CN109004181B - 一种氮硫共掺杂石墨烯气凝胶自支撑电极的制备方法 - Google Patents

一种氮硫共掺杂石墨烯气凝胶自支撑电极的制备方法 Download PDF

Info

Publication number
CN109004181B
CN109004181B CN201810617853.8A CN201810617853A CN109004181B CN 109004181 B CN109004181 B CN 109004181B CN 201810617853 A CN201810617853 A CN 201810617853A CN 109004181 B CN109004181 B CN 109004181B
Authority
CN
China
Prior art keywords
solution
sulfur
nitrogen
doping
graphene aerogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810617853.8A
Other languages
English (en)
Other versions
CN109004181A (zh
Inventor
黄剑锋
席乔
李嘉胤
曹丽云
程娅伊
刘倩倩
徐培光
李帅楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201810617853.8A priority Critical patent/CN109004181B/zh
Publication of CN109004181A publication Critical patent/CN109004181A/zh
Application granted granted Critical
Publication of CN109004181B publication Critical patent/CN109004181B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公布了一种氮硫共掺杂石墨烯气凝胶自支撑电极,由以下步骤得到:将氧化石墨烯均匀分散在含氮和硫的化合物溶液中,得到分散均匀的包括氧化石墨烯、含氮和硫的化合物、及足量溶剂的分散液;将分散均匀的分散液进行溶剂热反应,反应结束后干燥产物,得到氮硫共掺杂石墨烯气凝胶。该氮硫共掺杂石墨烯气凝胶自支撑电极,包括石墨烯气凝胶骨架、及负载在石墨烯表面的掺杂元素;所述掺杂元素中氮原子掺杂量在5%~15%,硫原子掺杂量在1%~7%,异原子掺杂量及掺杂状态可控。本发明可直接得到自支撑电极,相比传统的涂覆电极工艺,大大简化了制备工艺。并且实验成本低廉。过程简便,可实现大规模制备。

