CN109021406A - 一种ppr管材增韧剂及其制备方法和ppr管材 - Google Patents

一种ppr管材增韧剂及其制备方法和ppr管材 Download PDF

Info

Publication number
CN109021406A
CN109021406A CN201810710401.4A CN201810710401A CN109021406A CN 109021406 A CN109021406 A CN 109021406A CN 201810710401 A CN201810710401 A CN 201810710401A CN 109021406 A CN109021406 A CN 109021406A
Authority
CN
China
Prior art keywords
ppr pipe
toughener
ppr
pipe
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810710401.4A
Other languages
English (en)
Inventor
张明德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Shunde Huabiao Plastic Technology Co Ltd
Original Assignee
Foshan Shunde Huabiao Plastic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Shunde Huabiao Plastic Technology Co Ltd filed Critical Foshan Shunde Huabiao Plastic Technology Co Ltd
Priority to CN201810710401.4A priority Critical patent/CN109021406A/zh
Publication of CN109021406A publication Critical patent/CN109021406A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • C08K5/526Esters of phosphorous acids, e.g. of H3PO3 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/10Peculiar tacticity
    • C08L2207/14Amorphous or atactic polypropylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

本发明公开了一种PPR管材增韧剂及其制备方法和PPR管材,包括如下原料组分:羧酸盐和蒙脱土。该PPR管材增韧剂可应用于PPR管材的制备,所制得PPR管材韧性强,耐冲击,符合新版国标要求,可应用于对强度要求高的应用环境中。

