CN109023101B - 一种无磁性模具钢及其制备方法 - Google Patents

一种无磁性模具钢及其制备方法 Download PDF

Info

Publication number
CN109023101B
CN109023101B CN201811105780.0A CN201811105780A CN109023101B CN 109023101 B CN109023101 B CN 109023101B CN 201811105780 A CN201811105780 A CN 201811105780A CN 109023101 B CN109023101 B CN 109023101B
Authority
CN
China
Prior art keywords
steel
nonmagnetic
carried out
formula
mould
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811105780.0A
Other languages
English (en)
Other versions
CN109023101A (zh
Inventor
陈帆
陈煜豪
陈龙闽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhangshu Xinglonggao New Materials Co., Ltd.
Original Assignee
Jiangxi Zhangshu Xinglong Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Zhangshu Xinglong Special Steel Co Ltd filed Critical Jiangxi Zhangshu Xinglong Special Steel Co Ltd
Priority to CN201811105780.0A priority Critical patent/CN109023101B/zh
Publication of CN109023101A publication Critical patent/CN109023101A/zh
Application granted granted Critical
Publication of CN109023101B publication Critical patent/CN109023101B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

一种无磁性模具钢,以质量百分比计,具有如下组分:C:0.55‑0.78%,Si:0.9‑1.2%,Mn:14.8‑17.4%,Cr:5.5‑9.5%,S:0.1‑0.35%,Mg:0.001‑0.015%,Al:0.04‑0.12%,Ca:0.0006‑0.0012%,V:2.0‑4.2%,Mo:0.5‑0.8%,N:0.08‑0.12%,Nb:0.1‑0.25%,Cu:0.4‑1.5%,O:0.003‑0.015%余量为Fe和不可避免的杂质元素。还提供一种无磁性模具钢的制备方法。