Description

一种氮硫共掺杂石墨烯气凝胶自支撑电极的制备方法
技术领域
本发明涉及石墨烯气凝胶电极材料领域,特别涉及一种氮硫共掺杂石墨烯气凝胶自支撑电极的制备方法。
背景技术
众所周知,石墨烯是一种具有完美结构的由碳原子组成的单原子层厚度的二维晶体。然而石墨烯缺少固有的带隙以及在实验中极易重堆叠的问题限制了其在各领域的实际应用。研究表明,异原子掺杂能够有效的打开石墨烯的带隙,使得物理化学和电学性能得到明显的改善。另外,将石墨烯结构三维化调控可解其易堆叠的问题。常见的掺杂石墨烯方法有CVD法、球磨法、等离子体法、电弧放电法、湿化学法以及热处理法。相比之下,湿化学法占据实验条件简单并其可实现三维凝胶碳网络的优点而被广泛应用。
在锂离子电池和钠离子电池等能源方向,掺杂石墨烯具有优异的电化学性能已经被广泛研究做为一种电极材料,比如申请公布号为CN105565306A的专利中公开了一种高密度氮掺杂石墨烯及其制备方法。该方法报道了氧化石墨烯和氮源通过水热法制备了氮掺杂石墨烯并应用在锂电上,相比石墨烯提高了材料的比容量。但是,传统的电极需要添加导电剂和粘结剂等辅助材料,制备方法复杂,而自支撑电极的出现就大大简化了电极的制备过程。目前常见的石墨烯气凝胶由于强度不够,不易直接作为自制成电极材料。因此需要制备强度事宜的石墨烯气凝胶材料。
发明内容
在现有问题的基础上,本发明的目的在于提出一种氮硫共掺杂石墨烯气凝胶自制成电极的制备方法。利用三聚硫氰酸所含有的氮硫原子,一方面实现掺杂,另一方面与氧化石墨烯的含氧官能团通过氢键交联,同时利用三聚硫氰酸结构特殊的三嗪环贡献的π键与氧化石墨烯的π键发生π-π堆叠,以上所述的氢键和π-π堆叠相互交联形成更稳健的气凝胶结构。该碳材料通过一步水热法实现多原子共掺杂及结构构筑,可替代传统涂覆电极的制备方法,将电极制备过程大大简化,作为锂电和钠电负极具有良好的倍率性能。该制备方法操作简单,成本低廉,可实现大规模制备。利用此方法制备的电极可应用在锂离子电池和钠离子电池领域,并且可作为碳载体负载硫或硒用作锂硫或锂硒电池电极。
具体技术方案如下:一种氮硫共掺杂石墨烯气凝胶自制成电极的制备方法,包括如下步骤:
(1)氧化石墨烯水溶液超声分散,记为A液;
(2)配制含有氮源和硫源的溶液,记为B液;
(3)将B液缓慢加入A中,然后持续搅拌;
(4)将准备好的溶液进行水热反应, 水热反应完成后进行干燥。
所述氧化石墨烯水溶液的浓度为2~12 mg/ml;
所述持续搅拌时间为1h~6h,搅拌温度为50℃~100℃;
所述含有氮源和硫源的溶液的溶质为三聚硫氰酸;
所述氧化石墨烯和氮硫源的质量比为5:1~20;
所述A液中水的体积和B液中溶剂的体积比为4:1~4;
所述水热反应的反应时间为8h~36h,水热温度为120℃~200℃
所述干燥方法为烘干,真空干燥,冷冻干燥中的一种。
采用上述工艺方法制备的本发明,具有如下有益的效果:
1. 在制备气凝胶的时候同时实现异原子均匀掺杂,氮原子掺杂量在5% ~ 15%,硫原子掺杂量在1~7%,异原子掺杂量及掺杂状态可控。同时,所制备气凝胶结构疏松多孔,比表面积大,在作为锂离子电池或者钠离子电池负极材料时有利于离子和电荷的运输。
2 本发明可直接得到自支撑电极,相比传统的涂覆电极工艺,大大简化了制备工艺。并且实验成本低廉。过程简便,可实现大规模制备。
附图说明
图1为实施例3氮硫共掺杂石墨烯气凝胶外观照片;
图2为实施例3氮硫共掺杂石墨烯气凝胶扫描电镜照片。
具体实施方式
下面结合实施例对本发明作进一步阐述,但是本发明不局限于以下实施例。
实施例1:
(1)将50mg氧化石墨烯溶入45ml水中,超声分散,记为A液;
(2)将100mg的三聚硫氰酸溶入5ml水中,记为B液;
(3)将B液缓慢加入A中,然后在50℃的条件下持续搅拌2h;
(4)将准备好的溶液转移到100ml的聚四氟乙烯内进行水热反应, 水热120℃/8h,水热反应完成后在烘箱中进行烘干干燥。
实施例2:
(1)将60mg氧化石墨烯溶入20ml水中,超声分散,记为A液;
(2)将180mg的三聚硫氰酸溶入10ml二甲基亚砜中,记为B液;
(3)将B液缓慢加入A中,然后在70℃的条件下持续搅拌5h;
(4)将准备好的溶液转移到100ml的聚四氟乙烯内进行水热反应, 水热150℃/10h, 水热反应完成后进行真空干燥。
实施例3:
(1)将80mg氧化石墨烯溶入25ml水中,超声分散,记为A液;
(2)将80mg的三聚硫氰酸溶入25ml乙醇中,记为B液;
(3)将B液缓慢加入A中,然后在80℃的条件下持续搅拌6h;
(4)将准备好的溶液转移到100ml的聚四氟乙烯内进行水热反应, 水热180℃/12h, 水热反应完成后进行冷冻干燥。
参照附图1、图2,图1为本实施案例所制备的氮硫掺杂石墨烯气凝胶的宏观照片。图2为本实施案例所制备样品的扫描电镜照片,用日本电子公司的S-4800型扫描电子显微镜(SEM)进行形貌观察,能看到明显的由石墨烯纳米片组成三维多孔结构。
实施例4:
(1)将100mg氧化石墨烯溶入25ml水中,超声分散,记为A液;
(2)将150mg的三聚硫氰酸溶入25ml乙二醇中,记为B液;
(3)将B液缓慢加入A中,然后在100℃的条件下持续搅拌6h;
(4)将准备好的溶液转移到100ml的聚四氟乙烯内进行水热反应, 水热180℃/24h, 水热反应完成后进行真空干燥。
实施例5:
(1)将50mg氧化石墨烯溶入40ml水中,超声分散,记为A液;
(2)将200mg的三聚硫氰酸溶入10ml乙醇中,记为B液;
(3)将B液缓慢加入A中,然后在80℃的条件下持续搅拌1h;
(4)将准备好的溶液转移到100ml的聚四氟乙烯内进行水热反应, 水热200℃/12h, 水热反应完成后进行真空干燥。
实施例6:
(1)将50mg氧化石墨烯溶入40ml水中,超声分散,记为A液;
(2)将200mg的三聚硫氰酸溶入40ml乙醇中,记为B液;
(3)将B液缓慢加入A中,然后在100℃的条件下持续搅拌1h;
(4)将准备好的溶液转移到100ml的聚四氟乙烯内进行水热反应, 水热200℃/8h,水热反应完成后进行真空干燥。
实施例7:
(1)将50mg氧化石墨烯溶入40ml水中,超声分散,记为A液;
(2)将10mg的三聚硫氰酸溶入10ml乙醇中,记为B液;
(3)将B液缓慢加入A中,然后在50℃的条件下持续搅拌6h;
(4)将准备好的溶液转移到100ml的聚四氟乙烯内进行水热反应, 水热120℃/36h, 水热反应完成后进行真空干燥。

Claims (1)

1.一种氮硫共掺杂石墨烯气凝胶自支撑电极的制备方法,其特征在于,步骤包括:
1)氧化石墨烯水溶液超声分散,记为A液;
2)配制含有三聚硫氰酸的溶液,用于溶解三聚硫氰酸的溶剂为水、乙醇、乙二醇、二甲基亚砜中的一种或多种,记为B液;
3)将B液缓慢加入A中,令氧化石墨烯与三聚硫氰酸的质量比为5:(1~20),然后持续搅拌,搅拌时间为1h~6h,搅拌温度为50℃~100℃;
4)将准备好的溶液进行溶剂热反应,反应时间为8h~36h,溶剂热温度为120℃~200℃,溶剂热反应完成后进行干燥,得到氮硫共掺杂石墨烯气凝胶自支撑电极;
所述氧化石墨烯水溶液的浓度为2~12 mg/ml;
所述A液中水的体积和B液中溶剂的体积比为4:(1~4);
所述干燥方法为烘干,真空干燥,冷冻干燥中的一种。
CN201810617853.8A 2018-06-15 2018-06-15 一种氮硫共掺杂石墨烯气凝胶自支撑电极的制备方法 Active CN109004181B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810617853.8A CN109004181B (zh) 2018-06-15 2018-06-15 一种氮硫共掺杂石墨烯气凝胶自支撑电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810617853.8A CN109004181B (zh) 2018-06-15 2018-06-15 一种氮硫共掺杂石墨烯气凝胶自支撑电极的制备方法

Publications (2)

Publication Number Publication Date
CN109004181A CN109004181A (zh) 2018-12-14
CN109004181B true CN109004181B (zh) 2021-06-01

Family

ID=64601530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810617853.8A Active CN109004181B (zh) 2018-06-15 2018-06-15 一种氮硫共掺杂石墨烯气凝胶自支撑电极的制备方法

Country Status (1)

Country Link
CN (1) CN109004181B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109911889A (zh) * 2019-04-19 2019-06-21 陕西科技大学 一种氮硫共掺杂多孔石墨烯及其制备方法和应用
CN110600273B (zh) * 2019-09-03 2021-05-14 滨州学院 掺杂型硒化物/石墨烯气凝胶复合电极材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861632A (zh) * 2014-04-07 2014-06-18 吉林大学 一种硫掺杂的多孔氮化碳光催化材料的制备方法
CN105668724A (zh) * 2016-03-18 2016-06-15 常州大学 一步法合成氮硫共掺杂石墨烯气凝胶及其对多种重金属离子的电吸附去除
CN106629694A (zh) * 2016-12-23 2017-05-10 华中科技大学 一种多元素掺杂的三维多孔石墨烯气凝胶的制备方法
CN108039464A (zh) * 2017-11-30 2018-05-15 暨南大学 一种自支撑钠/钾离子电池材料及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861632A (zh) * 2014-04-07 2014-06-18 吉林大学 一种硫掺杂的多孔氮化碳光催化材料的制备方法
CN105668724A (zh) * 2016-03-18 2016-06-15 常州大学 一步法合成氮硫共掺杂石墨烯气凝胶及其对多种重金属离子的电吸附去除
CN106629694A (zh) * 2016-12-23 2017-05-10 华中科技大学 一种多元素掺杂的三维多孔石墨烯气凝胶的制备方法
CN108039464A (zh) * 2017-11-30 2018-05-15 暨南大学 一种自支撑钠/钾离子电池材料及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Facile synthesis of structure-controllable, N-doped graphene aerogels and their application in supercapacitors";Xianpan Shi等;《RSC Advances》;20150907;第5卷;第77130-77137页 *
"Sulfur codoping enables efficient oxygen electroreduction on FeCo alloy encapsulated in N-Doped carbon nanotubes";Dengke Zhao等;《Journal of Alloys and Compounds》;20180111;第741卷;第368-376页 *
"Three-dimensional sulphur/nitrogen co-doped reduced graphene oxide as high-performance supercapacitor binder-free electrodes";Jinghao Huo等;《Applied Surface Science》;20180131;第442卷;第575-580页 *

Also Published As

Publication number Publication date
CN109004181A (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
Zhao et al. Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li–Se and Na–Se batteries
Lee et al. CO2-Oxidized Ti3C2T x–MXenes Components for Lithium–Sulfur Batteries: Suppressing the Shuttle Phenomenon through Physical and Chemical Adsorption
Xiao et al. Sandwich-type NbS2@ S@ I-doped graphene for high-sulfur-loaded, ultrahigh-rate, and long-life lithium–sulfur batteries
He et al. MOF-derived cobalt sulfide grown on 3D graphene foam as an efficient sulfur host for long-life lithium-sulfur batteries
Fang et al. Polysulfide immobilization and conversion on a conductive polar MoC@ MoOx material for lithium-sulfur batteries
Zhang et al. Highly stable lithium–sulfur batteries based on p–n heterojunctions embedded on hollow sheath carbon propelling polysulfides conversion
Carter et al. Polysulfide anchoring mechanism revealed by atomic layer deposition of V2O5 and sulfur-filled carbon nanotubes for lithium–sulfur batteries
Liu et al. Fabrication of an inexpensive hydrophilic bridge on a carbon substrate and loading vanadium sulfides for flexible aqueous zinc-ion batteries
Huang et al. Porous NiCoP in situ grown on Ni foam using molten-salt electrodeposition for asymmetric supercapacitors
Wang et al. A lightweight multifunctional interlayer of sulfur–nitrogen dual-doped graphene for ultrafast, long-life lithium–sulfur batteries
Zhao et al. Graphene-wrapped chromium-MOF (MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li–S batteries
Wu et al. Smart construction of 3D N-doped graphene honeycombs with (NH 4) 2 SO 4 as a multifunctional template for Li-ion battery anode:“A choice that serves three purposes”
CN108063056B (zh) 多孔氮掺杂碳/碳纳米管复合材料及其制备方法和应用
Yang et al. Bacteria absorption-based Mn2P2O7–carbon@ reduced graphene oxides for high-performance lithium-ion battery anodes
Gao et al. Nanofiber networks of Na 3 V 2 (PO 4) 3 as a cathode material for high performance all-solid-state sodium-ion batteries
Qin et al. Graphene-based Fe-coordinated framework porphyrin as an interlayer for lithium–sulfur batteries
Zhao et al. In-situ catalytic growth carbon nanotubes from metal organic frameworks for high performance lithium-sulfur batteries
Liu et al. Direct synthesis of FeS/N-doped carbon composite for high-performance sodium-ion batteries
Huang et al. Enhanced pseudocapacitance contribution to outstanding Li-storage performance for a reduced graphene oxide-wrapped FeS composite anode
Zhu et al. Good low-temperature properties of nitrogen-enriched porous carbon as sulfur hosts for high-performance Li–S batteries
US10186707B2 (en) Methods of manufacturing graphene based material
Liu et al. High-temperature solvent-free sulfidation of MoO 3 confined in a polypyrrole shell: MoS 2 nanosheets encapsulated in a nitrogen, sulfur dual-doped carbon nanoprism for efficient lithium storage
Ji et al. Nitrogen-doped graphene enwrapped silicon nanoparticles with nitrogen-doped carbon shell: a novel nanocomposite for lithium-ion batteries
CN104103821B (zh) 硅碳负极材料的制备方法
Chu et al. A 3D graphene current collector boosts ultrahigh specific capacity in a highly uniform Prussian blue@ graphene composite as a freestanding cathode for sodium ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant