局部信息交互和相互协作,共同实现期望的宏观涌现行为。依据是否具有领导者,已有的关于分数阶多智能体系统的研究成果可以分为两类,即无领导的一致性(或称协调调节一致性)和有领导者的一致性(或称协调追踪一致性)。与无领导的一致性问题相比,有领导者的一致性问题有着更广泛的应用且更有挑战性。最近,学者们从不同角度研究了分数阶多智能体系统的一致性追踪问题,如具有不同动力学的分数阶多智能体系统协调追踪问题,存在通讯间断或输入时滞的分数阶多智能体系统的一致性追踪问题,有限时间的分数阶多智能体的一致性追踪问题和具有不确定性的分数阶多智能体的一致性追踪问题。
虽然国内外众多学者对分数阶多智能体协调追踪控制问题进行了大量研究并取得了一系列成果,但在现有文献中,为讨论方便,一般假设分数阶多智能体的模型完全已知并且智能体的分数阶方程的阶数是相同的。然而在实际工程应用中,智能体的模型参数(包含智能体的分数阶方程的阶数)通常存在着差异,有时智能体的模型信息也是未知的。因此,考虑含有阶数差异且模型未知的分数阶多智能体系统协调追踪控制问题是十分必要的。另一方面,一些实际的协调追踪任务,如卫星的轨迹控制要求在完成任务的整个过程中一致性始终保持。然而,已有针对分数阶多智能体一致性追踪问题研究的成果都是在时间趋于某个有限值或无穷时才成立,并且不能保证一致性在整个控制过程中始终成立。如果上述这些问题不解决的话,就很难实现分数阶多智能体系统协调追踪理论的真正应用和推广。
事实上,智能体的分数阶方程的阶数差异和系统的分布式信息架构相互交织耦合,给阶数不同的分数阶多智能体系统协调追踪的分析和研究带来了困难。已有研究表明,对于传统的单个被控对象,当模型可以被表示为分数阶方程时,可以利用成熟的迭代学习理论设计控制器使得相应的闭环系统具有期望的轨迹跟踪性能。鉴于此,将传统的迭代学习控制理论及方法应用到阶数不同的分数阶多智能体系统的协调追踪控制中将会是一个可行的方案。然而,考虑到阶数不同的分数阶多智能体系统的复杂性、阶数的差异性、初始状态的偏移性、智能个体之间的信息耦合性以及所考虑的协调追踪问题的特殊性,如何应用已有的迭代学习控制理论及方法解决阶数不同的分数阶多智能体系统一致性控制问题成为控制领域的一个难题。
发明内容
本发明的目的在于针对现有技术之弊端,提供一种分数阶多智能体追踪一致性的迭代学习控制方法,以解决含有阶数差异、初始状态偏移和模型未知的分数阶多智能体系统的协调追踪控制问题。
本发明所述问题是以下述技术方案实现的:
一种分数阶多智能体追踪一致性的迭代学习控制方法,所述方法包括以下步骤:
a.将阶数不同的分数阶多智能体系统协调追踪的控制问题转化为追踪误差系统在一定时间区间内的稳定性控制问题:
由1个具有分数阶动力学的领导者和N个具有分数阶动力学但阶数不相同的跟随者组成的分数阶多智能体系统,领导者的动态模型为:
Figure BDA0001830769970000031
其中,α0∈(0,1),
Figure BDA0001830769970000032
为采用Caputo微分定义的α0阶导数,x0(t)∈Rn和y0(t)∈Rm分别为领导者在t时刻的状态和输出,R表示实数集合,n为状态向量x0(t)的维数,m为输出向量y0(t)的维数,f0(x0(t),t)是领导者的非线性动力学函数,C0(t)是具有合适维数的领导者的时变输出矩阵;
第j个跟随者的动态模型为
Figure BDA0001830769970000033
其中,αj∈(0,1),j=1,2,L,N,N为跟随者的个数,
Figure BDA0001830769970000034
为采用Caputo微分定义的αj阶导数;
xi,j(t)∈Rn和yi,j(t)∈Rm分别为第j个跟随者在第i次迭代中t时刻的状态和输出;ui,j(t)∈Rp为第j个跟随者在第i次迭代中t时刻的控制输入,f(xi,j(t),t)是第j个跟随者的非线性动力学函数,C(t)是具有合适维数的跟随者的时变输出矩阵,B(t)和D(t)是具有合适维数的时变输入矩阵;
跟随者的动态模型写成紧格式为:
Figure BDA0001830769970000035
其中,
Figure BDA0001830769970000036
F(xi(t))=[fT(xi,1(t)),fT(xi,2(t)),L,fT(xi,N(t))]T∈RnN,右上脚标“T”表示矩阵或向量的转置,
Figure BDA0001830769970000037
Figure BDA0001830769970000038
表示克罗内克积,IN表示阶数为N的单位矩阵;
本控制方法的目标是:对于不同阶数的分数阶多智能体系统,设计具有初始状态学习能力的分布式迭代学习控制器,使yi,j(t)能够跟踪到y0(t)的轨迹。定义追踪误差
ei,j(t)=y0(t)-yi,j(t),
则上述目标转化为:对于任意初始条件xi,j(0)和t∈[0,T],设计控制器使
Figure BDA0001830769970000041
成立,从而将分数阶多智能体系统协调追踪的控制问题转化为追踪误差系统在一定时间区间内的稳定性控制问题;
b.设计具有初始状态学习能力的分布式P-型迭代学习控制器:
定义信息测量函数
Figure BDA0001830769970000042
即:
Figure BDA0001830769970000043
其中,ajk是A的第(j,k)个单元,A是跟随者之间的通讯拓扑的邻接矩阵,Nj是第j个跟随者的邻居集合,如果跟随者j能够直接获得领导者的轨迹信息,那么dj=1;否则dj=0,设计分布式P-型迭代学习控制器:
Figure BDA0001830769970000044
其中Γ(t)是需要设计的迭代学习增益矩阵,初始条件的更新率设计为
xi+1,j(0)=xi,j(0)+Leei,j(0),
其中Le是需要设计的初始状态学习矩阵;
c.求解迭代学习控制器中待定的初始状态学习矩阵Le和迭代学习增益矩阵Γ(t),利用迭代学习控制器实现yi,j(t)对y0(t)的跟踪控制。
求解迭代学习控制器中待定的初始状态学习矩阵Le和迭代学习增益矩阵Γ(t)的具体方法如下:
定义第i次迭代中的两个列向量
Figure BDA0001830769970000045
ξi,j(t)的紧格式可表示为
Figure BDA0001830769970000046
其中L是跟随者之间的通讯拓扑图的拉普拉斯矩阵,
Figure BDA0001830769970000051
求解矩阵L+D′的第j个特征值λj(j=1,2,L,N),将λj(j=1,2,L,N)、C(0)和D(0)代入不等式
Figure BDA0001830769970000052
其中max(g)为取最大值函数,函数ρ(X)表示矩阵X的谱半径,Im表示阶数为m的单位矩阵,求解出Le和Γ(0)的关系式;
将λj(j=1,2,L,N)和D(t)代入不等式
Figure BDA0001830769970000053
求解出Γ(t)应该满足的条件;
综合考虑Le、Γ(0)和Γ(t)应该满足的条件,给出使不等式:
Figure BDA0001830769970000054
成立的Le、Γ(0)和Γ(t)的取值。
本发明利用已有的迭代学习控制方法解决了阶数不同的分数阶多智能体系统中初始状态偏移与模型未知同时存在情形下的协调追踪问题,所提出的迭代学习控制器不仅设计求解简单,可以抵制初始状态的偏移,而且能够保证阶数不同的分数阶多智能体系统经过一定迭代次数之后在整个运动过程中的一致性,具有很强的实用性。
附图说明
下面结合附图对本发明作进一步详述。
图1为本发明中分布式P-型迭代学习控制器的设计流程示意图;
图2为本发明中分布式迭代学习控制器作用下,阶数不同的分数阶多智能体系统实现输出一致性的框图;
图3为本发明中多智能体之间通信拓扑图;
图4为迭代学习控制器作用下一个分数阶领导者和三个分数阶跟随者的输出轨迹;
图5为分数阶跟随者的初始状态与迭代次数之间的关系;
图6为领导-跟随分数阶多智能体系统中输出的最大追踪误差与迭代次数之间的关系。
文中各符号为:αj∈(0,1),j=1,2,L,N,N为跟随者的个数,α0∈(0,1),
Figure BDA0001830769970000061
Figure BDA0001830769970000062
分别为采用Caputo微分定义的α0阶和αj阶导数,x0(t)∈Rn和y0(t)∈Rm分别为领导者在t时刻的状态和输出,R表示实数集合,n为状态向量x0(t)的维数,m为输出向量y0(t)的维数,
Figure BDA0001830769970000063
Figure BDA0001830769970000064
分别表示领导者在第i次迭代中t时刻的状态向量xi,0(t)的分量1和2,f0(x0(t),t)是领导者的非线性动力学函数,C0(t)是具有合适维数的领导者的时变输出矩阵,xi,j(t)∈Rn和yi,j(t)∈Rm分别为第j个跟随者在第i次迭代中t时刻的状态和输出,
Figure BDA0001830769970000065
Figure BDA0001830769970000066
分别表示跟随者j在第i次迭代中t时刻的状态向量xi,j(t)的分量1和2;ui,j(t)∈Rp为第j个跟随者在第i次迭代中t时刻的控制输入,f(xi,j(t),t)是第j个跟随者的非线性动力学函数,C(t)是具有合适维数的跟随者的时变输出矩阵,B(t)和D(t)是具有合适维数的时变输入矩阵,IN表示阶数为N的单位矩阵,ajk是A的第(j,k)个单元,A是跟随者之间的通讯拓扑的邻接矩阵,Nj是第j个跟随者的邻居集合,Γ(t)是需要设计的迭代学习增益矩阵,Le是需要设计的初始状态学习矩阵,L是跟随者之间的通讯拓扑图的拉普拉斯矩阵,λj(j=1,2,L,N)是矩阵L+D′的第j个特征值,max(g)为取最大值函数,函数ρ(X)表示矩阵X的谱半径,右上脚标“T”表示矩阵或向量的转置,
Figure BDA0001830769970000067
Figure BDA0001830769970000068
表示克罗内克积,||X||表示矩阵X的行和范数或向量X的最大值范数。
具体实施方式
本发明针对具有初始状态偏移、阶数差异且模型未知的分数阶多智能体系统的协调追踪控制问题,提出利用局部状态信息实现初始状态学习的迭代学习控制方法,使得阶数不同的分数阶多智能体系统能够实现输出的一致性。
如图l所示,本发明的技术解决方案是按如下步骤实现的:
1.问题转化:即将阶数不同的分数阶多智能体系统协调追踪的控制问题转化为追踪误差系统在一定时间区间内的稳定性控制问题;
2.设计具有初始状态学习能力的分布式P-型迭代学习控制器;
3.分析闭环分数阶多智能体系统实现输出一致性的整体形式的收敛条件;
4.分析闭环分数阶多智能体系统实现输出一致性的个体形式的收敛条件;
5.求解迭代学习控制器中待定的初始状态学习矩阵和迭代学习增益矩阵。
本发明有以下技术特征:
(1)步骤l中通过定义一个恰当的信息检测函数,将阶数不同的分数阶多智能体系统协调追踪的控制问题转化为追踪误差系统在一定时间区间内的稳定性控制问题。
(2)步骤2中设计的是一个具有初始状态学习能力的分布式P-型迭代学习控制器,并且控制器的设计不需要利用多智能体的模型信息。
(3)步骤3中基于压缩映射理论,利用通讯拓扑矩阵的λ范数给出能够保证闭环分数阶多智能体系统实现输出一致性的整体形式的收敛条件。
(4)步骤4中基于Schur三角化定理将个体智能体的动力学从整体智能体的动力学中解耦出来,利用通讯拓扑矩阵的特征值将整体形式的收敛条件表示为个体形式的收敛条件。
(5)步骤5中以线性矩阵不等式的形式给出迭代学习控制器中初始状态学习矩阵和迭代学习增益矩阵的计算公式,从而可以使用Matlab的LMI工具箱方便地进行矩阵求解。
本发明与现有技术相比的优点在于
(1)本发明考虑了实际应用中,阶数不同的分数阶多智能体系统中初始状态偏移与模型未知同时存在情形下的协调追踪问题,充实了迭代学习控制的研究内容,拓宽了其工程应用范围。
(2)本发明所提出的迭代学习控制器不仅设计求解简单,可以抵制初始状态的偏移,而且能够保证阶数不同的分数阶多智能体系统经过一定迭代次数之后在整个运动过程中的一致性,具有很强的实用性。
下面对本方法进行详细叙述:
由1个具有分数阶动力学的领导者和N个具有分数阶动力学但阶数不相同的跟随者组成的分数阶多智能体系统,领导者的动态模型为:
Figure BDA0001830769970000081
其中,α0∈(0,1),
Figure BDA0001830769970000082
为采用Caputo微分定义的α0阶导数。x0(t)∈Rn和y0(t)∈Rm分别为领导者在t时刻的状态和输出,f0(x0(t),t)是领导者的非线性动力学函数,其数学表达式不需要事先知道,C0(t)是具有合适维数的领导者的时变输出矩阵。
第j个跟随者的动态模型为
Figure BDA0001830769970000083
其中,αj∈(0,1),j=1,2,L,N,
Figure BDA0001830769970000084
为采用Caputo微分定义的αj阶导数。
xi,j(t)∈Rn和yi,j(t)∈Rm分别为第j个跟随者在第i次迭代中t时刻的状态和输出,ui,j(t)∈Rp为第j个跟随者在第i次迭代中t时刻的控制输入,f(xi,j(t),t)是第j个跟随者的非线性动力学函数,其数学表达式不需要事先知道。C(t)是具有合适维数的跟随者的时变输出矩阵,B(t)和D(t)是具有合适维数的时变输入矩阵。
跟随者的动态模型(2)写成紧格式为
Figure BDA0001830769970000085
其中,
Figure BDA0001830769970000086
F(xi(t))=[fT(xi,1(t)),fT(xi,2(t)),L,fT(xi,N(t))]T∈RnN,右上脚标“T”表示矩阵或向量的转置。
Figure BDA0001830769970000087
Figure BDA0001830769970000088
表示克罗内克积,IN表示阶数为N的单位矩阵。
本发明的目标是:对于不同阶数的分数阶多智能体系统(2),设计具有初始状态学习能力的分布式迭代学习控制器,使系统(2)的输出能够跟踪到系统(1)的输出轨迹。参照图l,本发明的具体实现过程如下:
步骤1:问题转化
定义追踪误差
ei,j(t)=y0(t)-yi,j(t), (4)
那么本发明的目的为:对于任意初始条件xi,j(0)和t∈[0,T],设计控制器使
Figure BDA0001830769970000091
成立。这样,就将分数阶多智能体系统协调追踪的控制问题转化为追踪误差系统在时间区间t∈[0,T]内的稳定性控制问题。
步骤2:具有初始状态学习能力的分布式P-型迭代学习控制器的设计
定义信息测量函数
Figure BDA0001830769970000092
其中,ajk是A的第(j,k)个单元,A是跟随者之间的通讯拓扑的邻接矩阵。Nj是第j个跟随者的邻居集合。如果跟随者j能够直接获得领导者的轨迹信息,那么dj=1;否则dj=0。
利用追踪误差(4),(5)式可以写成
Figure BDA0001830769970000093
基于(6),设计分布式P-型迭代学习控制器
Figure BDA0001830769970000094
其中Γ(t)是需要设计的迭代学习增益矩阵。控制器(7)只依赖于系统(1)和(2)的输入和输出信息,不包含系统(1)和(2)的模型信息,因此控制器(7)是无模型控制器。
初始条件的更新率设计为
xi+1,j(0)=xi,j(0)+Leei,j(0), (8)
其中Le是需要设计的初始状态学习矩阵。
步骤3:闭环分数阶多智能体系统实现输出一致性的整体形式的收敛条件分析
定义第i次迭代中的两个列向量
Figure BDA0001830769970000101
ξi,j(t)的紧格式可写为
Figure BDA0001830769970000102
其中L是跟随者之间的通讯拓扑图的拉普拉斯矩阵,
Figure BDA0001830769970000103
利用(9)和(10),(7)可以写成
Figure BDA0001830769970000104
将(11)代入(2)并利用(5)可以得到
Figure BDA0001830769970000105
基于(12)可以得到闭环分数阶多智能体系统在初始时刻能够实现输出一致性的条件:
对于给定的领导-跟随分数阶多智能体系统(1)和(2),如果
Figure BDA0001830769970000106
成立,其中||X||表示矩阵X的行和范数或向量X的最大值范数,那么具有初始状态学习更新率(8)的分布式P-型迭代学习控制器(7)能够保证
Figure BDA0001830769970000107
基于(12)和(13),也可以得到闭环分数阶多智能体系统在t∈(0,T]上协调追踪一致性的收敛条件与控制器的设计准则:
对于给定的领导-跟随分数阶多智能体系统(1)和(2),如果
Figure BDA0001830769970000108
成立,其中max(g)为取最大值函数,那么对于t∈(0,T]和初始输入u0(t)=0,具有初始状态学习更新率(8)的P-型迭代学习控制器(7)能够保证
Figure BDA0001830769970000109
综合(13)和(14)得到闭环分数阶多智能体系统实现输出一致性的整体形式的收敛条件为
Figure BDA0001830769970000111
步骤4:闭环分数阶多智能体系统实现输出一致性的个体形式的收敛条件分析
基于Schur三角化定理,利用通讯拓扑矩阵的特征值可以将整体形式的收敛条件(13)和(14)分别表示为个体形式的收敛条件(16)和(17)
Figure BDA0001830769970000112
Figure BDA0001830769970000113
其中λj(j=1,2,L,N)为矩阵L+D′的第j个特征值,函数ρ(X)表示矩阵X的谱半径。
综合(16)和(17)得到闭环分数阶多智能体系统实现输出一致性的个体形式的收敛条件为
Figure BDA0001830769970000114
步骤5:初始状态学习矩阵和迭代学习增益矩阵的求解
求解矩阵L+D′的特征值λj(j=1,2,L,N)。将λj(j=1,2,L,N)、C(0)和D(0)代入不等式(16)求解出Le和Γ(0)的关系式。将λj(j=1,2,L,N)和D(t)代入不等式(17)求解出Γ(t)应该满足的条件。
综合考虑Le、Γ(0)和Γ(t)应该满足的条件,给出使不等式(15)和(16)同时成立的Le、Γ(0)和Γ(t)的取值,从而得到满足不等式(18)的取值条件。
本发明的效果可以通过以下仿真进一步说明:
仿真内容:令t∈[0,10],考虑由一个分数阶领导者和三个分数阶跟随者组成的领导-跟随分数阶多智能体系统,其中领导者的方程为
Figure BDA0001830769970000115
其中α0=0.8,
Figure BDA0001830769970000116
Figure BDA0001830769970000117
分别表示领导者在第i次迭代中t时刻的状态向量xi,0(t)的分量1和2。
跟随者的方程为
Figure BDA0001830769970000121
其中(α123)=(0.97,0.7,0.95),
Figure BDA0001830769970000122
Figure BDA0001830769970000123
分别表示跟随者j在第i次迭代中t时刻的状态向量xi,j(t)的分量1和2。
图1为本发明中分布式P-型迭代学习控制器的设计流程示意图,图2描述了在分布式迭代学习控制器作用下,阶数不同的分数阶多智能体系统实现输出一致性的框图,图3描述了网络智能体之间的通信拓扑图。由图3可知,
Figure BDA0001830769970000124
因此,L+D′的特征值为0.382,1和2.618。令
Figure BDA0001830769970000125
由(20)知C(0)=[0.2,0.1],D(0)=[0.5,0.1]。验证收敛条件(16),得
Figure BDA0001830769970000126
验证收敛条件(17),得
Figure BDA0001830769970000127
因此,
Figure BDA0001830769970000128
收敛条件(18)被满足,在具有初始状态学习率(8)的控制器(7)的作用下能够实现跟随者(20)对领导者(19)的输出轨迹追踪。图4描述了分数阶领导者和所有分数阶跟随者在不同迭代次数时的轨迹,其中(a)、(b)和(c)分别为第4次迭代、第6次迭代和第10次迭代的仿真结果。图5描述了分数阶跟随者的初始状态与迭代次数之间的关系。图6描述了领导-跟随分数阶多智能体系统中输出的最大追踪误差与迭代次数之间的关系。由图4、5和6可以看出,本发明中提出的分布式迭代学习控制器具有初始状态学习能力,能够抵制初始状态的偏移,控制阶数不同的分数阶多智能体系统实现输出一致性。

Claims (2)

1.一种分数阶多智能体追踪一致性的迭代学习控制方法,其特征是,所述方法包括以下步骤:
a.将阶数不同的分数阶多智能体系统协调追踪的控制问题转化为追踪误差系统在一定时间区间内的稳定性控制问题:
由1个具有分数阶动力学的领导者和N个具有分数阶动力学但阶数不相同的跟随者组成的分数阶多智能体系统,领导者的动态模型为:
Figure FDA0001830769960000011
其中,α0∈(0,1),
Figure FDA0001830769960000012
为采用Caputo微分定义的α0阶导数,x0(t)∈Rn和y0(t)∈Rm分别为领导者在t时刻的状态和输出,R表示实数集合,n为状态向量x0(t)的维数,m为输出向量y0(t)的维数,f0(x0(t),t)是领导者的非线性动力学函数,C0(t)是具有合适维数的领导者的时变输出矩阵;
第j个跟随者的动态模型为
Figure FDA0001830769960000013
其中,αj∈(0,1),j=1,2,L,N,N为跟随者的个数,
Figure FDA0001830769960000014
为采用Caputo微分定义的αj阶导数;
xi,j(t)∈Rn和yi,j(t)∈Rm分别为第j个跟随者在第i次迭代中t时刻的状态和输出;ui,j(t)∈Rp为第j个跟随者在第i次迭代中t时刻的控制输入,f(xi,j(t),t)是第j个跟随者的非线性动力学函数,C(t)是具有合适维数的跟随者的时变输出矩阵,B(t)和D(t)是具有合适维数的时变输入矩阵;
跟随者的动态模型写成紧格式为:
Figure FDA0001830769960000015
其中,
Figure FDA0001830769960000021
F(xi(t))=[fT(xi,1(t)),fT(xi,2(t)),L,fT(xi,N(t))]T∈RnN,右上脚标“T”表示矩阵或向量的转置,
Figure FDA0001830769960000022
Figure FDA0001830769960000023
表示克罗内克积,IN表示阶数为N的单位矩阵;
本控制方法的目标是:对于不同阶数的分数阶多智能体系统,设计具有初始状态学习能力的分布式迭代学习控制器,使yi,j(t)能够跟踪到y0(t)的轨迹,定义追踪误差
ei,j(t)=y0(t)-yi,j(t),
则上述目标转化为:对于任意初始条件xi,j(0)和t∈[0,T],设计控制器使
Figure FDA0001830769960000024
j=1,2,…,N成立,从而将分数阶多智能体系统协调追踪的控制问题转化为追踪误差系统在时间区间t∈[0,T]内的稳定性控制问题;
b.设计具有初始状态学习能力的分布式P-型迭代学习控制器:
定义信息测量函数
Figure FDA0001830769960000025
即:
Figure FDA0001830769960000026
其中,ajk是A的第(j,k)个单元,A是跟随者之间的通讯拓扑的邻接矩阵,Nj是第j个跟随者的邻居集合,如果跟随者j能够直接获得领导者的轨迹信息,那么dj=1;否则dj=0,设计分布式P-型迭代学习控制器:
Figure FDA0001830769960000027
其中Γ(t)是需要设计的迭代学习增益矩阵,初始条件的更新率设计为
xi+1,j(0)=xi,j(0)+Leei,j(0),
其中Le是需要设计的初始状态学习矩阵;
c.求解迭代学习控制器中待定的初始状态学习矩阵Le和迭代学习增益矩阵Γ(t),利用迭代学习控制器实现yi,j(t)对y0(t)的跟踪控制。
2.根据权利要求1所述的一种分数阶多智能体追踪一致性的迭代学习控制方法,其特征是,求解迭代学习控制器中待定的初始状态学习矩阵Le和迭代学习增益矩阵Γ(t)的具体方法如下:
定义第i次迭代中的两个列向量
Figure FDA0001830769960000031
ξi,j(t)的紧格式可写为:
Figure FDA0001830769960000032
其中L是跟随者之间的通讯拓扑图的拉普拉斯矩阵,
Figure FDA0001830769960000033
求解矩阵L+D′的第j个特征值λj(j=1,2,L,N),将λj(j=1,2,L,N)、C(0)和D(0)代入不等式
Figure FDA0001830769960000034
其中max(g)为取最大值函数,函数ρ(X)表示矩阵X的谱半径,Im表示阶数为m的单位矩阵,求解出Le和Γ(0)的关系式;
将λj(j=1,2,L,N)和D(t)代入不等式
Figure FDA0001830769960000035
求解出Γ(t)应该满足的条件;
综合考虑Le、Γ(0)和Γ(t)应该满足的条件,给出使不等式:
Figure FDA0001830769960000036
成立的Le、Γ(0)和Γ(t)的取值。
CN201811204100.0A 2018-10-16 2018-10-16 分数阶多智能体追踪一致性的迭代学习控制方法 Active CN109031958B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811204100.0A CN109031958B (zh) 2018-10-16 2018-10-16 分数阶多智能体追踪一致性的迭代学习控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811204100.0A CN109031958B (zh) 2018-10-16 2018-10-16 分数阶多智能体追踪一致性的迭代学习控制方法

Publications (2)

Publication Number Publication Date
CN109031958A CN109031958A (zh) 2018-12-18
CN109031958B true CN109031958B (zh) 2021-07-27

Family

ID=64613345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811204100.0A Active CN109031958B (zh) 2018-10-16 2018-10-16 分数阶多智能体追踪一致性的迭代学习控制方法

Country Status (1)

Country Link
CN (1) CN109031958B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110032066B (zh) * 2019-01-10 2022-10-18 廊坊师范学院 分数阶非线性系统轨迹跟踪的自适应迭代学习控制方法
CN110109351B (zh) * 2019-04-08 2021-05-18 广东工业大学 一种基于指定性能的多智能体一致性控制方法
CN110083066A (zh) * 2019-05-22 2019-08-02 杭州电子科技大学 多智能体系统的分数阶迭代控制方法
CN110262240B (zh) * 2019-06-27 2022-06-21 哈尔滨工业大学 分体式制导的导引律设计方法
CN110376889B (zh) * 2019-07-12 2022-03-01 哈尔滨理工大学 具有时变时滞的异构网络化多智能体系统分组一致的方法
CN110376901B (zh) * 2019-08-19 2022-09-02 哈尔滨工业大学(深圳) 一种基于动态控制器的迭代学习控制方法
CN110716582B (zh) * 2019-10-16 2023-01-17 东南大学 适用于通信受间歇DoS攻击下的多智能体一致性跟踪协议设计方法
CN112318505B (zh) * 2020-10-28 2021-11-16 江南大学 一种移动机器人变批次长度迭代学习优化控制方法
CN112526886A (zh) * 2020-12-08 2021-03-19 北京航空航天大学 随机试验长度下离散多智能体系统迭代学习编队控制方法
CN114648148A (zh) * 2020-12-18 2022-06-21 广东博智林机器人有限公司 机器人的参数预测方法、装置、存储介质和处理器
CN113325719B (zh) * 2021-06-16 2022-04-01 江南大学 时变时滞多智能体的分布式脉冲一致性控制方法及系统
CN113341726B (zh) * 2021-06-18 2022-05-27 江南大学 一种多质点车辆队列行驶系统的迭代学习控制方法
CN117687345B (zh) * 2024-02-01 2024-05-14 北京中关村实验室 多智能体系统的控制方法及相关产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869698A (zh) * 2012-12-18 2014-06-18 江南大学 多智能体系统一致性的采样控制方法
CN105467981A (zh) * 2015-12-24 2016-04-06 中南大学 一种针对多个智能体的编队方法以及装置
CN108267957A (zh) * 2018-01-23 2018-07-10 廊坊师范学院 一种分数阶区间多智能体系统鲁棒输出一致性的控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869698A (zh) * 2012-12-18 2014-06-18 江南大学 多智能体系统一致性的采样控制方法
CN105467981A (zh) * 2015-12-24 2016-04-06 中南大学 一种针对多个智能体的编队方法以及装置
CN108267957A (zh) * 2018-01-23 2018-07-10 廊坊师范学院 一种分数阶区间多智能体系统鲁棒输出一致性的控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Leader-following consensus for a class of fractional-order;Min Shi等;《Proceedings of the 36th Chinese Control Conference》;20170728;全文 *
Observer Design for Tracking Consensus in Second-Order;Wenwu Yu等;《IEEE TRANSACTIONS ON AUTOMATIC CONTROL》;20170228;全文 *
分数阶不确定多智能体系统的鲁棒一致性控制;吴忠强等;《电机与控制学报》;20130430;全文 *

Also Published As

Publication number Publication date
CN109031958A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
CN109031958B (zh) 分数阶多智能体追踪一致性的迭代学习控制方法
CN110456807B (zh) 一种多航天器一致性动态增益控制方法
Li et al. Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems
Wang et al. Distributed RHC for tracking and formation of nonholonomic multi-vehicle systems
Meng et al. Adaptive neural control of high-order uncertain nonaffine systems: A transformation to affine systems approach
CN108828949A (zh) 一种基于自适应动态规划的分布式最优协同容错控制方法
Chang et al. Adaptive control of hypersonic vehicles based on characteristic models with fuzzy neural network estimators
Shaked et al. A new bounded real lemma representation for the continuous-time case
CN108267957B (zh) 一种分数阶区间多智能体系统鲁棒输出一致性的控制方法
CN114841074A (zh) 基于状态观测与经验池的非线性多智能体一致性方法
Wu et al. LPV-based self-adaption integral sliding mode controller with $ L_ {2} $ gain performance for a morphing aircraft
Chen et al. Intelligent warehouse robot path planning based on improved ant colony algorithm
Wang et al. Distributed adaptive robust H∞ control of intelligent‐connected electric vehicles platooning subject to communication delay
Sun et al. Optimal tracking control of switched systems applied in grid-connected hybrid generation using reinforcement learning
Lv et al. Fast nonsingular fixed-time fuzzy fault-tolerant control for HFVs with guaranteed time-varying flight state constraints
Zhang et al. Decentralised adaptive control of a class of hidden leader–follower non‐linearly parameterised coupled MASs
CN113485110A (zh) 一种输出受限非线性系统分布式自适应最优协同控制方法
Panagou et al. Control design for a class of nonholonomic systems via reference vector fields and output regulation
CN110032066B (zh) 分数阶非线性系统轨迹跟踪的自适应迭代学习控制方法
Li et al. Adaptive finite-time neural control for a class of stochastic nonlinear systems with known hysteresis
He et al. Distributed consensus control of an interconnected leader-follower multiagent system under switching network
Wu et al. A coordinated tracking control of multi-agent systems using data-driven methods
CN114114904B (zh) 一种有限时间和固定时间分布式事件触发一致性方法
Liu et al. Three-Dimensional Trajectory Optimization Design of Parafoil System Obstacle Avoidance Based on Switched System Method
CN116610032A (zh) 基于干扰观测器的高阶异质多智能体系统分布式优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240116

Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Dragon totem Technology (Hefei) Co.,Ltd.

Address before: 065000 AI min Xi Road, Langfang, Hebei Province, No. 100

Patentee before: LANGFANG TEACHERS' College

TR01 Transfer of patent right