CN108986123A - 牙颌三维数字模型的分割方法 - Google Patents

牙颌三维数字模型的分割方法 Download PDF

Info

Publication number
CN108986123A
CN108986123A CN201710403222.1A CN201710403222A CN108986123A CN 108986123 A CN108986123 A CN 108986123A CN 201710403222 A CN201710403222 A CN 201710403222A CN 108986123 A CN108986123 A CN 108986123A
Authority
CN
China
Prior art keywords
dimensional digital
digital model
neural network
dental
convolutional neural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710403222.1A
Other languages
English (en)
Inventor
刘晓林
冯洋
周博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUXI TIME ANGEL MEDICAL DEVICES TECHNOLOGY CO LTD
Original Assignee
WUXI TIME ANGEL MEDICAL DEVICES TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUXI TIME ANGEL MEDICAL DEVICES TECHNOLOGY CO LTD filed Critical WUXI TIME ANGEL MEDICAL DEVICES TECHNOLOGY CO LTD
Priority to CN201710403222.1A priority Critical patent/CN108986123A/zh
Priority to PCT/CN2018/075256 priority patent/WO2018218988A1/zh
Priority to US16/463,229 priority patent/US10943351B2/en
Publication of CN108986123A publication Critical patent/CN108986123A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/048Fuzzy inferencing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/774Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30036Dental; Teeth

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Multimedia (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Human Computer Interaction (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Fuzzy Systems (AREA)
  • Image Analysis (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

本申请的一方面提供了一种牙颌三维数字模型的分割方法,包括:获取第一牙颌三维数字模型;以及利用经训练的具有深度人工神经网络分割所述第一牙颌三维数字模型的各牙齿。

Description

牙颌三维数字模型的分割方法
技术领域
本申请总体上涉及牙颌三维数字模型的分割方法,尤其是涉及利用深度学习 能力的人工神经网络对牙颌三维数字模型进行分割的方法。
背景技术
如今,牙科治疗越来越多地借助计算机技术,在很多情况下需要对扫描获得 的包括牙列与至少部分牙龈的牙颌的三维数字模型进行分割,把各牙齿的牙冠部 分分割开,包括各牙冠与牙龈之间以及相邻牙冠之间的分割。
通过计算机用户界面手工分割牙颌的三维数字模型虽然具有分割精度高的 优点,但效率较低。
基于曲率计算或骨架线技术,利用计算机对牙颌的三维数字模型进行自动分 割的方案虽然可以解放人力,但具有以下缺点:(一)对于非标准的牙颌三维数 字模型(比如,缺少一颗或多颗牙齿、牙齿形状不符合常规和/或牙颌三维数字 模型中噪声较大)的分割准确率较低;(二)很难保证分割得到的牙龈线是平滑 的;以及(三)对噪声较为敏感,因此对牙颌三位数字模型的质量要求较高。
鉴于以上,有必要提供一种新的牙颌三维数字模型的分割方法。
发明内容
本申请的一方面提供了一种牙颌三维数字模型的分割方法,包括:获取第一 牙颌三维数字模型;以及利用经训练的深度人工神经网络分割所述第一牙颌三维 数字模型的各牙齿。
在一些实施方式中,所述人工神经网络是经过多个预先完成分割的牙颌三维 数字模型的训练。
在一些实施方式中,所述牙颌三维数字模型分割方法还包括:对所述第一牙 颌三维数字模型进行分割之前,对其进行简化。
在一些实施方式中,所述简化是分区域进行,其中,牙龈区域的简化程度高 于牙齿区域。
在一些实施方式中,所述简化是针对面片顶点进行简化。
在一些实施方式中,所述简化算法包括与相邻面片夹角相关的分量,以降低 夹角较小之处的简化概率。
在一些实施方式中,所述牙颌三维数字模型分割方法还包括:对所述第一牙 颌三维数字模型完成分割后,对分割边界进行优化,其中,所述对所述分割边界 的优化是采用模糊聚类算法,该算法包括与面片夹角相关的分量,以提高夹角较 小之处成为分割边界的概率。
在一些实施方式中,所述人工神经网络是卷积神经网络。
在一些实施方式中,所述卷积神经网络包括第一卷积神经网络和第二卷积神 经网络,其中,所述第一卷积神经网络用于对牙龈和牙齿进行二分类,所述第二 卷积神经网络用于基于所述第一卷积神经网络的结果,对牙齿进行多分类。
在一些实施方式中,所述第二卷积神经网络用于对牙齿进行八分类,包括: 中切牙、侧切牙、尖牙、第一前磨牙、第二前磨牙、第一磨牙、第二磨牙以及第 三磨牙。
在一些实施方式中,所述第一卷积神经网络和第二卷积神经网络至少之一包 括“卷积层-卷积层-池层”结构。
在一些实施方式中,所述第一卷积神经网络和第二卷积神经网络至少之一包 括“卷积层-卷积层-池层-卷积层-卷积层-池层”结构。
在一些实施方式中,所述第一卷积神经网络和第二卷积神经网络至少之一包 括“全连接层-dropout-全连接层”结构。
附图说明
以下将结合附图及其详细描述对本申请的上述及其他特征作进一步说明。应 当理解的是,这些附图仅示出了根据本申请的若干示例性的实施方式,因此不应 被视为是对本申请保护范围的限制。除非特别指出,附图不必是成比例的,并且 其中类似的标号表示类似的部件。
图1为本申请一个实施例中的牙颌三维数字模型分割方法的示意性流程图;
图2示意性地展示了本申请一个实施例中的卷积神经网络的结构;以及
图3示意性地展示了本申请一个实施例中窄带领域的寻找。
具体实施方式
以下的详细描述中引用了构成本说明书一部分的附图。说明书和附图所提及 的示意性实施方式仅仅出于是说明性之目的,并非意图限制本申请的保护范围。 在本申请的启示下,本领域技术人员能够理解,可以采用许多其他的实施方式, 并且可以对所描述实施方式做出各种改变,而不背离本申请的主旨和保护范围。 应当理解的是,在此说明并图示的本申请的各个方面可以按照很多不同的配置来 布置、替换、组合、分离和设计,这些不同配置都在本申请的保护范围之内。
本申请的一方面提供了一种利用深度人工神经网络分割牙颌三维数字模型 的方法,下面以卷积神经网络为例进行说明。深度人工神经网络是具有深度学习 能力的人工神经网络。深度学习是通过组合低层特征形成更加抽象的高层表示属 性类别或特征,以发现数据的分布式特征表示。
请参图1,为本申请一个实施例中的牙颌三维数字模型分割方法100的示意 性流程图。
在101中,获取牙颌的三维数字模型。
在一些实施方式中,可以直接扫描患者的牙颌,获取牙颌三维数字模型。在 又一些实施方式中,可以扫描患者牙颌的实体模型,比如石膏模型,获取牙颌三 维数字模型。在又一些实施方式中,可以扫描患者牙颌的咬模,获取牙颌三维数 字模型。
在一个实施例中,可以基于三角网格构建牙颌三维数字模型,下面以此类牙 颌三维数字模型为例进行说明。可以理解,还可以基于其他类型的网格构建牙颌 三维数字模型,比如四边形网格、五边形网格、六边形网格等,此处不再进行一 一说明。
在103中,简化牙颌三维数字模型。
在一个实施例中,可以对101中获得的牙颌三维数字模型进行简化,以提高 后续计算效率。
在一个实施例中,可以针对面片的顶点进行简化,即删除部分顶点,以简化 牙颌三维数字模型。对于以三角网格构建的牙颌三维数字模型,可以将其上的每 一个三角形片称为一个面片。
在一个实施例中,可以基于二次误差度量(Quadric Error Metrics)简化牙颌 三维数字模型。
首先,对于牙颌三维数字模型面片的每个顶点,根据方程式(1)计算Q矩 阵:
Q=∑p∈planes(v)Kp 方程式(1)
其中,planes(v)表示原始顶点(未经简化的牙颌三维数字模型的面片的顶点) 相关平面的集合,Kp由以下方程式(2)表达,
其中,p由以下方程式(3)表达,
p=[a b c d]T 方程式(3)
其中,p代表以下方程式(4)的平面方程的系数,
ax+by+cz+d=0 方程式(4)
其中,a、b以及c满足以下条件,
a2+b2+c2=1 方程式(5)
在一个实施例中,可以针对每一对顶点组合计算合并误差,然后迭代选取最 小误差的顶点组合进行收缩,并更新所有相关的边的误差。基于Q矩阵的计算, 可以获得简化后的顶点。
在一个实施例中,可以引入最小化能量函数,以按牙齿、牙龈线和牙龈,粗 略地把牙颌三维数字模型进行分区,以便针对不同区域采用不同的简化程度。比 如,可以提高对牙龈区域的简化程度,降低对牙龈线和牙齿区域的简化程度。在 一个实施例中,可以采用以下方程式(6)所表示的最小化能量函数。
E(x)=∑i∈νEunary(i)+λ∑(i,j)∈εEpairwise(i,j) 方程式(6)
其中,v表示牙颌三维数字模型所有面片的集合;ε表示相邻面片关系的集 合,包括牙齿-牙齿、牙龈-牙龈、牙龈线-牙龈线、牙龈-牙龈线及牙齿-牙龈线。
其中,Eunary是根据面片所处的位置赋予面片的权重,以在经简化的模型上 尽可能保留一些特征(比如,牙龈线、牙冠信息等),其可以由以下方程式(7) 表达,
Eunary=ε1E1+ε2E2-ε3E3 方程式(7)
其中,ε1、ε2以及ε3满足以下条件,
ε123=1 方程式(8)
其中,E1代表牙齿和牙龈的概率能量,是沿z轴递减的方向赋予面片由大 到小的权重。E2表示由局部最高点(比如磨牙上的尖点,对上颌模型而言,为 局部区域z轴最大值点)向外广搜,赋予面片的由大到小的权重,距离所述局部 最高点越近,面片属于牙齿的概率越大。E3表示按面片与模型中心的距离由近 及远,赋予面片的由小到大的权重,以此降低舌侧牙龈的干扰。
Eunary越大,表示面片属于牙齿的可能性越高。