Description

一种无磁性模具钢及其制备方法
技术领域
本发明涉及一种模具钢及其制备工艺,尤其是指易切削无磁性模具钢及其生产工艺。
背景技术
随着塑料工业的迅速发展及专业化模具制造厂的出现,对塑料制品成型模具钢的需求量越来越大,对钢的性能和质量要求也越来越高。由于制作添加了铁氧体成分的塑料制品,需要在磁场内注射成型,要求模具本身无磁性,因此一般采用奥氏体钢制作,同时要求其具有高的耐磨性要求。
为了获得满足要求的无磁性模具钢,通常会选择加入较高含量的Mn,但这种钢具有明显的冷作硬化现象,造成机加工性能下降,在加工过程中会出现加工周期长,成本高等问题。
易切削钢是在钢中加入一种或几种元素,利用其本身或其他元素形成对切削加工有利的夹杂物来改善钢材的切削性。易切削钢有较好的切削加工性能和较好的表面光洁度,能降低产品的制造成本。随着机械制造工业和汽车工业的发展,易切削钢的使用量不断增加。在日本、美国等工业国家已形成易切削钢的标准化系列产品。但在模具制造领域,特别是在无磁模具制造领域,易切削钢的应用还很少。
发明内容
本发明提供了一种具有良好切削性能的无磁性模具钢,通过Mg、Ca、Al、Cu、S的复合添加,在保持无磁性的情况下进一步改进了钢材的切削性能,降低了其加工成本,缩短模具产品生产周期,适合大范围推广使用。
具体技术方案是:
一种无磁性模具钢,以质量百分比计,具有如下组分:
C:0.55-0.78%,Si:0.9-1.2%,Mn:14.8-17.4%,Cr:5.5-9.5%,S:0.1-0.35%,Mg:0.001-0.015%,Al:0.04-0.12%,Ca:0.0006-0.0012%,V:2.0-4.2%,Mo:0.5-0.8%,N:0.08-0.12%,Nb:0.1-0.25%,Cu:0.4-1.5%,O:0.003-0.015%余量为Fe和不可避免的杂质元素。
优选的,所述合金组分满足以下条件中:
Cu%/S%≥4公式1
0.7≦(Ca%+Mg%)/O%≦3公式2
本发明的无磁性易切削模具钢通过如下工艺步骤进行制造:
(1)冶炼及合金化,电炉冶炼、出钢,LF炉外精炼。为保证钢中易切削夹杂物形态,在炉外精炼时采用先向钢中加入Ca-Si线进行Ca处理,再向钢中加入Mg-Al中间合金的步骤进行处理,在保护气氛下进行浇铸,获得铸锭;
(2)进行电渣重熔,优选的在电渣重熔时采用以下重熔渣,以提高Mg的收得率。具体的熔炼渣组分为:
(20~35%)CaF2-(8~15%)CaCl2-(15~28)%Al203-(15~25)%CaO-(7-13)%MgO
(3)电渣重熔后进行锻造成型,之后进行1150~1180℃固溶处理后水冷,之后再将固溶后的钢材于550-720℃时效处理2-20小时。
本发明所述易切削无磁性模具钢的抗拉强度可达1100MPa以上,屈服强度达1000Mpa以上,且时效后硬度可达48HRC以上,且与本领域常规的无磁性模具钢相比,机加工时刀具磨损量下降30%以上。
本发明各元素的作用:
C:C:0.55-0.78%
钢中主要的强化元素,与Cr、Mo、V结合形成碳化物,赋予淬火回火硬度、提高耐磨耗性的元素,为了保证足够碳化物的析出,本发明中的C含量应不低于0.55%,但过多碳化物的析出将影响钢的韧性和加工性,因此限制其添加上限为0.78%。。
Si:0.9-1.2%
Si可作为脱氧元素,在钢中不形成碳化物,能固溶于铁素体中影响钢的强度性能。钢经450~550℃回火后,会促进钢产生二次硬化效应,提高钢的高温强度,且能够有效提高钢在高温下的抗氧化能力,提高在氧化介质之中的耐蚀性。为了获得上述性能,本发明中控制Si含量为0.9-1.2%。
Mn:14.8-17.4%
Mn是奥氏体扩大元素,还能够提高钢的强度和耐蚀性,并且具有增大钢中N的固溶度的效果,同时能增加钢的淬透性,提高奥氏体钢的硬度和强度。本发明中通过增加Mn的含量,扩大了钢中N的固溶度,并通过与N的协同作用,有效的替代了Ni,获得了无Ni的奥氏体模具钢。
N:0.08-0.12%
碳氮原子具有相似电子层结构和较小的原子尺寸,钢中氮同样以间隙原子或间隙相的形式存在,氮元素能强烈地扩大奥氏体区并稳定奥氏体,氮的这种作用相当于镍的25倍,且氮溶解引起的固溶强化作用提钢的强度。在N量增加的情况下,虽然Cr氮化物析出,但与碳化物相比,该氮化物不容易粗大化。且与C的加入相比,C的加入使粗大的碳化物Cr23C6分布于晶粒边界,而N的存在使细小的碳氮化物颗粒弥散于晶粒边界。在增加钢材强度的同时,进一步提高其加工性。
Cr:5.5-9.5%
Cr的加入能显著改善钢的抗氧化作用,增加钢的抗腐蚀能力。同时Cr能显著增加钢的淬透性,减缓了奥氏体的分解速度。
Nb、V、Mo:是强碳化物和氮化物形成元素,在本发明中与C、N配合能够有效的提高钢的强度和韧性,增加钢的回火稳定性,并产生二次硬化效果,从而满足模具钢耐磨性的要求。
S:0.1-0.35%
S是提高切削加工性的元素,因此添加0.10%以上,S的含量优选为0.12%以上。但是,即使添加量超过0.35%,对切削性的影响也会饱和。
Cu:0.40~1.50wt%
Cu能够稳定奥氏体相,并起到固溶强化的作用,且Cu与S配合还能改善合金的易切削性,保证Cu/S比值≥4,优选Mn/S比值≥8,以保证足够的切削性能。
Mg:0.001-0.015%
同时,Mg与Al、Si、Ca一起形成MgO-SiO2-CaO-Al2O3复合球化物,大大改善合金的切削性能。此外,镁铝尖晶石类夹杂物还可作为碳化物的析出核心,起到细化碳化物的作用,从而整体提高钢材的强韧性。
Al:0.04-0.12%
会与N结合形成AlN,使得铸造组织均匀微细,并使MC型碳化物微细,从而提高原料的热加工性、产品的寿命。同时会与Mg形成复合球化物改善切削性能。
Ca:0.0006-0.0012%
在钢液凝固过程中,钙的氧化产物作为硫化物形核核心,可以促进硫化物的析出和硫化物的均匀分布。同时与Al、Si、Mg一起形成MgO-SiO2-CaO-Al2O3复合球化物.
O:0.003-0.004%
O通过在凝固过程中粗化脱氧产物来改善可加工性。因此,需要0.003%以上,优选含有0.004%以上。但是,当O的添加量超过0.015%时,硬质夹杂物增加,切削性降低。因此,O含量的上限设定为0.015%,优选为0.014%。
申请人惊奇的发现,当Ca、Mg、O的含量满足0.7≦(Ca%+Mg%)/O%≦3的关系时,钢的切削性能更优,这可能与Ca、Mg氧化物的生成量和形态有关。
在本发明的制造工艺中,炉外精炼时采用先向钢中加入Ca-Si线进行Ca处理,再向钢中加入Mg-Al中间合金的步骤进行处理。通过控制微量合金元素的添加顺序,能够获得所希望的夹杂物形态,从而达到细化组织,并提高切削性能的效果。
电渣重熔工艺中重熔渣的选择对于钢中Mg含量的影响显著,从而影响钢材的切削性能。
具体实施方式
试样1-5是本申请的实施例、试样B1-B4是本申请的对比例,其具体组分见下表1。试样1-5、B1-B4均按照以下步骤进行制备:
冶炼及合金化,电炉冶炼、出钢,LF炉外精炼。为保证钢中易切削夹杂物形态,在炉外精炼时采用先向钢中加入Ca-Si线进行Ca处理,再向钢中加入Mg-Al中间合金的步骤进行处理,在保护气氛下进行浇铸,获得铸锭;
进行电渣重熔,优选的在电渣重熔时采用以下重熔渣,以提高Mg的收得率。具体的熔炼渣组分为:
(20~35%)CaF2-(8~15%)CaCl2-(15~28)%Al203-(15~25)%CaO-(7-13)%MgO
电渣重熔后进行锻造成型,之后进行1150~1180℃固溶处理后水冷,之后再将固溶后的钢材于550-720℃时效处理2-20小时。
对时效处理后的试样1-5、B1-B4,以及本领域常用的无磁模具钢70Mn15进行力学性能和磁导率进行测试,并记录采用相同刀具连续切削30min后的刀具磨损量,以此评价其切削性能。具体结果参见表2。
表1
试样 C Si Mn Cr S Cu Mg Ca Al N V Mo Nb O 公式1 公式2
1 0.55 0.96 14.6 7.8 0.1 0.4 0.001 0.0012 0.06 0.12 2.5 0.62 0.18 0.003 4 0.73
2 0.66 0.9 15.6 6.8 0.22 0.98 0.008 0.0008 0.1 0.008 3.2 0.5 0.22 0.005 4.45 1.76
3 0.65 1 15.8 5.6 0.3 1.5 0.005 0.0009 0.04 0.1 3.8 0.62 0.1 0.007 5 0.84
4 0.78 0.95 17.3 8.7 0.28 1.2 0.012 0.001 0.08 0.09 2 0.75 0.12 0.015 4.2 0.85
5 0.72 1.2 16.9 9.5 0.35 1.45 0.015 0.001 0.12 0.08 4.2 0.8 0.25 0.006 4.1 2.6
B1 0.68 0.95 17 6.2 0.1 0.4 0.004 0.0009 0.005 0.09 2 0.77 0.12 0.008 4 0.61
B2 0.66 1.1 16.8 9 0.3 1.5 0.014 0.0012 0.009 0.08 3 0.78 0.22 0.003 5 5
B3 0.72 1 16.4 9.1 0.3 0.4 0.008 0.0008 1 0.1 2.8 0.55 0.23 0.005 1.3 1.76
B4 0.58 0.9 15 8 0.2 0.5 0.015 0.001 0.008 0.11 3.5 0.6 0.18 0.006 2.5 2.6
表2
由表2的测试结果可以看出,试样1-5的力学性能、无磁性优异,且具有低的刀具磨损量。对比例B1、B2的组分不满足公式2的要求,对比例B3、B4的组分不满足公式3的要求,因此刀具磨损量显著增加。
在相同条件下对本领域常用的70Mn15型无磁模具钢进行测试,30min的刀具磨损量为0.44mm,可见本发明的无磁模具钢的切削性能有显著的提升。
此外,在生产试样3组分的钢材时,改变炉外精炼时Ca、Mg的加入顺序,先向钢中加入Mg-Al中间合金,最后加入Ca-Si线,之后实施相同的热加工和热处理工艺,由此获得对比例B5。对B5进行切削性能测试,发现其30min的刀具磨损量达0.35mm,远高于试样3。由此可见,本申请中的Mg、Ca加入顺序也是至关重要的。
在生产试样2组分的钢材时,改变电渣重熔时电熔渣的组分,采用35%CaF2-15%Al203-35%CaO-15%MgO的电熔渣,其余步骤均与试样2相同,由此获得对比例B6。对B6进行切削性能测试,发现其30min的刀具磨损量达0.4mm,远高于试样3。由此可见,本申请中的电熔渣的选择也是至关重要的。
上面对本发明进行了示例性描述,显然本发明具体实现并不受上述方式限制,只要采用了本发明的方法构思和技术方案进行的各种改进,或未经改进直接应用于其它场合的,均在本发明的保护范围之内。

Claims (2)

1.一种无磁性模具钢,以质量百分比计,具有如下组分:C:0.66-0.78%,Si:0.9-1.2%,Mn:14.8-17.4%,Cr:5.5-9.5%,S:0.1-0.35%,Mg:0.001-0.015%,Al:0.04-0.12%,Ca:0.0006-0.0012%,V:2.0-4.2%,Mo:0.5-0.8%,N:0.08-0.12%,Nb:0.1-0.25%,Cu:0.98-1.5%,O:0.003-0.015%余量为Fe和不可避免的杂质元素;
所述组分含量满足下述公式
Cu%/S%≥4 公式1
0.7≤(Ca%+Mg%)/O%≤3 公式2,
并按照以下步骤进行制备,
(1)冶炼及合金化,电炉冶炼、出钢,LF炉外精炼,为保证钢中易切削夹杂物形态,在炉外精炼时采用先向钢中加入Ca-Si线进行Ca处理,再向钢中加入Mg-Al中间合金的步骤进行处理,在保护气氛下进行浇铸,获得铸锭;
(2)进行电渣重熔,并采用以下重熔渣,以提高Mg的收得率,(20~35%)CaF2-(8~15%)CaCl2-(15~28)%Al203-(15~25)%CaO-(7-13)%MgO;
(3)电渣重熔后进行锻造成型,之后进行1150~1180℃固溶处理后水冷,之后再将固溶后的钢材于550-720℃时效处理2-20小时。
2.根据权利要求1所述的无磁性模具钢,其特征在于:抗拉强度可达1100MPa以上,屈服强度达1000MPa 以上,且时效后硬度可达48HRC以上。
CN201811105780.0A 2018-09-21 2018-09-21 一种无磁性模具钢及其制备方法 Active CN109023101B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811105780.0A CN109023101B (zh) 2018-09-21 2018-09-21 一种无磁性模具钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811105780.0A CN109023101B (zh) 2018-09-21 2018-09-21 一种无磁性模具钢及其制备方法

Publications (2)

Publication Number Publication Date
CN109023101A CN109023101A (zh) 2018-12-18
CN109023101B true CN109023101B (zh) 2019-07-23

Family

ID=64617375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811105780.0A Active CN109023101B (zh) 2018-09-21 2018-09-21 一种无磁性模具钢及其制备方法

Country Status (1)

Country Link
CN (1) CN109023101B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4039843A1 (fr) 2021-02-04 2022-08-10 Richemont International S.A. Alliage antiferromagnétique, son procédé de réalisation et composant de mouvement horloger fait de l'alliage

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772325B2 (ja) * 1985-09-05 1995-08-02 大同特殊鋼株式会社 プラスチツク成形用工具鋼
JPS63266042A (ja) * 1986-12-24 1988-11-02 Kawasaki Steel Corp Cvd処理に適した非磁性金型用鋼
JPS63169362A (ja) * 1986-12-29 1988-07-13 Aichi Steel Works Ltd 非磁性工具鋼
JP3758581B2 (ja) * 2002-02-04 2006-03-22 住友金属工業株式会社 低炭素快削鋼
CN1995435A (zh) * 2006-12-29 2007-07-11 东莞市星宇特殊钢材有限公司 一种奥氏体无磁不锈易切削钢
CN103361563B (zh) * 2013-08-01 2016-01-20 上海材料研究所 一种易切削高硬度奥氏体无磁模具钢及其制造方法
CN105803299B (zh) * 2016-05-30 2017-09-19 舞阳钢铁有限责任公司 一种特厚高纯净度塑料模具钢板的生产方法

Also Published As

Publication number Publication date
CN109023101A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
CN102899571B (zh) 一种预硬型塑料模具钢及其制造方法
CN103114245B (zh) 一种耐磨衬板及其制备方法
CN111394639B (zh) 一种高耐磨齿轮钢的制造方法
CN101638755A (zh) 高韧性超高强度耐磨钢板及其生产方法
CN109252097A (zh) 一种高强度胀断连杆的非调质钢及其连铸生产工艺
CN109023119A (zh) 一种具有优异塑韧性的耐磨钢及其制造方法
CN108866439B (zh) 一种Nb、Ti复合微合金化高温真空渗碳重载齿轮用钢
KR20100014865A (ko) 피삭성이 우수한 석출 경화형 마텐자이트계 스테인레스 주강 및 그 제조 방법
EP2518176B1 (en) Martensite stainless steel for an injection-moulding mould having improved corrosion resistance
CN114672723A (zh) 一种胀断连杆用46MnVS系列钢及其制造方法
EP2832885A1 (en) Method for producing mold steel, mold steel, method of producing pre-hardened mold material, and pre-hardened mold material
CN104789881A (zh) 一种高强度高韧性耐磨钢板的生产方法
CN109023101B (zh) 一种无磁性模具钢及其制备方法
CN103305772B (zh) 一种高硬度渣浆泵泵体及其制备方法
CN112143970B (zh) 高强高韧非调质前轴用钢及其生产方法
CN109022697B (zh) 一种非调质模具钢及其制备方法
KR20170035133A (ko) 구상흑연주철롤 및 이의 제조 방법
JP2866113B2 (ja) 耐食性金型用鋼
CN103343287B (zh) 半挂车牵引座用热轧钢及其生产方法
CN115679194B (zh) 一种塑料模具钢板及其制造方法
KR101302693B1 (ko) 편석 저감을 통한 경도균일성 및 가공성이 우수한 플라스틱 금형강
KR100412643B1 (ko) 프레스 금형용 주조 합금강
KR101986187B1 (ko) 주조강
KR20240083309A (ko) 피삭성이 개선된 고경도 고인성 석출경화형 금형강
KR20160082630A (ko) 내구성이 우수한 사출성형 몰드용 마르텐사이트 스테인리스강 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190808

Address after: 331200 Dongcun Residential Committee, Daqiao Street Office, Zhangshu City, Yichun City, Jiangxi Province

Patentee after: Zhangshu Xinglonggao New Materials Co., Ltd.

Address before: 331200 Dongcun Community, Daqiao Township, Zhangshu City, Yichun City, Jiangxi Province

Patentee before: Jiangxi Zhangshu Xinglong Special Steel Co., Ltd.

TR01 Transfer of patent right