Description

一种PPR管材增韧剂及其制备方法和PPR管材
技术领域
本发明涉及PPR管材技术领域,具体涉及一种PPR管材增韧剂及其制备方法和PPR管材。
背景技术
PPR管主要用于家装冷热给水,在建筑材料中有着重要的地位,因此PPR管的质量管控很严格,新版国标GB/T 18742.1-2017替代旧国标GB/T 18742.1-2002,从2018年5月1日开始实施,新版国标(如表1所示)与旧版国标相比,对生产原料的选择和最终产品的性能指标有了更高要求。
表1 PPR管材和管件用混配料的新国标要求
序号 项目 试验方法 试验参数 数据要求
1 熔融指数(g/10min) GB/T3682-2000 230℃/2.16kg ≤0.5
2 密度(g/cm3) GB/T1033.1-2008 拉伸样条 0.895~0.915
3 灰分/% GB/T9345.1-2008 600℃ ≤1.5
4 熔融温度TPM/℃ GB/T19466.3-2004 2次升温 ≤148℃
5 氧化诱导时间/min GB/T19466.6-2009 210℃ >20
6 负荷变形温度/℃ GB/T1634.2-2004 0.45MPa ≥60
7 拉伸弹性模量/MPa GB/T1040.2-2006 A型试样 >650
8 拉伸屈服应力/MPa GB/T1040.2-2006 A型试样 ≥20
9 断裂伸长率/% GB/T1040.2-2006 A型试样 >400
10 简支梁冲击强度(23℃,KJ/m2) GB/T1043.2-2008 B型试样 ≧40
11 简支梁冲击强度(-20℃,KJ/m2) GB/T1043.2-2008 B型试样 ≥1.5
目前市场上的PPR材料抗冲击强度较低。传统的增韧改性方法虽可在一定程度上提高PPR材料的韧性,增强其抗冲击强度,但通常又会导致PPR材料的其他一些指标不符合新版国标要求,难以得到平衡。
发明内容
为了解决上述技术问题,本发明提供一种PPR管材增韧剂及其制备方法和PPR管材。该PPR管材增韧剂可应用于PPR管材的制备,所制得PPR管材韧性强,耐冲击,符合新版国标要求,可应用于对强度要求高的应用环境中。
本发明所采用的技术方案是:一种PPR管材增韧剂,包括如下原料组分:羧酸盐和蒙脱土。优选地,所述羧酸盐选用纳米羧酸盐,所述蒙脱土选用纳米蒙脱土。
优选地,所述羧酸盐和蒙脱土的质量比为(0.3~3):1。
优选地,所述PPR管材增韧剂还包括如下原料组分:PPR树脂、偶联剂、分散剂和抗氧剂;各原料组分的重量配比如下:20~75%PPR树脂、10~30%羧酸盐、10~30%蒙脱土、1~3%偶联剂、1~5%分散剂、3~12%抗氧剂。
优选地,所述偶联剂选自硅烷偶联剂、钛酸酯偶联剂和铬络合物偶联剂中的至少一种。
优选地,所述抗氧剂选自抗氧剂1010、抗氧剂1790、抗氧剂168中的至少一种。进一步优选地,所述抗氧剂由抗氧剂1010、抗氧剂1790、抗氧剂168按质量比为1:1:2的比例混合而成。
优选地,所述分散剂选自EBS、乙撑双硬脂酰胺、硬脂酸钙、硬脂酸中的至少一种;其中,优选EBS。
本发明还提供了以上PPR管材增韧剂的制备方法,包括以下步骤:
S1、取各原料组分,混合均匀,得混合料;
S2、将所述混合料进行造粒,制得所述PPR管材增韧剂。
优选地,在步骤S1中,所述混合均匀包括:先将羧酸盐、蒙脱土和偶联剂进行第一步混匀;而后加入分散剂、抗氧剂和PPR树脂进行第二步混匀。
优选地,所述第一步混匀和所述第二步混匀为在60~100℃下混合5~15min。
以上PPR管材增韧剂可应用于PPR管材的制备。由此,本发明还提供一种PPR管材,该PPR管材由包括以上PPR管材增韧剂的原料制成。具体可将以上PPR管材增韧剂添加到常规的PPR管材专用料中,按常规PPR管材的制备方法制得。其中,PPR管材专用料可选用燕山石化4200、燕山石化4400、茂名石化T4401、独山子石化T4401、扬子石化503、韩国晓星200P、博禄RA140E、大韩油化2400等;PPR管材增韧剂的添加量一般占PPR管材专用料的1-5%。
本发明的有益技术效果是:本发明提供一种PPR管材增韧剂及其制备方法和PPR管材,该PPR管材增韧剂的原料组分包括羧酸盐和蒙脱土,其可应用于PPR管材的制备,其中,羧酸盐可促使PPR分子晶形形成片晶,片晶有序排列后,会与蒙脱土产生部分插层结构,利用分子插层和晶形改变的技术,PPR材料的抗冲击强度和耐压性能大幅度提高,且对PPR管材的熔点、熔指和氧化诱导期影响小,应用于PPR管材的制备所制得的PPR管材符合新国标要求,PPR管材简支梁冲击强度有大幅度提高,PPR管材的耐热温度和弹性模量也有明显提高,可整体提升PPR管材的性能和品质稳定性。
附图说明
为了更清楚的说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图做简单说明。
图1是本发明实施例3所制得PPR管材增韧剂的添加对PPR管材的熔融指数波动与常温简支梁冲击强度的关系影响变化图;
图2是本发明实施例3所制得PPR管材增韧剂的添加对含不同颜色颜料的PPR管材收缩率和结晶度温度的关系影响变化图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
按如下重量配比取原料组分:75%PPR树脂、10%纳米羧酸盐、10%纳米蒙脱土、1%硅烷偶联剂、1%分散剂EBS、3%抗氧剂168;将纳米羧酸盐、纳米蒙脱土和硅烷偶联剂投入高速搅拌机中,加热至60℃,在1200转/分钟高速下混合15分钟;而后加入分散剂EBS和抗氧剂168,加热至60℃,在1200转/分钟高速下混合15分钟,制得混合料;而后将混合处理好的混合料加入长径比48/1的高剪切强度的双螺杆挤出造粒机组挤出造粒,制出PPR管材增韧剂。
实施例2
按如下重量配比取原料组分:60%PPR树脂、20%纳米羧酸盐、12%纳米蒙脱土、1.5%钛酸酯偶联剂、2.5%分散剂硬脂酸、4%抗氧剂1010;将纳米羧酸盐、纳米蒙脱土和钛酸酯偶联剂投入高速搅拌机中,加热至70℃,在1200转/分钟高速下混合12分钟;而后加入分散剂硬脂酸和抗氧剂1010,加热至70℃,在1200转/分钟高速下混合12分钟,制得混合料;而后将混合处理好的混合料加入长径比48/1的高剪切强度的双螺杆挤出造粒机组挤出造粒,制出PPR管材增韧剂。
实施例3
按如下重量配比取原料组分:45%PPR树脂、18%纳米羧酸盐、24%纳米蒙脱土、2%硅烷偶联剂、3%分散剂EBS、2%抗氧剂1010、2%抗氧剂1790和4%抗氧剂168;将纳米羧酸盐、纳米蒙脱土和硅烷偶联剂投入高速搅拌机中,加热至80℃,在1200转/分钟高速下混合10分钟;而后加入分散剂EBS、抗氧剂1010、抗氧剂1790和抗氧剂168,加热至80℃,在1200转/分钟高速下混合10分钟,制得混合料;而后将混合处理好的混合料加入长径比48/1的高剪切强度的双螺杆挤出造粒机组挤出造粒,制出PPR管材增韧剂。
实施例4
按如下重量配比取原料组分:35%PPR树脂、24%纳米羧酸盐、28%纳米蒙脱土、2%铬络合物偶联剂、4%分散剂硬脂酸钙、3%抗氧剂1010和4%抗氧剂168;将纳米羧酸盐、纳米蒙脱土和铬络合物偶联剂投入高速搅拌机中,加热至90℃,在1200转/分钟高速下混合8分钟;而后加入分散剂硬脂酸钙、抗氧剂1010和抗氧剂168,加热至90℃,在1200转/分钟高速下混合8分钟,制得混合料;而后将混合处理好的混合料加入长径比48/1的高剪切强度的双螺杆挤出造粒机组挤出造粒,制出PPR管材增韧剂。
实施例5
按如下重量配比取原料组分:20%PPR树脂、30%纳米羧酸盐、30%纳米蒙脱土、3%硅烷偶联剂、5%分散剂EBS、3%抗氧剂1010、3%抗氧剂1790和6%抗氧剂168;将纳米羧酸盐、纳米蒙脱土和硅烷偶联剂投入高速搅拌机中,加热至100℃,在1200转/分钟高速下混合5分钟;而后加入分散剂EBS、抗氧剂1010、抗氧剂1790和抗氧剂168,加热至100℃,在1200转/分钟高速下混合5分钟,制得混合料;而后将混合处理好的混合料加入长径比48/1的高剪切强度的双螺杆挤出造粒机组挤出造粒,制出PPR管材增韧剂。
以上所制得的PPR管材增韧剂可应用于PPR管材的制备。其中,纳米羧酸盐可促使PPR分子晶形形成片晶,片晶有序排列后,会与纳米蒙脱土产生部分插层结构,利用分子插层和晶形改变的技术,PPR材料的抗冲击强度和耐压性能大幅度提高,对PPR管材的熔点、熔指和氧化诱导期影响小,应用于PPR管材的制备所制得的PPR管材符合新国标要求,PPR管材简支梁冲击强度有大幅度提高,PPR管材的耐热温度和弹性模量也有明显提高,可整体提升PPR管材的性能和品质稳定性。
为验证本发明所制得PPR管材增韧剂对PPR管材性能的影响,发明人进一步做了以上PPR管材增韧剂的应用试验,现列举其中部分实验内容和结果如下:
取在市面上随机购买的一种常规的PPR管材专用料,燕山石化4200,而后按占PPR管材专用料质量1%的比例加入以上实施例3所制得的PPR管材增韧剂,再一同加入到塑料混合机中,搅拌均匀后,直接注塑和挤出制样,制得成品PPR管材。另外,直接采用以上市面购买的常规PPR管材专用料,未添加实施例3所制得PPR管材增韧剂,采用以上相同方法,制造PPR管材。而后对以上添加了实施例3中PPR管材增韧剂和未添加PPR管材增韧剂所制得的成品PPR管材进行性能测试,具体测试项目、方法和测试结果如下表2所示:
表2添加增韧剂和未添加增韧剂所制得的PPR管材性能测试数据
由上表2,同时结合PPR管材和管件用混配料的新国标要求(GB/T18742.1-2017),通过对比以上添加了实施例3的PPR管材增韧剂所制得的PPR管材和未添加PPR管材增韧剂所制得的PPR管材的性能测试数据,可知:将实施例3中PPR管材增韧剂应用于PPR管材的制备,实现了PPR管材的熔点、熔指和氧化诱导期均符合新国标下,简支梁冲击强度提高了73%,负荷变形温度提高了6℃,弹性模量提高了11%,管的低温落锤冲击高度也提高了74mm;PPR管材的整体质量提升,使PPR管在高要求的应用环境下,更能保证质量。
另外,对以上添加了实施例3的PPR管材增韧剂所制得的PPR管材和未添加PPR管材增韧剂所制得的PPR管材,按照表2中熔融指数和常温简支梁冲击强度的测试方法,测定分析以上两种PPR管材的熔融指数波动与常温简支梁冲击强度的关系,所得结果如图1所示。其中,实心圆点表示未添加实施例3中PPR管材增韧剂所制得的PPR管材;实心方点表示添加了实施例3中PPR管材增韧剂所制得的PPR管材,虚线表示变化趋势线。
由图1可知,实心圆点所表示的未添加实施例3中PPR管材增韧剂所制得PPR管材常温简支梁冲击强度具有随着熔融指数的增大而降低的趋势,熔融指数对管材的冲击强度有较大影响;而实心方点所表示的添加了本发明实施例3中PPR管材增韧剂所制得的PPR管材,随着熔融指数的增大,其温简支梁冲击强度整体没有太大变化,可见,添加本发明PPR管材增韧剂所制得的PPR管材冲击强度稳定性更好。
除此之外,为了验证本发明PPR管材增韧剂应用于PPR管材制备,加入不同颜色颜料对于管材收缩率和结晶度温度的影响,发明人分别在添加和未添加本发明PPR管材增韧剂的管材原料中加入不同颜色的颜料制备PPR管材,并分别对管材的收缩率和结晶度温度进行测试对比实验。具体方法如下:分别以市面购买的常规PPR管材专用料(燕山石化4200)及在以上常规PPR管材专用料基础上分别添加黄色、红色、绿色和蓝色颜料为原料,采用相同的方法,分别制备PPR管材,作为对照组,总共5个样品;另外,在以上5个样品的原料基础上,分别添加本发明实施例3所制得的PPR管材增韧剂,以同样的方法,分别制备PPR管材,作为实验组,相应地共5个样品;再在相同条件下,测定各个样品的结晶温度和对应的收缩率。具体组别设置和对应的样品、配料如下表3所示:
表3组别设置和对应的样品、配料表
采用如上测定方法对以上各管材样品的收缩率和结晶度温度进行测定,最终检测所得结果如图2所示。其中,点A1、B1、C1、D1、E1和A2、B2、C2、D2、E2表示以上对比组和试验组的10个样品。如图2所示,图2中表示实验组在常规PPR管材专用料中添加了实施例3中PPR管材增韧剂和不同颜色颜料所制得PPR管材样品的各点A2、B2、C2、D2、E2较为集中,已单独圈出;而相比于实验组,表示对比组中未添加实施例3中PPR管材增韧剂、仅在常规PPR管材专用料中添加不同颜色颜料所制得PPR管材样品的各点A1、B1、C1、D1、E1则较为分散。由此可知,PPR管材和管件通常含有各种不同颜色的颜料,而这些颜料会在一定程度影响聚丙烯的结晶性能,导致注塑管件生产工艺,产品尺寸和品质的差异。颜料成分和本发明PPR管材增韧剂对聚丙烯均可起到α晶型成核剂的作用,但本发明PPR管材增韧剂的成核效应超过颜料的成核效应,无论使用哪种颜料,本发明PPR管材增韧剂可以最大限度的保持制件尺寸稳定性和生产工艺的一致性。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所述权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (10)

1.一种PPR管材增韧剂,其特征在于,包括如下原料组分:羧酸盐和蒙脱土。
2.根据权利要求1所述的PPR管材增韧剂,其特征在于,所述羧酸盐和蒙脱土的质量比为(0.3~3):1。
3.根据权利要求1或2所述的PPR管材增韧剂,其特征在于,还包括如下原料组分:PPR树脂、偶联剂、分散剂和抗氧剂;各原料组分的重量配比如下:20~75%PPR树脂、10~30%羧酸盐、10~30%蒙脱土、1~3%偶联剂、1~5%分散剂、3~12%抗氧剂。
4.根据权利要求3所述的PPR管材增韧剂,其特征在于,所述偶联剂选自硅烷偶联剂、钛酸酯偶联剂和铬络合物偶联剂中的至少一种。
5.根据权利要求3所述的PPR管材增韧剂,其特征在于,所述抗氧剂选自抗氧剂1010、抗氧剂1790、抗氧剂168中的至少一种。
6.根据权利要求3所述的PPR管材增韧剂,其特征在于,所述分散剂选自EBS、乙撑双硬脂酰胺、硬脂酸钙、硬脂酸中的至少一种。
7.权利要求1-6中任一项所述的PPR管材增韧剂的制备方法,其特征在于,包括以下步骤:
S1、取各原料组分,混合均匀,得混合料;
S2、将所述混合料进行造粒,制得所述PPR管材增韧剂。
8.根据权利要求7所述的制备方法,其特征在于,在步骤S1中,所述混合均匀包括:先将羧酸盐、蒙脱土和偶联剂进行第一步混匀;而后加入分散剂、抗氧剂和PPR树脂进行第二步混匀。
9.根据权利要求8所述的制备方法,其特征在于,所述第一步混匀和所述第二步混匀为在60~100℃下混合5~15min。
10.一种PPR管材,其特征在于,所述PPR管材由包含权利要求1-6中任一项所述PPR管材增韧剂的原料制成。
CN201810710401.4A 2018-07-02 2018-07-02 一种ppr管材增韧剂及其制备方法和ppr管材 Pending CN109021406A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810710401.4A CN109021406A (zh) 2018-07-02 2018-07-02 一种ppr管材增韧剂及其制备方法和ppr管材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810710401.4A CN109021406A (zh) 2018-07-02 2018-07-02 一种ppr管材增韧剂及其制备方法和ppr管材

Publications (1)

Publication Number Publication Date
CN109021406A true CN109021406A (zh) 2018-12-18

Family

ID=65521343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810710401.4A Pending CN109021406A (zh) 2018-07-02 2018-07-02 一种ppr管材增韧剂及其制备方法和ppr管材

Country Status (1)

Country Link
CN (1) CN109021406A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110978704A (zh) * 2019-12-13 2020-04-10 邓权塑业科技(湖南)有限公司 一种高韧性的ppr管材及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306585A (ja) * 2002-04-15 2003-10-31 Sekisui Chem Co Ltd 樹脂−層状珪酸塩複合材料及びその製造方法
CN102086280A (zh) * 2009-12-04 2011-06-08 中国石油化工股份有限公司 一种聚丙烯纳米复合材料的制备方法
CN103865171A (zh) * 2014-03-06 2014-06-18 抚顺易桂塑胶科技有限公司 一种pp耐寒增韧功能的色母粒及其制备方法
CN106589619A (zh) * 2016-11-30 2017-04-26 浙江中财管道科技股份有限公司 一种多元增韧改性的pp‑r管材专用料及其制备方法
US20180066087A1 (en) * 2016-09-02 2018-03-08 University Of Guelph Toughened polyolefin and biocarbon based light-weight biocomposites and method of making the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306585A (ja) * 2002-04-15 2003-10-31 Sekisui Chem Co Ltd 樹脂−層状珪酸塩複合材料及びその製造方法
CN102086280A (zh) * 2009-12-04 2011-06-08 中国石油化工股份有限公司 一种聚丙烯纳米复合材料的制备方法
CN103865171A (zh) * 2014-03-06 2014-06-18 抚顺易桂塑胶科技有限公司 一种pp耐寒增韧功能的色母粒及其制备方法
US20180066087A1 (en) * 2016-09-02 2018-03-08 University Of Guelph Toughened polyolefin and biocarbon based light-weight biocomposites and method of making the same
CN106589619A (zh) * 2016-11-30 2017-04-26 浙江中财管道科技股份有限公司 一种多元增韧改性的pp‑r管材专用料及其制备方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
冯新德主编: "《高分子词典》", 30 June 1998, 中国石化出版社 *
张晓龙等: "聚丙烯β成核剂的研究进展", 《合成树脂及塑料》 *
朵英贤等: "《纳米塑料技术》", 31 December 2006, 浙江科学技术出版社 *
杨华明等著: "《硅酸盐矿物精细化加工基础与技术》", 30 April 2010, 冶金工业出版社 *
水恒毅等: "各种羧酸二盐对嵌段共聚聚丙烯的β成核研究", 《现代塑料加工应用》 *
王煦漫等: "《高分子纳米复合材料》", 31 August 2017, 西北工业大学出版社 *
董莉等: "高光泽透明聚丙烯的研究进展", 《合成树脂及塑料》 *
辛忠著: "《小分子调控大分子结晶:理论与实践》", 31 August 2016, 华东理工大学出版社 *
郑水林等: "《粉体表面改性》", 30 September 2011, 中国建材工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110978704A (zh) * 2019-12-13 2020-04-10 邓权塑业科技(湖南)有限公司 一种高韧性的ppr管材及其制备方法

Similar Documents

Publication Publication Date Title
JP6823675B2 (ja) 改善された特性を有するポリ(アリーレンエーテルケトン)に基づく組成物
CN102070820B (zh) 一种耐高温聚乙烯色母粒及其制备方法
CN105504552B (zh) 一种管材用聚丁烯‑1材料及其制备方法
CN103694564B (zh) 一种pp/pmma合金材料及其制备方法
CN104356574B (zh) 高光高亮黑色母及其制备方法
CN104558747B (zh) 一种快速成型高密度聚乙烯组合物及其制备方法
CN103382274B (zh) 一种嵌段共聚聚丙烯复合添加剂
CN107216517B (zh) 一种超高分子量聚乙烯3d打印耗材的制备方法
CN103275454B (zh) 一种增强高光abs复合材料及其制备方法
CN106916341A (zh) 乙酸纤维素组合物的制造方法
CN108587165A (zh) 一种快速结晶性聚苯硫醚复合材料
CN109517311A (zh) 一种pmma复合材料及其制备方法
CN107540920A (zh) 茂金属聚乙烯组合物及其制备方法
CN103044739A (zh) 一种聚乙烯排水管材及其制备方法
CN109021406A (zh) 一种ppr管材增韧剂及其制备方法和ppr管材
CN106751035A (zh) 一种耐折叠发白聚丙烯复合材料及其制备方法
CN104448575B (zh) 一种耐低温pp‑r管材及其制备方法
CN106084674A (zh) 一种塑胶填充母粒及其制备方法
CN112812550A (zh) 高光泽度玻璃纤维增强聚酰胺复合材料及其制备方法
CN112724536A (zh) 用于制备管材的感温变色母粒及其制备方法和应用
CN108047666A (zh) 一种抗拉强度环保塑料色母粒高分子载体及其制造方法
CN107057337A (zh) 一种高强高刚玻纤增强尼龙材料及其制备方法
CN103571056A (zh) 一种高热变形温度聚丙烯纳米复合组合物及其制备方法
CN107011645A (zh) 一种高温抗黄变阻燃聚碳酸酯组合物及其制备方法
CN107841114A (zh) 一种聚乳酸3d打印线材及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181218