其中,Epairwise描述相邻面片属于不同类别时所产生的代价,其基本思想是若 相邻面片夹角较小,说明该处特征明显,那么降低相关顶点被简化的可能性。其 中,Epairwise可以由以下方程式(9)表达,
其中,S表示与置信牙齿区域相连的面片集合,T表示与置信牙龈区域或其 他牙齿区域相连的面片集合,w为参考神经网络预测结果赋予Epairwise的权值。
其中,AngDist表示相邻面片的角度距离,其可以由以下方程式(10)表达,
其中,αij表示相邻面片i和j的法向夹角,η为预先设定的一个较小的正数。
对牙颌三维数字模型进行粗略分区时,希望分割线尽可能在牙龈线上,而不 是在牙齿间缝隙或磨牙的牙槽线上。在一个实施例中,可以将所有极大曲率在一 定范围内(k邻域)的顶点作为种子点,即可能的分割边界。但是在这些种子点 中,有两种区域的点是不希望将其作为分割边界,即磨牙上的牙槽线和牙齿间缝 隙,可以把这两种区域的顶点作为保护点。因此,可以减少和种子点相关边的权 重,同时增大保护点相关边的权重。权重越小,被切割的可能性越大。
关于种子点的寻找,可以对整个模型进行曲率分析,将顶点极大曲率落在 [s1,s2]间的顶点作为种子点。在一个实施例中,对于上颌的牙颌三维数字模型, 可以设置s1=-14.0,s2=-0.4。
关于切割点的寻找,可以对每个种子点设定一个BFS搜索(Breadth FirstSearch)区域,寻找在这个区域内最大测地线距离的两个点,若这两个点的欧氏 距离小于某个阈值,则认为该点为牙齿间缝隙,因为这一特性与凹槽相符。为降 低算法复杂度,可以对顶点进行随机采样,采样点附近的顶点可以认为和采样点 具有相同的性质。
关于保护点,可以从局部最高点出发进行BFS搜索,在这部分内的种子点 可以认为是牙槽线上的点。
对原始的牙颌三维数字模型进行简化后即获得经简化的牙颌三维数字模型。
在105中,进行特征提取。
在经简化的牙颌三维数字模型上提取卷积神经网络所需的输入特征。
在一个实施例中,可以提取以下特征:Curvature Feature、PCA Feature(Principal Components Analysis)、Shape Diameter Feature、Distance from MedialSurface、Average Geodesic Distance、Shape Contexts、Spin Images以及坐标特征。 除坐标特征外的其他特征的提取可参由EvangelosKalogerakis、Aaron Hertzmann 以及Karan Singh在ACM Transactions on Graphics,29(3),2010上发表的 《Learning3D MeshSegmentation and Labeling》。以下对这些特征的提取进行简单 说明。
1)Curvature Feature
在一个实施例中,可以采用以下方法提取Curvature Feature。
首先,选择与P点临近的N个顶点,在一个实施例中,可以利用连接信息 以缩减搜索空间,提高计算效率。
接着,基于满足以下条件的二次矩阵块F(x,y,z)拟合所有临近的顶点,
F(x,y,z)=0 方程式(11)
计算P点在所述矩阵块上的映射P0,且满足以下条件,
F(P0)=0 方程式(12)
在P0点基于所述矩阵块计算曲率特性,即可作为P点的曲率。
若对所有临近顶点,
其中,a~n为拟合平面函数F(x,y,z)的系数,
那么,可以把矩阵B-1A的两个特征值k1和k2作为主曲率,其中,
其中,系数E、F、G为F(x,y,z)的一阶偏导,系数L、M、N为F(x,y,z)的二 阶偏导。
2)PCA Feature
在一个实施例中,可以构造不同范围的局部面片中心的协方差矩阵,辅以面 积权重,计算其3个奇异值s1、s2以及s3。范围可以由多种测地线距离半径所 决定,比如5%、10%、20%等。每一组可以有以下几种特征描述:s1/(s1+s2+s3)、 s2/(s1+s2+s3)、s3/(s1+s2+s3)、(s1+s2)/(s1+s2+s3)、(s1+s3)/(s1+s2+s3)、 (s2+s3)/(s1+s2+s3)、s1/s2、s1/s3、s2/s3、s1/s2+s1/s3、s1/s2+s2/s3及s1/s3+s2/s3。
3)Shape Diameter Feature
在一个实施例中,可以这么定义Shape Diameter Feature(简称“SDF”): 在面片中心点上向该点法向量反向的一定角度内发射一定数量的射线,这些射线 与另一面相交形成线段。以长度中值的线段为标准,计算所有长度在规定标准差 之内的线段的加权平均值、中值、均方,作为该点的SDF值。
在一个实施例中,可以加入计算获得的SDF的多种对数化版本(对应正规 化项α=1,2,4,8),如以下方程式(16),
4)Distance from Medial Surface
在一个实施例中,可以把面片三个顶点的坐标平均值作为面片中心点的坐标 值。然后在牙颌三维数字模型所定义的形状内,找到以所述面片中心点为切点的 最大内切圆。由该内切圆的圆心向四周均衡地发射射线,与曲面相交(即牙颌三 维数字模型所定义的封闭的形状),计算所有线段的长度。可以计算这些线段长 度的加权平均、中值、均方作为特征,并可以加入归一化和对数化版本。
5)Average Geodesic Distance
该特征用于描述面片之间的离散程度。在一个实施例中,可以计算曲面所有 面片中心之间,对应的平均测地线距离。还可以把均方距离和占不同距离百分比 范围的值作为特征。然后,进行归一化。
6)Shape Contexts
在一个实施例中,可以针对每一个面片,计算其他面片对应的分布(辅以面 积权重),分别用面片法向量的角度和对数化测地线距离来描述。在一个实施例 中,可以建立6个测地线距离区间和6个角度区间。
7)Spin Images
在一个实施例中,可以根据以下方法进行计算。首先,以顶点P法向量为中 轴建立柱面坐标系。然后,根据以下方程式(17)把3D点投射到2D Spin Image 上,
其中,α表示到法向量n的径向距离,β表示到切平面的轴向距离,n表示 经过P点的法向量,X表示3D点的坐标(x,y,z)。
8)坐标特征
在一个实施例中,可以加入以下7项坐标特征:顶点的x、y、z坐标值、坐 标原点到顶点的距离r、经过坐标原点和顶点的直线与z轴的夹角θ、经过坐标 原点和顶点的直线与y轴的夹角
基于以上,可以得到共600项特征,构成20×30的特征矩阵。特征维数请参 下表1:
特征 CUR PCA SC AGD SDF DIS SI CD 总维数
维数 64 48 270 15 72 24 100 7 600
特征提取完成后,可以把提取到的特征输入经训练的卷积神经网络进行分类 /分割。
在107中,利用经训练的卷积神经网络分割牙颌三维数字模型。
在一个实施例中,可以基于caffe深度学习平台和python语言搭建卷积神经 网络。
请参图2,示意性地展示了本申请一个实施例中的卷积神经网络200的结构。 卷积神经网络200依次包括以下11个层:输入层201、卷积层203、卷积层205、 池层207、卷积层209、卷积层211、池层213、全连接层215、dropout层217、 全连接层219、softmax层221以及输出层223。
采用“卷积层-卷积层-池层”的结构能够降低对局部特征的敏感性,提高计 算效率,不易过拟合,减少噪声影响。
在该实施例中,采用4层卷积层以充分分析特征数据,获取局部信息,得出 较佳的权重。采用2层池化层能够保留一部分全局信息,并具有一定的防止过拟 合效果。
相比于“全连接层-全连接层”结构,“全连接层-dropout-全连接层”结构能 在一定程度防止过拟合,增加预测准确率。
dropout层具有一定的防止过拟合的作用。
在一个实施例中,softmax层可以根据实际需求设置参数的类型。
在一个实施例中,可以如此定义卷积层的参数:[卷积核高,核宽,特征通 道数,卷积核数量]。
在一个实施例中,可以把卷积层203的参数设置为[3,5,1,6],把卷积层205 的参数设置为[3,3,16,32],可以把卷积层209的参数设置为[3,3,32,64],可以把卷 积层211的参数设置为[3,3,64,128]。
在一个实施例中,可以如此定义池层的参数:[池化核高,核宽,池化类型]。
在一个实施例中,可以把池层207的参数设置为[2,2,max],可以把池层213 的参数设置为[2,2,max]。
在一个实施例中,可以如此定义全连接层的参数:[输入数量,输出数量]。
在一个实施例中,可以把全连接层215的参数设置为[1024,100],可以把全 连接层219的参数设置为[100,2(or 8)]。
在一个实施例中,可以如此定义dropout层的参数:[丢弃百分比]。
在一个实施例中,可以把dropout层217的参数设置为[0.5]。
在一个实施例中,可以采用PReLU激活函数,能够在一定程度上避免梯度 消失现象。
在一个实施例中,为提高分类精度,可以采用两个模型。第一模型针对牙齿 和牙龈进行二分类,第二模型针对牙齿进行八分类(中切牙、侧切牙、尖牙、第 一前磨牙、第二前磨牙、第一磨牙、第二磨牙以及第三磨牙)。把提取的特征输 入第一模型获得二分类结果,然后把二分类结果输入第二模型获得八分类结果。 可以理解,第二模型也可以进行十六分类,直接对左边和右边的八颗牙齿进行分 类。
在一个实施例中,第一模型和第二模型可以均采用图2所示的卷积神经网络 200的结构。把在105中提取的特征输入第一模型可获得二分类结果。把处理后 的二分类结果输入第二模型可获得八分类结果。
在构建卷积神经网络模型后,可以对其进行训练,使其能够分割牙颌三维数 字模型。在一个实施例中,可以把卷积神经网络的训练参数设置如下(括号内为 参数赋值):学习率(0.01)、momentum(0.9)、weight_decay(0.005)、lr_policy (poly)、power(0.75)、solver_mode(GPU)。
在一个实施例中,可以用分割完成的牙颌三维数字模型,比如人工分割的牙 颌三维数字模型,训练卷积神经网络。
将105中提取的特征输入经训练的卷积神经网络就可对牙颌三维数字模型 进行分割。
通过卷积神经网络得出的面片的预测值只能大致区分牙颌各部分的区域,其 本身可能并不连续,因此可以对得到的预测值进行优化。
请参由Y.Boykov、O.Veksler、以及R.Zabih于2001年在IEEE TPAMI23,11, 1222–1239上发表的《Fast Approximate Energy Minimization Via Graph Cuts》,可 以采用其中的multilabel graph-cut方法进行多类别优化。请再参由KanGuo、 Dongqing Zhou以及Xiaowu Chen在Acm Transactions on Graphics,35(1);3,2015上 发表的《3D MeshLabeling Via Deep Convolutional Neural Networks》,能量函数可 参考其中MeshLabel Optimization的定义。令T表示模型面片集合,t为某一面片, lt和pt表示将t标记为lt及其预测概率pt,Nt表示t的相邻面片。可以建立如下最小 化能量函数:
其中,λ为非负数。在一个实施例中,在牙齿牙龈二分类阶段,可以设置λ=20; 去除牙龈后,在牙齿八分类阶段,可以设置λ=100;映射回原模型阶段,可以设 置λ=50。
其中,方程式(18)中的第一项可以定义如下,
ξU(pt,lt)=-log10(pt(lt)) 方程式(19)
其中,方程式(18)中的第二项可以定义如下,
其中,v代表面片t的邻域的某一个面片。
在去除牙龈之后,根据牙齿的对称性把面片分成了八类,但并没有区分牙齿 的左右。由于牙齿模型沿着某一根轴左右对称,所以可以根据左右信息来进一步 区分十六类牙齿。
若以Y轴作对称轴为例,除了门牙之外的所有都可以用牙齿在X轴的正负 来区分。对于门牙,可以在3D模型上建立一条最好的分割线来区分,依据X轴 坐标信息,建立如下最小化能量函数:
在一个实施例中,可以设X轴坐标大于零为左,反之为右。对于方程式(21) 中的第一项而言,可以定义如下:
Pt=P′t(maxProb-minProb)+0.5*(maxProb+minProb)
方程式(23)
其中,ftx表示t中心点的X轴坐标,可以把maxWidth的默认值设为12,把 minProb的默认值设为10-8,maxProb=1-minProb。
在一些情况下,相邻牙齿上的面片可能被分类到同一牙齿。这时,需要对这 些面片进行识别并赋予正确的标记。实验发现这样三个现象:(一)牙齿粘连一 般发生在相邻牙齿;(二)标记预测错误现象基本只偏移一个位置;(三)当只有 一颗第二前磨牙时,容易将第二前磨牙预测为第一前磨牙。
在一个实施例中,可以采用PCA分析来确定是否存在牙齿未分开的情况。 对每颗预测牙齿进行PCA分析,并将最长轴投影到XY平面上,与预先设定的 阈值进行比较(不同牙齿长度阈值不同),若投影后最长轴的长度比预设的阈值 大,则认为牙齿可能存在粘连情况。在一个实施例中,可以采用graph-cut进行 分割。可以基于以下最小化能量函数找到最佳的分割边界:
该最小化能量函数与牙齿左右分割十分相似,其第二项的定义与方程式(18) 所表达的最小化能量函数的第二项一致。在一个实施例中,在PCA分析时可以 令长轴与Y轴成锐角,则粘连牙齿Y坐标偏小的下标定义为samll_idx,反之 big_idx,同时令PCA分析获得的最长轴在XY平面上的投影的法向为OBB 包围盒中心为COBB。对于方程式(25)的第一项而言,可以定义如下:
Pt=P′t(maxProb-minProb)+0.5*(maxProb+minProb)
方程式(27)
其中,其中ft代表t中心点坐标,λ默认值为50,minProb默认值为10-8, maxProb=1-minProb。
分割完牙齿后,可以进一步验证牙齿的边界是否合适。对于每颗牙齿,可以 设定两个阈值,一是分割边界的PCA分析的最长轴不能超过的阈值,二是分割 后得到的两个牙齿的表面积都应大于的阈值。若不满足上述两个条件,则认为该 分割边界是错误的,认为该部分牙齿不存在粘连情况。
分割完牙齿后,可以给牙齿标记。假定原标记编号为l,则分开的两颗牙齿 的标记只有两种可能,(l-1,l)或(l,l+1),其中,l属于[1,8],门牙为1,第三磨牙 为8。从门牙开始计数,令排在该牙齿前的牙齿个数为Countprev,之后的为 Countnext,可以设计如下规则逐一判断:
1.若Countprev+Countnext≥7,则labelnew={l.l},即无粘连情况;
2.若上述不成立且Countnext+l=8,则labelnew={l-1.l};
3.若上述不成立且Countprev=l-1,则labelnew={l.l+1};
4.若上述不成立且相邻牙齿有Toothidx=l-1,则labelnew={l.l+1};
5.若上述不成立,令其中编号较小的牙齿上,属于l的预测的表面积为Areal-1,now_idx,属于l-1的预测的表面积为Areal-1,small_idx,则有
同理,在编号较大的牙齿上,属于l的预测的表面积为Areal,now_idx,属于 l+1的预测的表面积为Areal,big_idx,则有
若ratio1>ratio2,则labelnew={l.l+1},反之,labelnew={l-1.l}。
在新的标记赋值过程中,还可能检测出一些明显预测错误的情况。
1.当预测值为第三磨牙,但其直接相邻的牙齿为第一磨牙,则可以将第三磨 牙更改为第二磨牙。
2.在实际工程中,由于第二前磨牙常常被错误标记为第一磨牙。所以,当前 磨牙只有一颗且与第一磨牙紧密相连时,则可以将该前磨牙标记为第二前 磨牙。
在简化模型完成牙齿分割后,将分割结果映射回原模型。由于简化模型和原 模型的坐标是对应的,所以可以用Approximate Nearest Neighbor(简称“ANN”) 算法将标记映射回原模型,同时将概率也映射回原模型。在完成从简化模型到原 模型的映射之后,可以在原模型上再次做标记优化。
由于简化模型和原模型的坐标是对应的,所以在原模型上的预测标记可以近 似看成在简化模型上距离最近的面片。为提高查找效率,我们采用ANN算法寻 找近似解。
在映射回原模型的过程中,还将在简化模型上的预测概率同时映射回原模型。 为尊重简化模型上的优化结果,在映射过程中,牙齿面片预测为l的概率增加一 个固定值(除了边界的一个小邻域),再对概率进行归一化处理。需要注意的是, 由于边界的预测并不可靠,所以在边界处的映射概率始终保持不变。
简化模型经过标记优化过程后,还是可能在边界处产生一些问题。如牙齿三 角区域(牙齿间牙龈乳突部分)有残留或者边界不平滑。因此,可以对边界进行 优化。在一个实施例中,边界优化可以包括两个部分,一是用改进的模糊聚类算 法(Fuzzy ClusteringAlgorithm)优化牙齿间残留区域或补充牙齿边界的缺口, 二是采用最短路径平滑边界。
请参由Sagi Katz和Ayellet Tal在Acm Transactions on Graphics, 22(3):954{961,2003发表的《Hierarchical Mesh Decomposition Using FuzzyClustering AndCuts》,可以采用Fuzzy Clustering and Cuts Algorithm在一 个模糊区域寻找最优边界。
因此,对每颗牙齿进行优化可以寻找这样一个模糊区域,这个模糊区域既要 包括牙齿的真正边界,同时也要尽可能小,这样模糊区域才能比较精准。另外, 由于牙齿边界形态各异,有些边界本身比较平坦,仅靠以上文献中的方法可能无 法保持这样一个边界情况,所以还需要尊重神经网络预测的结果。
对于模糊区域边界面片,假设与置信牙齿区域相连的面片集为S,与置信牙 龈区域或者其他牙齿相连的面片集为T。要在模糊区域寻找较佳的分割边界,也 可以采用GraphCut算法,因此可以建立与方程式(6)相似的以下最小化能量 函数:
E(x)=∑i∈νEunary(i)+λ∑(i,j)∈εEpairwisenew(i,j) 方程式(31)
其中,
Epairwisenew(i,j)=ωEpairwise(i,j) 方程式(32)
其中,
其中,
其中η为一个较小的正数,αij为相邻面片i、j的法向夹角。值得注意的是,对 于T集合内的面片而言,与其他牙齿相连的面片与T端的Epairwise的数量级要小一 点。
ω表示改进的模糊聚类算法参数,它在一定程度上参考了神经网络的预测结 果,即计算面片与预测边界线的距离,作为上述公式中Epairwise的权重。
其中,x表示面片中心点距离预测边界的最短测地线距离,单位为mm,σ 为一固定值,默认为0.05。
相邻面片的夹角在很大程度上反映了局部特征,因此对边界进行优化时将相 邻面片的夹角作为优化计算的一个分量,能够更好地优化边界。
对每颗牙齿进行优化,为了比较精确的定位模糊区域,可以采用类似双向广 搜的思想,即从当前边界和可能的边界双向广搜。可能的边界指的是在该牙齿或 牙龈内极大曲率在一定阈值范围内的顶点,所以若该边界已经是牙齿与牙齿间的 边界,则该区域不能是可能的边界,故需除去这一部分区域,令该区域为保护区 域。在一个实施例中,可以采用以下算法来寻找牙齿模糊区域。
经过改进的模糊聚类算法优化后,边界可能还存在不平滑区域。因此,还可 以采用去除凸点和最短路径的思想优化牙齿边界。对于一个面片,若其相邻的两 个面片的标记相同,且与其自身的标记不同,那么该三个面片的共同顶点为凸点。 经过几次迭代后,凸点能够被消除。
去除凸点只能局部优化边界,所以还可以使用最短路径的思想,对原边界进 行平滑。可以在边界的窄带邻域内应用最短路径算法。请参图3,对于每一个牙 齿,寻找窄带邻域的方法是,对于其边界上每一个顶点v,计算出两个夹角α和 β,将大于一定阈值的α和β对应的边界点的1邻域或2邻域顶点加入窄带区域。
找到窄带区域后,在该区域内使用最短路径法,寻找新边界。
在该方法中,边v1v2的长度e可定义为:
其中,
其中,α为边v1v2相邻两个面片法向的夹角,η为一个很大的正数。引入角度 距离的基本思想是α越小,边长越短。
至此得到分割完成的牙颌三维数字模型。
由于本申请中方程式较多,基于以上详细说明可以理解,不同方程式中的相 同符号可能代表不同的意义,不同方程式中不同的符号可能代表相同的意义。
可以理解,适用于分割牙颌三维数字模型的具有深度学习能力的人工神经网 络的种类和结构有多种,各阶段的简化方法和优化方法也多种多样,因此,本申 请的保护范围并不局限于以上的具体实施例。
本申请引用了以下与人工神经网络相关的文献,其内容被并入本申请:
[1]EvangelosKalogerakis,Aaron Hertzmann,and Karan Singh.Learning3DMesh Segmentation and Labeling.ACM Transactions on Graphics,29(3),2010.
[2]Y.Boykov,O.Veksler,and R.Zabih.2001.Fast Approximate EnergyMinimization Via Graph Cuts.IEEE TPAMI23,11,1222–1239.
[3]Sagi Katz and Ayellet Tal.Hierarchical Mesh Decomposition UsingFuzzyClustering and Cuts.Acm Transactions on Graphics,22(3):954{961,2003.
[4]KanGuo,Dongqing Zhou,and Xiaowu Chen,3D Mesh Labeling Via DeepConvolutional Neural Networks.Acm Transactions on Graphics,35(1);3,2015.
尽管在此公开了本申请的多个方面和实施例,但在本申请的启发下,本申请 的其他方面和实施例对于本领域技术人员而言也是显而易见的。在此公开的各个 方面和实施例仅用于说明目的,而非限制目的。本申请的保护范围和主旨仅通过 后附的权利要求书来确定。
同样,各个图表可以示出所公开的方法和系统的示例性架构或其他配置,其 有助于理解可包含在所公开的方法和系统中的特征和功能。要求保护的内容并不 限于所示的示例性架构或配置,而所希望的特征可以用各种替代架构和配置来实 现。除此之外,对于流程图、功能性描述和方法权利要求,这里所给出的方框顺 序不应限于以同样的顺序实施以执行所述功能的各种实施例,除非在上下文中明 确指出。
除非另外明确指出,本文中所使用的术语和短语及其变体均应解释为开放式 的,而不是限制性的。在一些实例中,诸如“一个或多个”、“至少”、“但不限于” 这样的扩展性词汇和短语或者其他类似用语的出现不应理解为在可能没有这种 扩展性用语的示例中意图或者需要表示缩窄的情况。

Claims (13)

1.一种牙颌三维数字模型的分割方法,包括:
获取第一牙颌三维数字模型;以及
利用经训练的深度人工神经网络分割所述第一牙颌三维数字模型的各牙齿。
2.如权利要求1所述的牙颌三维数字模型的分割方法,其特征在于,所述人工神经网络是经过多个预先完成分割的牙颌三维数字模型的训练。
3.如权利要求1所述的牙颌三维数字模型的分割方法,其特征在于,它还包括:对所述第一牙颌三维数字模型进行分割之前,对其进行简化。
4.如权利要求3所述的牙颌三维数字模型的分割方法,其特征在于,所述简化是分区域进行,其中,牙龈区域的简化程度高于牙齿区域。
5.如权利要求4所述的牙颌三维数字模型的分割方法,其特征在于,所述简化是针对面片顶点进行简化。
6.如权利要求5所述的牙颌三维数字模型的分割方法,其特征在于,所述简化算法包括与相邻面片夹角相关的分量,以降低夹角小之处的简化概率。
7.如权利要求1所述的牙颌三维数字模型的分割方法,其特征在于,它还包括:对所述第一牙颌三维数字模型完成分割后,对分割边界进行优化,其中,所述对所述分割边界的优化是采用模糊聚类算法,该算法包括与面片夹角相关的分量,以提高夹角较小之处成为分割边界的概率。
8.如权利要求1所述的牙颌三维数字模型的分割方法,其特征在于,所述人工神经网络是卷积神经网络。
9.如权利要求8所述的牙颌三维数字模型的分割方法,其特征在于,所述卷积神经网络包括第一卷积神经网络和第二卷积神经网络,其中,所述第一卷积神经网络用于对牙龈和牙齿进行二分类,所述第二卷积神经网络用于基于所述第一卷积神经网络的结果,对牙齿进行多分类。
10.如权利要求9所述的牙颌三维数字模型的分割方法,其特征在于,所述第二卷积神经网络用于对牙齿进行八分类,包括:中切牙、侧切牙、尖牙、第一前磨牙、第二前磨牙、第一磨牙、第二磨牙以及第三磨牙。
11.如权利要求9所述的牙颌三维数字模型的分割方法,其特征在于,所述第一卷积神经网络和第二卷积神经网络至少之一包括“卷积层-卷积层-池层”结构。
12.如权利要求11所述的牙颌三维数字模型的分割方法,其特征在于,所述第一卷积神经网络和第二卷积神经网络至少之一包括“卷积层-卷积层-池层-卷积层-卷积层-池层”结构。
13.如权利要求9所述的牙颌三维数字模型的分割方法,其特征在于,所述第一卷积神经网络和第二卷积神经网络至少之一包括“全连接层-dropout-全连接层”结构。
CN201710403222.1A 2017-06-01 2017-06-01 牙颌三维数字模型的分割方法 Pending CN108986123A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710403222.1A CN108986123A (zh) 2017-06-01 2017-06-01 牙颌三维数字模型的分割方法
PCT/CN2018/075256 WO2018218988A1 (zh) 2017-06-01 2018-02-05 牙颌三维数字模型的分割方法
US16/463,229 US10943351B2 (en) 2017-06-01 2018-02-05 Method for segmenting 3D digital model of jaw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710403222.1A CN108986123A (zh) 2017-06-01 2017-06-01 牙颌三维数字模型的分割方法

Publications (1)

Publication Number Publication Date
CN108986123A true CN108986123A (zh) 2018-12-11

Family

ID=64455159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710403222.1A Pending CN108986123A (zh) 2017-06-01 2017-06-01 牙颌三维数字模型的分割方法

Country Status (3)

Country Link
US (1) US10943351B2 (zh)
CN (1) CN108986123A (zh)
WO (1) WO2018218988A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109920058A (zh) * 2019-01-24 2019-06-21 天津工业大学 一种基于各向异性度量的牙齿分割方法
CN110503652A (zh) * 2019-08-23 2019-11-26 北京大学口腔医学院 下颌智齿与邻牙及下颌管关系确定方法、装置、存储介质及终端
WO2020181974A1 (zh) * 2019-03-14 2020-09-17 杭州朝厚信息科技有限公司 基于人工神经网络的去除牙齿三维数字模型的表面气泡的方法
CN112070897A (zh) * 2020-06-29 2020-12-11 上海正雅齿科科技股份有限公司 壳状牙齿矫治器的制备方法
CN112991273A (zh) * 2021-02-18 2021-06-18 山东大学 三维牙齿模型的正畸特征自动检测方法及系统
CN113139908A (zh) * 2020-01-17 2021-07-20 北京大学 一种三维牙列分割与标注方法
CN113366534A (zh) * 2019-02-04 2021-09-07 博雷亚公司 自动牙齿分割方法
CN113506302A (zh) * 2021-07-27 2021-10-15 四川九洲电器集团有限责任公司 一种交互式对象更新方法、装置及处理系统
CN113506303A (zh) * 2021-07-27 2021-10-15 四川九洲电器集团有限责任公司 一种交互式牙齿分割方法、装置和处理系统
WO2021212940A1 (zh) * 2020-04-21 2021-10-28 宁波深莱医疗科技有限公司 牙颌三维数字模型的分割方法
CN113628222A (zh) * 2021-08-05 2021-11-09 杭州隐捷适生物科技有限公司 一种基于深度学习的3d牙齿分割和分类方法
WO2022001001A1 (zh) * 2020-07-02 2022-01-06 广州黑格智造信息科技有限公司 一种3d牙模牙龈线的识别方法、系统、装置和存储介质
WO2022183852A1 (zh) * 2021-03-01 2022-09-09 杭州朝厚信息科技有限公司 牙颌三维数字模型的分割方法
CN115471663A (zh) * 2022-11-15 2022-12-13 上海领健信息技术有限公司 基于深度学习的三阶段牙冠分割方法、装置、终端及介质
CN117437250A (zh) * 2023-12-21 2024-01-23 天津医科大学口腔医院 一种基于深度学习的三维牙颌图像分割方法及系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11995854B2 (en) * 2018-12-19 2024-05-28 Nvidia Corporation Mesh reconstruction using data-driven priors
US11521316B1 (en) * 2019-04-03 2022-12-06 Kentucky Imaging Technologies Automatic extraction of interdental gingiva regions
US10695147B1 (en) 2019-12-04 2020-06-30 Oxilio Ltd Method and system for dental boundary determination
CN117830323A (zh) * 2019-12-06 2024-04-05 正雅齿科科技(上海)有限公司 一种牙颌模型分割方法及装置
US11842484B2 (en) * 2021-01-04 2023-12-12 James R. Glidewell Dental Ceramics, Inc. Teeth segmentation using neural networks
CN111563900B (zh) * 2020-04-01 2023-04-25 正雅齿科科技(上海)有限公司 数字化牙冠模型修补、壳状牙齿矫治器设计及制备的方法
CN113538437A (zh) * 2020-04-21 2021-10-22 宁波深莱医疗科技有限公司 牙颌三维数字模型分割结果的检测方法
US11055850B1 (en) 2021-01-06 2021-07-06 Oxilio Ltd Systems and methods for tooth segmentation
KR102641953B1 (ko) * 2021-06-22 2024-02-28 주식회사 쓰리디산업영상 치아 영상을 위한 치아 분할 장치 및 방법
CN114491700B (zh) * 2022-02-15 2022-10-11 杭州雅智医疗技术有限公司 三维牙齿模型的显示坐标系计算方法、装置及应用
WO2024158791A1 (en) * 2023-01-23 2024-08-02 Autodesk, Inc. Data-driven mapping function for visual effects applications using mesh segmentation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070168152A1 (en) * 2004-02-27 2007-07-19 Align Technology, Inc. System and method for facilitating automated dental measurements and diagnostics
CN105046750A (zh) * 2015-08-24 2015-11-11 杭州美齐科技有限公司 一种自动分割全颌牙齿三角网格模型的方法
CN106470595A (zh) * 2014-07-01 2017-03-01 3M创新有限公司 利用口内3d扫描图检测牙齿磨损

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084868B2 (en) * 2000-04-26 2006-08-01 University Of Louisville Research Foundation, Inc. System and method for 3-D digital reconstruction of an oral cavity from a sequence of 2-D images
DE10224735A1 (de) 2002-06-04 2004-01-08 Holberg, Christof, Dr. Verfahren, Vorrichtung und Computerprogrammprodukt zur Erzeugung eines dreidimensionalen Modells
CN101706971A (zh) 2009-11-27 2010-05-12 西安科技大学 一种牙齿模型中牙冠的自动分割方法
CN103228228B (zh) * 2010-07-12 2016-04-13 3形状股份有限公司 使用纹理特征的3d对象建模
US9508347B2 (en) * 2013-07-10 2016-11-29 Tencent Technology (Shenzhen) Company Limited Method and device for parallel processing in model training
US9510757B2 (en) * 2014-05-07 2016-12-06 Align Technology, Inc. Identification of areas of interest during intraoral scans
US9737257B2 (en) * 2015-01-30 2017-08-22 3M Innovative Properties Company Estimating and predicting tooth wear using intra-oral 3D scans
US10136972B2 (en) * 2016-06-30 2018-11-27 Align Technology, Inc. Historical scan reference for intraoral scans
US11291532B2 (en) * 2016-07-27 2022-04-05 James R. Glidewell Dental Ceramics, Inc. Dental CAD automation using deep learning
CN106296699A (zh) * 2016-08-16 2017-01-04 电子科技大学 基于深度神经网络和多模态mri图像的脑肿瘤分割方法
CN106780460B (zh) 2016-12-13 2019-11-08 杭州健培科技有限公司 一种用于胸部ct影像的肺结节自动检测系统
US10888399B2 (en) * 2016-12-16 2021-01-12 Align Technology, Inc. Augmented reality enhancements for dental practitioners
GB201708520D0 (en) * 2017-05-27 2017-07-12 Dawood Andrew A method for reducing artefact in intra oral scans
WO2019023631A1 (en) * 2017-07-27 2019-01-31 Align Technology, Inc. SYSTEM AND METHODS FOR TREATING AN ORTHODONTIC ALIGNMENT USING OPTICAL COHERENCE TOMOGRAPHY
EP3462373A1 (en) * 2017-10-02 2019-04-03 Promaton Holding B.V. Automated classification and taxonomy of 3d teeth data using deep learning methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070168152A1 (en) * 2004-02-27 2007-07-19 Align Technology, Inc. System and method for facilitating automated dental measurements and diagnostics
CN106470595A (zh) * 2014-07-01 2017-03-01 3M创新有限公司 利用口内3d扫描图检测牙齿磨损
CN105046750A (zh) * 2015-08-24 2015-11-11 杭州美齐科技有限公司 一种自动分割全颌牙齿三角网格模型的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SAGI KATZ ET AL.: "Hierarchical Mesh Decomposition using Fuzzy Clustering and Cuts", 《ACM TRANSACTIONS ON GRAPHICS》 *
STEFAN RAITH ET AL.: "Artificial Neural Networks as a powerful numerical tool to classify specific features of a tooth based on 3D scan data", 《COMPUTERS IN BIOLOGY AND MEDICINE》 *
刘湘云: "基于概率函数的三角网格模型简化算法研究与系统实现", 《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109920058B (zh) * 2019-01-24 2022-12-16 天津工业大学 一种基于各向异性度量的牙齿分割方法
CN109920058A (zh) * 2019-01-24 2019-06-21 天津工业大学 一种基于各向异性度量的牙齿分割方法
CN113366534A (zh) * 2019-02-04 2021-09-07 博雷亚公司 自动牙齿分割方法
WO2020181974A1 (zh) * 2019-03-14 2020-09-17 杭州朝厚信息科技有限公司 基于人工神经网络的去除牙齿三维数字模型的表面气泡的方法
CN111696192A (zh) * 2019-03-14 2020-09-22 杭州朝厚信息科技有限公司 基于人工神经网络的去除牙齿三维数字模型的表面气泡的方法
CN110503652A (zh) * 2019-08-23 2019-11-26 北京大学口腔医学院 下颌智齿与邻牙及下颌管关系确定方法、装置、存储介质及终端
CN110503652B (zh) * 2019-08-23 2022-02-25 北京大学口腔医学院 下颌智齿与邻牙及下颌管关系确定方法、装置、存储介质及终端
CN113139908A (zh) * 2020-01-17 2021-07-20 北京大学 一种三维牙列分割与标注方法
CN113139908B (zh) * 2020-01-17 2022-08-26 北京大学 一种三维牙列分割与标注方法
WO2021212940A1 (zh) * 2020-04-21 2021-10-28 宁波深莱医疗科技有限公司 牙颌三维数字模型的分割方法
US11989934B2 (en) 2020-04-21 2024-05-21 Ningbo Shenlai Medical Technology Co., Ltd. Method for segmenting 3D digital model of jaw
CN112070897A (zh) * 2020-06-29 2020-12-11 上海正雅齿科科技股份有限公司 壳状牙齿矫治器的制备方法
CN112070897B (zh) * 2020-06-29 2023-12-01 正雅齿科科技(上海)有限公司 壳状牙齿矫治器的制备方法
EP4167125A4 (en) * 2020-07-02 2024-07-10 Guangzhou Heygears Imc Inc METHOD, SYSTEM AND DEVICE FOR IDENTIFYING A THREE-DIMENSIONAL DENTAL MODEL RUBBER LINE AND STORAGE MEDIUM
WO2022001001A1 (zh) * 2020-07-02 2022-01-06 广州黑格智造信息科技有限公司 一种3d牙模牙龈线的识别方法、系统、装置和存储介质
CN112991273A (zh) * 2021-02-18 2021-06-18 山东大学 三维牙齿模型的正畸特征自动检测方法及系统
CN112991273B (zh) * 2021-02-18 2022-12-16 山东大学 三维牙齿模型的正畸特征自动检测方法及系统
WO2022183852A1 (zh) * 2021-03-01 2022-09-09 杭州朝厚信息科技有限公司 牙颌三维数字模型的分割方法
CN113506302B (zh) * 2021-07-27 2023-12-12 四川九洲电器集团有限责任公司 一种交互式对象更新方法、装置及处理系统
CN113506302A (zh) * 2021-07-27 2021-10-15 四川九洲电器集团有限责任公司 一种交互式对象更新方法、装置及处理系统
CN113506303B (zh) * 2021-07-27 2024-01-30 四川九洲电器集团有限责任公司 一种交互式牙齿分割方法、装置和处理系统
CN113506303A (zh) * 2021-07-27 2021-10-15 四川九洲电器集团有限责任公司 一种交互式牙齿分割方法、装置和处理系统
CN113628222A (zh) * 2021-08-05 2021-11-09 杭州隐捷适生物科技有限公司 一种基于深度学习的3d牙齿分割和分类方法
CN115471663A (zh) * 2022-11-15 2022-12-13 上海领健信息技术有限公司 基于深度学习的三阶段牙冠分割方法、装置、终端及介质
CN117437250A (zh) * 2023-12-21 2024-01-23 天津医科大学口腔医院 一种基于深度学习的三维牙颌图像分割方法及系统
CN117437250B (zh) * 2023-12-21 2024-04-02 天津医科大学口腔医院 一种基于深度学习的三维牙颌图像分割方法及系统

Also Published As

Publication number Publication date
US10943351B2 (en) 2021-03-09
WO2018218988A1 (zh) 2018-12-06
US20190333224A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
CN108986123A (zh) 牙颌三维数字模型的分割方法
US10916008B2 (en) Method for automatic tooth type recognition from 3D scans
US9737257B2 (en) Estimating and predicting tooth wear using intra-oral 3D scans
Wu et al. Tooth segmentation on dental meshes using morphologic skeleton
CN106327506B (zh) 一种基于概率分区合并的三维模型分割方法
CN113454637A (zh) 使用深度学习对非欧式3d数据集的自动语义分割
CN111968146B (zh) 三维牙颌网格模型分割方法
CN110136155B (zh) 一种图案边缘轨迹智能提取方法及其应用
CN102436636A (zh) 自动分割头发的方法及其系统
US11989934B2 (en) Method for segmenting 3D digital model of jaw
Gleason et al. A Fusion Approach for Tree Crown Delineation from Lidar Data.
CN104685540A (zh) 图像语义分割的方法和装置
CN107330907B (zh) 一种结合深度学习形状先验的mrf图像分割方法
CN112136157A (zh) 根据图像对牙齿牙髓区域分割的方法、系统和计算机程序
CN114998577A (zh) 牙颌三维数字模型的分割方法
CN118014884B (zh) 一种牙冠三维模型的边缘去噪方法、介质和设备
CN115471663A (zh) 基于深度学习的三阶段牙冠分割方法、装置、终端及介质
CN111696192A (zh) 基于人工神经网络的去除牙齿三维数字模型的表面气泡的方法
Geetha et al. An improved method for segmentation of point cloud using minimum spanning tree
US11830196B2 (en) Method for verifying a segmentation result of a 3D digital model of jaw
CN113139908B (zh) 一种三维牙列分割与标注方法
CN112396609A (zh) 一种牙列分割方法、牙齿分割方法、装置及电子设备
CN110728688B (zh) 一种基于能量优化的三维网格模型分割方法及系统
CN110378917B (zh) 基于峰值聚类的牙齿分割方法
JP2002222419A (ja) 画像領域分割装置及びその方法ならびに処理プログラムが記録された記録媒体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination