CN109023315A - 钛合金表面高结合强度热障涂层的制备方法 - Google Patents

钛合金表面高结合强度热障涂层的制备方法 Download PDF

Info

Publication number
CN109023315A
CN109023315A CN201811233238.3A CN201811233238A CN109023315A CN 109023315 A CN109023315 A CN 109023315A CN 201811233238 A CN201811233238 A CN 201811233238A CN 109023315 A CN109023315 A CN 109023315A
Authority
CN
China
Prior art keywords
coating
titanium alloy
barrier coating
bond strength
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811233238.3A
Other languages
English (en)
Inventor
李玉新
张宏建
苏科强
尉利强
白培康
刘斌
赵占勇
聂金浩
杨宜鑫
李庆伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201811233238.3A priority Critical patent/CN109023315A/zh
Publication of CN109023315A publication Critical patent/CN109023315A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种钛合金表面高结合强度热障涂层的制备方法,是利用溶胶凝胶法与激光熔覆技术相结合制备高结合强度热障涂层,具体是在钛合金基体表面预置NiCoCrAlY粉末,通过激光熔覆制备热障涂层粘结层,再采用溶胶凝胶法制备AlOOH溶胶涂覆在热障涂层粘结层表面,激光扫描AlOOH溶胶表面使其烧结,获得致密无裂纹、耐磨且与热障涂层粘结层结合强度高的Al2O3陶瓷陶瓷涂层。本发明方法制备的热障涂层组织致密无裂纹,耐磨性能良好,且与钛合金基体结合强度高。

Description

钛合金表面高结合强度热障涂层的制备方法
技术领域
本发明属于钛合金材料表面处理技术领域,具体涉及钛合金材料表面热障涂层,特别是涉及一种利用溶胶凝胶法与激光熔覆技术相结合制备高结合强度热障涂层的方法。
背景技术
钛合金具有比强度高、抗蚀性能好、高低温性能优异等优点,被广泛运用到航空航天领域,是制备航空发动机叶片的重要材料。为适应现代工业的快速发展,满足发动机的高效率、大推力、长寿命等要求,在钛合金基体上制备热障涂层,从而提高合金的高温防护性能,成为现代工业制造技术领域中的研究热点。
热障涂层一般由高隔热、抗腐蚀的陶瓷涂层与金属粘结层组成。陶瓷涂层的主要功能是在高温载荷下,减弱热量向基体传送,提高基体的抗氧化和抗腐蚀性能;金属粘结层的作用是缓解陶瓷层与基体热膨胀的不匹配,提高基体的抗高温氧化性能。
然而,陶瓷涂层与金属粘结层的热膨胀系数及弹性模量依然相差较大,在高温热循环过程中,还是容易造成陶瓷涂层的脱落。其影响因素包括机械应力、热应力、涂层内部的化学反应和腐蚀等。
大气等离子喷涂(APS)是在热障涂层制备技术中最早使用的喷涂工艺。在使用氨气作为载体的条件下,喷涂粉末被等离子体火焰迅速加热至熔融状态,喷涂在零件表面。当熔融状态的球形粉末冲击在零件表面时,零件会产生塑性形变,粉末颗粒通过这种零件的塑性变形彼此粘结附着在零件表面。但是,大气等离子喷涂的涂层粒子层间结合有限,一般层间未结合界面占总界面面积的60%以上,使得涂层表面的裂纹容易沿界面开裂,而导致涂层过早失效。
近年来发展起来的电子束物理气相沉积(EB-PVD)热障涂层是用高能电子束加热并汽化陶瓷源,使陶瓷蒸汽以原子形式沉积在基体上形成的。经过高温后续处理后,使粘结层与陶瓷层之间形成扩散,从而消除了内界面,提高了涂层的抗热疲劳性能。但是,EB-PVD的沉积速率相对APS较低,且受元素蒸汽压影响,涂层的成分控制比较困难,试样尺寸不能太大。
发明内容
本发明的目的是提供一种具有高粘结性和耐磨性的钛合金表面高结合强度热障涂层的制备方法。
本发明是利用溶胶凝胶法与激光熔覆技术相结合来制备高结合强度热障涂层的,包括在钛合金基体表面预置NiCoCrAlY粉末,通过激光熔覆制备热障涂层粘结层,采用溶胶凝胶法制备AlOOH溶胶涂覆在所述热障涂层粘结层表面,激光扫描AlOOH溶胶表面使其烧结,获得致密无裂纹、耐磨且与热障涂层粘结层结合强度高的Al2O3陶瓷涂层。
具体地,本发明所述钛合金表面高结合强度热障涂层的制备方法包括:
1)、在钛合金基体表面预置一层NiCoCrAlY粉末形成预置涂层,预热至80~100℃;
2)、控制预置涂层烧结温度为1000~1500℃,以半导体激光器连续扫描NiCoCrAlY粉末预置涂层,在钛合金基体表面制备得到热障涂层粘结层;
3)、以异丙醇铝为前驱物,蒸馏水为溶剂,硝酸为催化剂,将异丙醇铝加入蒸馏水中回流搅拌反应形成沉淀,加热除去反应产生的异丙醇,再加入硝酸溶液使沉淀物分散,于85~95℃回流搅拌老化,制备得到AlOOH溶胶;
4)、在热障涂层粘结层表面均匀涂敷AlOOH溶胶涂层,控制AlOOH溶胶涂层的烧结温度为1100~1300℃,以半导体激光器连续扫描AlOOH溶胶涂层,使AlOOH溶胶烧结制备得到Al2O3陶瓷涂层。
利用半导体激光器的温度控制系统,控制AlOOH溶胶涂层的烧结温度为1100~1300℃,所生成的Al2O3陶瓷涂层致密无孔洞,可以阻碍氧气和腐蚀气体等分子进入粘结层破坏其粘结强度。
本发明上述方法中,所述钛合金基体表面预置涂层的厚度优选为1~2mm;热障涂层粘结层表面AlOOH溶胶涂层的厚度优选为2~3mm。
进一步地,优选使用细度200~400目的NiCoCrAlY粉末作为预置涂层。
进而,所述回流搅拌老化中优选使用质量浓度为55~65%的硝酸溶液,所述老化时间优选为24~48h。反应过程中的机械搅拌能够提高水解速度,可以获得透明稳定的AlOOH溶胶。
本发明所制备AlOOH溶胶的粘度为16.8~45.0mPa•s。
更进一步地,本发明形成热障涂层粘结层的激光熔覆条件优选为:半导体激光器激光功率1000~3000W,搭接率30~50%,扫描速度10~20mm/s;烧结陶瓷涂层的激光熔覆条件优选为:半导体激光器激光功率800~1200W,搭接率30~50%,扫描速度3~6mm/s。
本发明所述制备方法还包括对所述钛合金基体的预处理,所述预处理是将钛合金基体表面磨平,以丙酮或酒精清洗除去表面污垢和油垢后进行干燥处理。所述预处理可以清除基体表面的所有污垢,包括氧化皮、油渍、油漆及其他污物,以及基体表面和渗入基体中的油脂。
由于传统热障涂层的陶瓷层与金属粘结层界面特性不同,热膨胀系数及弹性模量相差较大,激光熔覆时两者润湿性和匹配性不好,在界面处很难产生冶金结合,并且残余应力较大,涂层与基体的结合强度较差,在高温热循环过程中容易造成陶瓷涂层脱落。
本发明先在钛合金基体表面制备热障涂层粘结层,再采用溶胶凝胶法制备AlOOH溶胶涂覆在热障涂层粘结层表面,激光熔覆获得陶瓷涂层。溶胶凝胶法形成的凝胶中,反应物间在分子水平上被均匀混合,实现了陶瓷层与粘结层在分子水平上的结合,从而保证了激光熔覆时实现陶瓷层与金属层的冶金结合。采用本发明方法制备热障涂层的陶瓷层致密无裂纹,耐磨且与粘结层结合强度高,高温下不易发生涂层脱落。
本发明方法中,热障涂层粘结层表层的微融化会在陶瓷层与粘结层之间形成一层新的中间层,新形成的中间层会减少陶瓷层与粘结层之间的热膨胀差别和不匹配性,降低涂层内的体积应力和热应力,且中间层也为结合强度的提高提供了保证。本发明方法制备的热障涂层,陶瓷层与粘结层之间结合强度可以达到150Mpa以上,远高于传统激光熔覆制备热障涂层之间的结合强度。
附图说明
图1是扫描电子显微镜下观察的热障涂层涂层分布状态。
图2是不同制备条件下的陶瓷层宏观形貌。
具体实施方式
下述实施例仅为本发明的优选技术方案,并不用于对本发明进行任何限制。对于本领域技术人员而言,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
实施例1。
以砂纸将钛合金TC11基体材料的表面磨平,用丙酮或酒精对其表面进行清洗,除去表面污垢和油垢,干燥处理。
选择组成Co 22.88%,Cr 17.96%,Al 11.82%,Y 0.99%,Si 2.11%,Ni余量,细度200~400目的NiCoCrAlY粉末。在清洗干净的干燥基体表面预置一层1mm厚的NiCoCrAlY粉末形成预置涂层,放入真空加热炉中,预热至100℃保温30min,以消除预置涂层中的水分。
设置半导体激光器的激光功率1500W,光斑直径4mm,保护Ar气流量15L/min。以半导体激光器的激光头对准NiCoCrAlY粉末预置涂层,按照50%的扫描搭接率,以15mm/s的扫描速度,按照设定的轨迹连续扫描预置涂层,在TC11基体表面制备得到一层热障涂层粘结层。
待热障涂层粘结层冷却后,用砂纸磨平表面,以丙酮或酒精清洗干净,干燥。
搅拌下,向100mL加热至84℃的蒸馏水中分次缓慢加入204g磨细的异丙醇铝,全部加完后,回流搅拌反应1.5h形成沉淀。升温至90℃,搅拌使产生的异丙醇完全挥发。加入2mL65%硝酸溶液,将沉淀物重新分散,升温至90℃回流搅拌老化24h,浓缩得到粘度22.5mPa•s的AlOOH溶胶。
以提拉法在热障涂层粘结层表面均匀涂敷厚度2mm的AlOOH溶胶涂层。设置半导体激光器的激光功率1000W,光斑直径4mm,保护Ar气流量15L/min。以半导体激光器的激光头对准AlOOH溶胶涂层,按照50%的扫描搭接率,以5mm/s的扫描速度,按照设定的轨迹连续扫描AlOOH溶胶涂层,使AlOOH溶胶烧结,以获得致密、高粘结强度、耐磨的Al2O3陶瓷涂层。
取上述制备的试样纵向剖开,将其截面依次用280#、400#、800#、1200#、1500#、2000#金刚石砂纸磨出熔覆层整体形貌,再进行抛光后,以王水进行腐蚀。
将腐蚀后试样置于扫描电子显微镜下观察其显微形貌,可以观察到其涂层分布状态如图1所示,且陶瓷涂层与粘结层的组织致密,结合紧密。
将上述制备的试样置于马弗炉中,900℃氧化70h,随炉冷却后,进行试样的结合强度测试。图2中A为高温氧化后的试样,可见试样涂层表面平整光洁,无裂纹和脱落现象。
参照ASTM C 633-2001标准中的对偶试样拉伸法,利用RGM-4050微机控制电子万能试验机上测定试样涂层的结合强度。试验拉伸速度设定为1mm/min,测得陶瓷涂层与粘结层之间的结合强度为215Mpa。
比较例1。
按照实施例1方法,在钛合金TC11基体材料表面制备热障涂层粘结层。
在热障涂层粘结层表面直接涂敷Al2O3粉末,再按照实施例1激光熔覆工艺参数制备Al2O3陶瓷涂层,得到直接激光熔覆陶瓷涂层的试样。
对试样进行与实施例1相同的高温氧化处理后,结果如图2中B所示,发现试样涂层表面有部分由于应力等因素,出现了裂纹和脱落的现象。
按照实施例1测试方法检测陶瓷涂层与粘结层的结合强度,结果为96MPa。显然,实施例1试样陶瓷涂层与粘结层的结合强度明显高于比较例1。
实施例2。
以砂纸将钛合金TC11基体材料的表面磨平,用丙酮或酒精对其表面进行清洗,除去表面污垢和油垢,干燥处理。
选择组成Co 22.88%,Cr 17.96%,Al 11.82%,Y 0.99%,Si 2.11%,Ni余量,细度200~400目的NiCoCrAlY粉末。在清洗干净的干燥基体表面预置一层1mm厚的NiCoCrAlY粉末形成预置涂层,放入真空加热炉中,预热至100℃保温30min,以消除预置涂层中的水分。
设置半导体激光器的激光功率2000W,光斑直径4mm,保护Ar气流量15L/min。以半导体激光器的激光头对准NiCoCrAlY粉末预置涂层,按照40%的扫描搭接率,以20mm/s的扫描速度,按照设定的轨迹连续扫描预置涂层,在TC11基体表面制备得到一层热障涂层粘结层。
待热障涂层粘结层冷却后,用砂纸磨平表面,以丙酮或酒精清洗干净,干燥。
搅拌下,向100mL加热至84℃的蒸馏水中分次缓慢加入204g磨细的异丙醇铝,全部加完后,回流搅拌反应1.5h形成沉淀。升温至90℃,搅拌使产生的异丙醇完全挥发。加入2mL65%硝酸溶液,将沉淀物重新分散,升温至85℃回流搅拌老化24h,浓缩得到粘度12.5mPa•s的AlOOH溶胶。
以提拉法在热障涂层粘结层表面均匀涂敷厚度2mm的AlOOH溶胶涂层。设置半导体激光器的激光功率1200W,光斑直径4mm,保护Ar气流量15L/min。以半导体激光器的激光头对准AlOOH溶胶涂层,按照50%的扫描搭接率,以6mm/s的扫描速度,按照设定的轨迹连续扫描AlOOH溶胶涂层,使AlOOH溶胶烧结,以获得致密、高粘结强度、耐磨的Al2O3陶瓷涂层。
将制备的试样置于马弗炉中,900℃氧化70h。采用对偶试样拉伸法测得陶瓷涂层与粘结层之间的结合强度为175Mpa。
比较例2。
按照实施例2方法,在钛合金TC11基体材料表面制备热障涂层粘结层。
在热障涂层粘结层表面直接涂敷Al2O3粉末,再按照实施例2激光熔覆工艺参数制备Al2O3陶瓷涂层,得到直接激光熔覆陶瓷涂层的试样。
对试样进行与实施例1相同的高温氧化处理后,按照实施例1测试方法检测陶瓷涂层与粘结层的结合强度为89MPa。
实施例3。
按照实施例1方法,在钛合金TC11基体材料表面预置NiCoCrAlY粉末预置涂层。
设置半导体激光器的激光功率1000W,光斑直径4mm,保护Ar气流量15L/min。以半导体激光器的激光头对准NiCoCrAlY粉末预置涂层,按照50%的扫描搭接率,以10mm/s的扫描速度,按照设定的轨迹连续扫描预置涂层,在TC11基体表面制备得到一层热障涂层粘结层。
待热障涂层粘结层冷却后,用砂纸磨平表面,以丙酮或酒精清洗干净,干燥。
搅拌下,向100mL加热至84℃的蒸馏水中分次缓慢加入204g磨细的异丙醇铝,全部加完后,回流搅拌反应1.5h形成沉淀。升温至90℃,搅拌使产生的异丙醇完全挥发。加入2mL65%硝酸溶液,将沉淀物重新分散,升温至95℃回流搅拌老化24h,浓缩得到粘度10.6mPa•s的AlOOH溶胶。
以提拉法在热障涂层粘结层表面均匀涂敷厚度3mm的AlOOH溶胶涂层。设置半导体激光器的激光功率800W,光斑直径4mm,保护Ar气流量15L/min。以半导体激光器的激光头对准AlOOH溶胶涂层,按照50%的扫描搭接率,以3mm/s的扫描速度,按照设定的轨迹连续扫描AlOOH溶胶涂层,使AlOOH溶胶烧结,以获得致密、高粘结强度、耐磨的Al2O3陶瓷涂层。
将制备的试样置于马弗炉中,900℃氧化70h。采用对偶试样拉伸法测得陶瓷涂层与粘结层之间的结合强度为155Mpa。
比较例3。
按照实施例3方法,在钛合金TC11基体材料表面制备热障涂层粘结层。
在热障涂层粘结层表面直接涂敷Al2O3粉末,再按照实施例3激光熔覆工艺参数制备Al2O3陶瓷涂层,得到直接激光熔覆陶瓷涂层的试样。
对试样进行与实施例1相同的高温氧化处理后,按照实施例1测试方法检测陶瓷涂层与粘结层的结合强度为83MPa。

Claims (10)

1.一种钛合金表面高结合强度热障涂层的制备方法,包括在钛合金基体表面预置NiCoCrAlY粉末,通过激光熔覆制备热障涂层粘结层,采用溶胶凝胶法制备AlOOH溶胶涂覆在所述热障涂层粘结层表面,激光扫描AlOOH溶胶表面使其烧结获得Al2O3陶瓷涂层。
2.根据权利要求1所述的钛合金表面高结合强度热障涂层的制备方法,其特征是包括:
1)、在钛合金基体表面预置一层NiCoCrAlY粉末形成预置涂层,预热至80~100℃;
2)、控制预置涂层烧结温度为1000~1500℃,以半导体激光器连续扫描NiCoCrAlY粉末预置涂层,在钛合金基体表面制备得到热障涂层粘结层;
3)、以异丙醇铝为前驱物,蒸馏水为溶剂,硝酸为催化剂,将异丙醇铝加入蒸馏水中回流搅拌反应形成沉淀,加热除去反应产生的异丙醇,再加入硝酸溶液使沉淀物分散,于85~95℃回流搅拌老化,制备得到AlOOH溶胶;
4)、在热障涂层粘结层表面均匀涂敷AlOOH溶胶涂层,控制AlOOH溶胶涂层的烧结温度为1100~1300℃,以半导体激光器连续扫描AlOOH溶胶涂层,使AlOOH溶胶烧结制备得到Al2O3陶瓷涂层。
3.根据权利要求2所述的钛合金表面高结合强度热障涂层的制备方法,其特征是所述钛合金基体表面预置涂层的厚度为1~2mm。
4.根据权利要求2所述的钛合金表面高结合强度热障涂层的制备方法,其特征是所述热障涂层粘结层表面AlOOH溶胶涂层的厚度为2~3mm。
5.根据权利要求2所述的钛合金表面高结合强度热障涂层的制备方法,其特征是使用细度200~400目的NiCoCrAlY粉末作为预置涂层。
6.根据权利要求2所述的钛合金表面高结合强度热障涂层的制备方法,其特征是所述回流搅拌老化中使用质量浓度为55~65%的硝酸溶液,老化时间24~48h。
7.根据权利要求1或2所述的钛合金表面高结合强度热障涂层的制备方法,其特征是所述AlOOH溶胶的粘度为16.8~45.0mPa•s。
8.根据权利要求2所述的钛合金表面高结合强度热障涂层的制备方法,其特征是所述形成热障涂层粘结层的激光熔覆条件为:半导体激光器激光功率1000~3000W,搭接率30~50%,扫描速度10~20mm/s。
9.根据权利要求2所述的钛合金表面高结合强度热障涂层的制备方法,其特征是所述形成烧结陶瓷涂层的激光熔覆条件为:半导体激光器激光功率800~1200W,搭接率30~50%,扫描速度3~6mm/s。
10.根据权利要求1或2所述的钛合金表面高结合强度热障涂层的制备方法,其特征是还包括对钛合金基体的预处理,所述预处理是将钛合金基体表面磨平,以丙酮或酒精清洗除去表面污垢和油垢后,进行干燥处理。
CN201811233238.3A 2018-10-23 2018-10-23 钛合金表面高结合强度热障涂层的制备方法 Pending CN109023315A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811233238.3A CN109023315A (zh) 2018-10-23 2018-10-23 钛合金表面高结合强度热障涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811233238.3A CN109023315A (zh) 2018-10-23 2018-10-23 钛合金表面高结合强度热障涂层的制备方法

Publications (1)

Publication Number Publication Date
CN109023315A true CN109023315A (zh) 2018-12-18

Family

ID=64613661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811233238.3A Pending CN109023315A (zh) 2018-10-23 2018-10-23 钛合金表面高结合强度热障涂层的制备方法

Country Status (1)

Country Link
CN (1) CN109023315A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109852846A (zh) * 2019-03-08 2019-06-07 北京矿冶科技集团有限公司 一种可实现界面强化的MCrAlYX涂层及其制备方法
CN110714199A (zh) * 2019-09-11 2020-01-21 福建工程学院 一种用于3d打印搭接电子束制备涂层的方法
CN113584478A (zh) * 2021-08-03 2021-11-02 中国矿业大学 一种盾构机刀具表面自润滑硬质复合涂层的制备方法
CN115521707A (zh) * 2022-09-21 2022-12-27 宁波虔宁特种合金有限公司 一种甩带炉铜辊涂层及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020172799A1 (en) * 2001-05-16 2002-11-21 Siemens Westinghouse Power Corporation Honeycomb structure thermal barrier coating
CN103911581A (zh) * 2014-03-24 2014-07-09 燕山大学 一种基于轧辊的氧化锆热障涂层的制备方法
CN104593767A (zh) * 2015-01-07 2015-05-06 上海交通大学 一种激光粉末沉积技术制备热障涂层粘结层的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020172799A1 (en) * 2001-05-16 2002-11-21 Siemens Westinghouse Power Corporation Honeycomb structure thermal barrier coating
CN103911581A (zh) * 2014-03-24 2014-07-09 燕山大学 一种基于轧辊的氧化锆热障涂层的制备方法
CN104593767A (zh) * 2015-01-07 2015-05-06 上海交通大学 一种激光粉末沉积技术制备热障涂层粘结层的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张志超: ""铝合金表面激光熔覆Al2O3涂层工艺研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109852846A (zh) * 2019-03-08 2019-06-07 北京矿冶科技集团有限公司 一种可实现界面强化的MCrAlYX涂层及其制备方法
CN109852846B (zh) * 2019-03-08 2020-06-05 北京矿冶科技集团有限公司 一种可实现界面强化的MCrAlYX涂层及其制备方法
CN110714199A (zh) * 2019-09-11 2020-01-21 福建工程学院 一种用于3d打印搭接电子束制备涂层的方法
CN113584478A (zh) * 2021-08-03 2021-11-02 中国矿业大学 一种盾构机刀具表面自润滑硬质复合涂层的制备方法
CN115521707A (zh) * 2022-09-21 2022-12-27 宁波虔宁特种合金有限公司 一种甩带炉铜辊涂层及其制备方法

Similar Documents

Publication Publication Date Title
CN109023315A (zh) 钛合金表面高结合强度热障涂层的制备方法
CN105648386B (zh) 热喷涂氧化铝–氧化钇复合陶瓷涂层及其制备方法
Shane et al. Sol-gel synthesis of zirconia barrier coatings
CN106435443B (zh) 一种环境障涂层的制备方法
US5985368A (en) Coating composition for metal-based substrates, and related processes
EP1739204B1 (en) Field repairable high temperature smooth wear coating
CN101037771B (zh) 一种制备TiC-TiB2纳米-微米复相陶瓷涂层的方法
Ramaswamy et al. Thermal shock characteristics of plasma sprayed mullite coatings
CN105039894B (zh) 一种抗cmas的陶瓷层及其料浆法制备方法
Nejati et al. Microstructural analysis and thermal shock behavior of plasma sprayed ceria-stabilized zirconia thermal barrier coatings with micro and nano Al2O3 as a third layer
CN105603352B (zh) Al2O3/YAG非晶/共晶复合陶瓷涂层及其制备方法
CN109628929A (zh) 一种热障涂层及其制备方法与应用、航空发动机涡轮叶片
US7282271B2 (en) Durable thermal barrier coatings
JPH0251978B2 (zh)
Jang et al. Thermal behavior and mechanical properties of Y2SiO5 environmental barrier coatings after isothermal heat treatment
CN110396687A (zh) 一种Ti2AlC MAX相陶瓷涂层及其冷喷涂制备方法
CN105174986A (zh) 一种碳化硅纤维基氧化镁-氧化铝双层涂层的制备方法
Ahmaniemi et al. Characterization of modified thick thermal barrier coatings
CN106966763B (zh) 一种发动机环境下纤维增强的复合材料表面涂层及其制备方法
Tamaddon Masoule et al. Thermal insulation and thermal shock behavior of conventional and nanostructured plasma-sprayed TBCs
CN107675120A (zh) 一种在钼或钼合金表面制备硅化钼涂层的方法
CN108220957B (zh) 一种钛合金表面耐高温涂层及其制备方法
Gatzen et al. Improved adhesion of different environmental barrier coatings on Al2O3/Al2O3‐ceramic matrix composites
CN104446397B (zh) 一种硬质合金用亚微米晶陶瓷涂层及制备方法
Cui et al. Preparation and water-vapour corrosion behaviour of BSAS environmental barrier coatings fabricated on ceramic matrix composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181218

RJ01 Rejection of invention patent application after publication