CN109031841B - Flexible laminated structure and display - Google Patents

Flexible laminated structure and display Download PDF

Info

Publication number
CN109031841B
CN109031841B CN201710430939.5A CN201710430939A CN109031841B CN 109031841 B CN109031841 B CN 109031841B CN 201710430939 A CN201710430939 A CN 201710430939A CN 109031841 B CN109031841 B CN 109031841B
Authority
CN
China
Prior art keywords
patterned
passivation layer
layer
width
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710430939.5A
Other languages
Chinese (zh)
Other versions
CN109031841A (en
Inventor
林冠峄
陈昱文
洪裕杰
卢俊宇
叶佳俊
林益生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E Ink Holdings Inc
Original Assignee
E Ink Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Ink Holdings Inc filed Critical E Ink Holdings Inc
Priority to CN201710430939.5A priority Critical patent/CN109031841B/en
Publication of CN109031841A publication Critical patent/CN109031841A/en
Application granted granted Critical
Publication of CN109031841B publication Critical patent/CN109031841B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film

Abstract

The invention provides a flexible laminated structure and a display. The flexible laminated structure comprises a first protective layer, a plurality of patterned structures and a second protective layer. The patterning structure is arranged on the first protective layer and exposes a part of the first protective layer. Each patterned structure has a first width adjacent to the first passivation layer that is smaller than a second width away from the first passivation layer. The second protection layer is configured on the first protection layer and covers the patterning structure and the first protection layer.

Description

Flexible laminated structure and display
Technical Field
The present invention relates to a flexible laminated structure and a display, and more particularly, to a flexible laminated structure and a display including the same.
Background
Generally, a flexible display panel of a flexible display device is provided with a plurality of stacked insulating material layers, wherein the insulating material layers are mainly formed by stacking organic material layers and inorganic material layers, so as to protect components on the flexible display panel from being attacked by external moisture and oxygen. However, the organic material layer and the inorganic material layer are different in material characteristics, and thus poor adhesion is likely to occur at the interface between the organic material layer and the inorganic material layer. Therefore, when the flexible display is flexed, peeling (peeling) is easily generated between the organic material layer and the inorganic material layer, which further affects the structural reliability of the display.
Disclosure of Invention
The present invention is directed to a flexible stacked structure, which helps to enhance the structural reliability of the display.
According to an embodiment of the invention, the flexible laminated structure includes a first passivation layer, a plurality of patterned structures, and a second passivation layer. The patterning structures are arranged on the first protection layer and expose part of the first protection layer, wherein a first width of each patterning structure adjacent to the first protection layer is smaller than a second width far away from the first protection layer. The second protection layer is configured on the first protection layer and covers the patterning structure and the first protection layer.
In an embodiment of the invention, each of the patterning structures includes a first patterning structure and a second patterning structure. The first pattern structure is located between the second pattern structure and the first protection layer. The first pattern structure has a first width, and the second pattern structure has a second width.
In an embodiment of the invention, the material of the first pattern structure is silicon oxide, and the material of the second pattern structure is silicon nitride.
In an embodiment of the invention, a material of each of the patterned structures is silicon oxynitride, and an oxygen content of the silicon oxynitride gradually decreases from a side adjacent to the first protection layer to another side away from the first protection layer.
In an embodiment of the invention, a material of each of the patterned structures is silicon oxynitride, and a nitrogen content in the silicon oxynitride gradually decreases from a side adjacent to the first protection layer to another side away from the first protection layer.
According to an embodiment of the invention, a display includes a flexible display unit and a flexible stacked structure. The flexible laminated structure is arranged on the flexible display unit. The flexible laminated structure comprises a first protective layer, a plurality of patterned structures and a second protective layer. The patterning structures are arranged on the first protection layer and expose part of the first protection layer, wherein a first width of each patterning structure adjacent to the first protection layer is smaller than a second width far away from the first protection layer. The second protection layer is configured on the first protection layer and covers the patterning structure and the first protection layer.
In an embodiment of the invention, each of the patterning structures includes a first patterning structure and a second patterning structure. The first pattern structure is located between the second pattern structure and the first protection layer. The first pattern structure has a first width, and the second pattern structure has a second width.
In an embodiment of the invention, the material of the first pattern structure is silicon oxide, and the material of the second pattern structure is silicon nitride.
In an embodiment of the invention, a material of each of the patterned structures is silicon oxynitride, and an oxygen content of the silicon oxynitride gradually decreases from a side adjacent to the first protection layer to another side away from the first protection layer.
In an embodiment of the invention, a material of each of the patterned structures is silicon oxynitride, and a nitrogen content in the silicon oxynitride gradually decreases from a side adjacent to the first protection layer to another side away from the first protection layer.
In an embodiment of the invention, the flexible display unit is an electrophoretic display panel.
Through the technical scheme, the flexible laminated structure and the display at least have the following advantages: in view of the above, since the flexible stacked structure of the invention has the patterned structures, a first width of each patterned structure adjacent to the first passivation layer is smaller than a second width of each patterned structure away from the first passivation layer, so that the adhesion between the second passivation layer and the first passivation layer can be increased, and the peeling phenomenon can be reduced. In addition, the display of the invention comprises the flexible laminated structure, so the display has better structural reliability.
The foregoing description is only an overview of the technical solutions of the present invention, and in order to make the technical means of the present invention more clearly understood, the present invention may be implemented in accordance with the content of the description, and in order to make the above and other objects, features, and advantages of the present invention more clearly understood, the following preferred embodiments are described in detail with reference to the accompanying drawings.
Drawings
FIG. 1 is a schematic partial cross-sectional view of a display according to an embodiment of the present invention;
FIG. 2 is a schematic partial cross-sectional view of a flexible laminate structure according to an embodiment of the invention;
fig. 3 is a schematic partial cross-sectional view of a flexible laminated structure according to another embodiment of the invention.
Description of the reference numerals
100: a display;
200. 200A, 200B: a flexible laminated structure;
210: a first protective layer;
220. 220A, 220B: patterning the structure;
222: a first pattern structure;
224: a second pattern structure;
230: a second protective layer;
300: a flexible display unit;
w1, W1A, W1B: a first width;
w2, W2A, W2B: a second width.
Detailed Description
To further illustrate the technical means and effects of the present invention adopted to achieve the predetermined objects, the following detailed description of the flexible laminated structure and the display device according to the present invention with reference to the accompanying drawings and preferred embodiments will be made as follows.
Fig. 1 is a partial cross-sectional view of a display according to an embodiment of the invention. Referring to fig. 1, the display 100 of the present embodiment includes a flexible stacked structure 200 and a flexible display unit 300, wherein the flexible stacked structure 200 is disposed on the flexible display unit 300. Here, the flexible display unit 300 is, for example, an electrophoretic display panel, but not limited thereto.
In detail, the flexible stacked structure 200 of the display 100 of the present embodiment includes a first passivation layer 210, a plurality of patterned structures 220, and a second passivation layer 230. The first passivation layer 210 is disposed on the flexible display unit 300 and directly contacts the surface of the flexible display unit 300. The patterned structures 220 are disposed on the first passivation layer 210 and expose a portion of the first passivation layer 210, wherein a first width W1 of each patterned structure 220 adjacent to the first passivation layer 210 is smaller than a second width W2 of each patterned structure 220 away from the first passivation layer 210. The second passivation layer 230 is disposed on the first passivation layer 210, and covers the patterned structure 220 and the first passivation layer 210.
Referring to fig. 1 again, the material of the first passivation layer 210 of the present embodiment is, for example, silicon nitride, but not limited thereto. The patterned structure 220 includes a first patterned structure 222 and a second patterned structure 224, wherein the first patterned structure 222 is located between the second patterned structure 224 and the first passivation layer 210, and the first patterned structure 222 has a first width W1, and the second patterned structure 224 has a second width W2. Here, the material of the first pattern structure 222 is, for example, silicon oxide, and the material of the second pattern structure 224 is, for example, silicon nitride.
In the manufacturing process, first, a silicon oxide layer (not shown) is deposited on the first passivation layer 210, wherein the silicon oxide layer completely covers the first passivation layer 210. Next, a silicon nitride layer (not shown) is deposited, wherein the silicon nitride layer completely covers the silicon oxide layer, and the silicon oxide layer is located between the silicon nitride layer and the first protection layer 210. Then, the silicon nitride layer is etched by dry etching to form a patterned silicon nitride layer. And finally, etching the silicon oxide layer below the patterned silicon nitride layer by using the patterned silicon nitride layer as an etching mask in a wet etching mode to form the patterned silicon oxide layer. Here, the patterned silicon nitride layer and the patterned silicon oxide layer define a plurality of patterned structures 220 separated from each other, and each of the patterned structures 220 is composed of a first patterned structure 222 (defined by the patterned silicon oxide layer) having a first width W1 and a second patterned structure 224 (defined by the patterned silicon nitride layer) having a second width W2. Since the first pattern structure 222 and the second pattern structure 224 are formed of different materials and different etching methods, the first width W1 is different from the second width W2. Here, the first width W1 is smaller than the second width W2, but not limited thereto.
Since each of the patterned structures 220 includes the first patterned structure 222 and the second patterned structure 224 with different widths, and the first width W1 of the first patterned structure 222 is smaller than the second width W2 of the second patterned structure 224, the cross-section of each of the patterned structures 220 can have an undercut (undercut) shape, such as a T-shape, as shown in fig. 1, but not limited thereto. By the structural features of the patterned structures 220, the contact area between the second passivation layer 230 and each patterned structure 220 can be increased, thereby enhancing the adhesion between the second passivation layer 230 and the first passivation layer 210. Therefore, when the display 100 of the present embodiment is flexed, the second passivation layer 230 and the first passivation layer 210 in the flexible stacked structure 200 are not easily separated from each other, thereby reducing the peeling phenomenon. In short, the display 100 of the present embodiment has better structural reliability.
It should be noted that the following embodiments follow the reference numerals and parts of the contents of the foregoing embodiments, wherein the same reference numerals are used to indicate the same or similar components, and the description of the same technical contents is omitted. For the description of the omitted parts, reference may be made to the foregoing embodiments, and the following embodiments will not be repeated.
Fig. 2 is a schematic partial cross-sectional view illustrating a flexible laminated structure according to an embodiment of the invention. Referring to fig. 1 and fig. 2, the flexible laminated structure 200A of the present embodiment is similar to the flexible laminated structure 200 of fig. 1, but the two main differences are: the material of each patterned structure 220A of the flexible laminated structure 200A of the present embodiment is silicon oxynitride, wherein the oxygen content in the silicon oxynitride gradually decreases from one side adjacent to the first passivation layer 210 to the other side away from the first passivation layer 210. That is, the patterned structure 220A of the present embodiment is a graded material structure.
In the process, a layer of silicon oxynitride is first deposited on the first passivation layer 210 of the flexible stacked structure 200A of the present embodiment, wherein the oxygen content in the silicon oxynitride gradually decreases from one side adjacent to the first passivation layer 210 to the other side away from the first passivation layer 210. Then, an etching process is performed on the silicon oxynitride by wet etching, wherein the etching rate of the silicon oxynitride on the side with a higher oxygen content is greater than that on the side with a lower oxygen content. Therefore, each patterned structure 220A is formed with a first width W1A adjacent to the first protection layer 210 that is smaller than a second width W2A away from the first protection layer 210. Here, the width of each patterned structure 220A is gradually reduced from the second width W2A to the first width W1A in a direction away from the first passivation layer 210 and toward the first passivation layer 210, so that the cross section of each patterned structure 220A can have an undercut shape similar to an inverted trapezoid, for example, but not limited thereto.
Fig. 3 is a schematic partial cross-sectional view of a flexible laminated structure according to another embodiment of the invention. Referring to fig. 2 and fig. 3, the flexible laminated structure 200B of the present embodiment is similar to the flexible laminated structure 200A of fig. 3, but the two main differences are: in the flexible laminated structure 200B of the present embodiment, each patterned structure 220B is made of silicon oxynitride, wherein the nitrogen content in the silicon oxynitride gradually decreases from one side adjacent to the first passivation layer 210 to the other side away from the first passivation layer 210. That is, the patterned structure 220B of the present embodiment belongs to a graded material structure.
In the process, a layer of silicon oxynitride is first deposited on the first passivation layer 210 of the flexible stacked structure 200B of the present embodiment, wherein the nitrogen content in the silicon oxynitride gradually decreases from one side adjacent to the first passivation layer 210 to the other side away from the first passivation layer 210. Then, an etching process is performed on the silicon oxynitride by dry etching, wherein the etching rate of the silicon oxynitride on the side with the higher nitrogen content is greater than that on the side with the lower nitrogen content. Therefore, each patterned structure 220B is formed with a first width W1B adjacent to the first protection layer 210 smaller than a second width W2B away from the first protection layer 210. Here, the width of each patterned structure 220B is gradually reduced from the second width W2B to the first width W1B in a direction away from the first passivation layer 210 and toward the first passivation layer 210, so that the cross section of each patterned structure 220B can have an undercut shape similar to an inverted trapezoid, for example, but not limited thereto.
Since the first widths W1A, W1B of each patterned structure 220A, 220B are smaller than the second widths W2A, W2B, the cross-sectional shape of each patterned structure 220A, 220B is an undercut shape with an inverted trapezoid, which increases the contact area between the second passivation layer 230 and each patterned structure 220A, 220B. In particular, when the second passivation layer 230 covers and directly contacts the patterned structures 220A and 220B and the exposed portion of the first passivation layer 210, the adhesion between the second passivation layer 230 and the first passivation layer 210 can be enhanced, thereby increasing the structural reliability of the flexible laminated structure 200A and 200B.
It should be noted that the present invention is not limited to the structural form of the flexible stacked structures 200, 200A, and 200B, as long as the patterned structures 220, 220A, and 220B of the flexible stacked structures 200, 200A, and 200B have a smaller first width W1, W1A, W1B adjacent to the first passivation layer 210 than a second width W2, W2A, W2B away from the first passivation layer 210, and all fall within the protection scope of the present invention.
In summary, since the flexible stacked structure of the invention has the patterned structures, a first width of each patterned structure adjacent to the first passivation layer is smaller than a second width of each patterned structure away from the first passivation layer, so that the adhesion between the second passivation layer and the first passivation layer can be increased to reduce the peeling phenomenon. In addition, the display provided by the invention comprises the flexible laminated structure and has better structural reliability.
Although the present invention has been described with reference to the preferred embodiments, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (9)

1. A flexible laminate structure, comprising:
a first protective layer;
a plurality of patterned structures disposed on the first passivation layer and exposing a portion of the first passivation layer, wherein a first width of each of the plurality of patterned structures adjacent to the first passivation layer is smaller than a second width of each of the plurality of patterned structures away from the first passivation layer; and
a second passivation layer disposed on the first passivation layer and covering the plurality of patterned structures and the first passivation layer, wherein each of the plurality of patterned structures includes a first patterned structure and a second patterned structure, the first patterned structure is located between the second patterned structure and the first passivation layer, the first patterned structure has the first width, the second patterned structure has the second width, and a material of the first patterned structure is different from a material of the second patterned structure.
2. The flexible laminate structure of claim 1, wherein the material of the first pattern structure is silicon oxide and the material of the second pattern structure is silicon nitride.
3. The flexible laminated structure of claim 1, wherein each of the plurality of patterned structures is made of silicon oxynitride, and the oxygen content in the silicon oxynitride gradually decreases from a side adjacent to the first passivation layer to another side away from the first passivation layer.
4. The flexible laminate structure of claim 1, wherein each of the plurality of patterned structures is made of silicon oxynitride, and the nitrogen content in the silicon oxynitride gradually decreases from a side adjacent to the first passivation layer to another side away from the first passivation layer.
5. A display, comprising:
a flexible display unit; and
a flexible laminate structure disposed on the flexible display unit, the flexible laminate structure comprising:
a first protective layer;
a plurality of patterned structures disposed on the first passivation layer and exposing a portion of the first passivation layer, wherein a first width of each of the plurality of patterned structures adjacent to the first passivation layer is smaller than a second width of each of the plurality of patterned structures away from the first passivation layer; and
a second passivation layer disposed on the first passivation layer and covering the plurality of patterned structures and the first passivation layer, wherein each of the plurality of patterned structures includes a first patterned structure and a second patterned structure, the first patterned structure is located between the second patterned structure and the first passivation layer, the first patterned structure has the first width, the second patterned structure has the second width, and a material of the first patterned structure is different from a material of the second patterned structure.
6. The device as claimed in claim 5, wherein the material of the first pattern structure is silicon oxide and the material of the second pattern structure is silicon nitride.
7. The display of claim 5, wherein the material of each of the plurality of patterned structures is silicon oxynitride, and the oxygen content of the silicon oxynitride gradually decreases from a side adjacent to the first protection layer to another side away from the first protection layer.
8. The display of claim 5, wherein the material of each of the plurality of patterned structures is SiON, and the nitrogen content of the SiON gradually decreases from a side adjacent to the first protection layer to another side away from the first protection layer.
9. The display of claim 5, wherein the flexible display unit is an electrophoretic display panel.
CN201710430939.5A 2017-06-09 2017-06-09 Flexible laminated structure and display Active CN109031841B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710430939.5A CN109031841B (en) 2017-06-09 2017-06-09 Flexible laminated structure and display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710430939.5A CN109031841B (en) 2017-06-09 2017-06-09 Flexible laminated structure and display

Publications (2)

Publication Number Publication Date
CN109031841A CN109031841A (en) 2018-12-18
CN109031841B true CN109031841B (en) 2022-01-25

Family

ID=64628728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710430939.5A Active CN109031841B (en) 2017-06-09 2017-06-09 Flexible laminated structure and display

Country Status (1)

Country Link
CN (1) CN109031841B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201302480A (en) * 2011-07-14 2013-01-16 Taiwan Paiho Ltd Mechanical surface bonding fastener
CN203440763U (en) * 2013-09-15 2014-02-19 杜贵金 Novel highway acoustic panel
CN106129088A (en) * 2016-07-21 2016-11-16 京东方科技集团股份有限公司 A kind of display floater and preparation method, display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403999B (en) * 2010-03-23 2013-08-01 Au Optronics Corp Package structure of flexible display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201302480A (en) * 2011-07-14 2013-01-16 Taiwan Paiho Ltd Mechanical surface bonding fastener
CN203440763U (en) * 2013-09-15 2014-02-19 杜贵金 Novel highway acoustic panel
CN106129088A (en) * 2016-07-21 2016-11-16 京东方科技集团股份有限公司 A kind of display floater and preparation method, display device

Also Published As

Publication number Publication date
CN109031841A (en) 2018-12-18

Similar Documents

Publication Publication Date Title
US10224497B2 (en) Flexible substrate and flexible display
KR102483434B1 (en) Organic light emitting display device and method of manufacturing the same
JP5074549B2 (en) Circuit board and manufacturing method thereof
KR102211863B1 (en) Touch panel and method of manufacturing a touch panel
JP2006179903A5 (en)
CN108550588A (en) The manufacturing method and display device of display panel, display panel
JP4606967B2 (en) Manufacturing method of semiconductor device
CN107507840A (en) A kind of display panel and display device
JP4751083B2 (en) Semiconductor device and manufacturing method thereof
CN114171539B (en) Array substrate and array substrate manufacturing method
CN109031841B (en) Flexible laminated structure and display
JP2017204640A5 (en)
JP4248355B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2021034388A5 (en)
TWI631393B (en) Flexible laminated structure and display
JP2007179913A (en) El device and method of manufacturing same
US8076778B2 (en) Method for preventing Al-Cu bottom damage using TiN liner
CN115275044A (en) Display panel
CN115050908B (en) Display panel and manufacturing method thereof
KR100870019B1 (en) Thin film trasistor array panel and manufacturing method thereof
TWI740162B (en) Chip package
US7851830B2 (en) Multigate Schottky diode
JP2009111073A (en) Semiconductor device
KR100599946B1 (en) Method for forming metal line of semiconductor device
KR940022703A (en) Wiring Manufacturing Method of Semiconductor Device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant