CN108983596A - 基于广义互熵算法的orc系统单神经元控制器及其控制方法 - Google Patents

基于广义互熵算法的orc系统单神经元控制器及其控制方法 Download PDF

Info

Publication number
CN108983596A
CN108983596A CN201810899624.XA CN201810899624A CN108983596A CN 108983596 A CN108983596 A CN 108983596A CN 201810899624 A CN201810899624 A CN 201810899624A CN 108983596 A CN108983596 A CN 108983596A
Authority
CN
China
Prior art keywords
broad sense
controller
entropy
sense cross
single neuron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810899624.XA
Other languages
English (en)
Other versions
CN108983596B (zh
Inventor
任密蜂
巩明月
张建华
张旭霞
张俊丽
王朝勐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201810899624.XA priority Critical patent/CN108983596B/zh
Publication of CN108983596A publication Critical patent/CN108983596A/zh
Application granted granted Critical
Publication of CN108983596B publication Critical patent/CN108983596B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P.I., P.I.D.

Abstract

本发明涉及随机系统优化控制领域,具体为基于广义互熵算法的ORC系统单神经元控制器及其控制方法,解决控制ORC系统时传统控制器不具有自主学习能力,系统受到非高斯随机噪声时MSE准则不能很好地优化系统的问题,方案:控制器,包括整合器,所述整合器连接有两个单神经元。控制步骤:一、构建两个单神经元自适应控制器;二、建立多步预测准则;三、利用广义互熵算法优化控制器。优点:具有自适应能力和非线性映射能力,结构简单、无需建模、计算量小、权值学习调整时间短、利于实时控制,有较好的自适应性和鲁棒性;考虑控制输入的影响,多步预测控制思想;在废热转化回收利用领域可有效节能。

Description

基于广义互熵算法的ORC系统单神经元控制器及其控制方法
技术领域
本发明涉及随机系统优化控制领域,具体为基于广义互熵算法的ORC系统单神经元控制器及其设计方法。
背景技术
根据调查,各行业的余热总资源约占其燃料消耗总量的17%-67%,其中可回收利用的余热资源约为余热总资源的60%。目前在工业过程中常利用有机朗肯循环(OrganicRankine Cycle,ORC)技术回收工业过程低品位产生的余热,并将收集的余热转换为电能以提高余热的利用率,减少有害气体的排放,ORC系统在提高资源利用率的同时也降低了对环境的污染,减缓国内一次能源消耗的压力。
在对有机朗肯循环进行控制的过程中,不可避免地会受到随机噪声的影响,然而噪声未必服从高斯分布,也可能是非高斯噪声,如:脉冲噪声、重尾噪声,那么均值和方差就不能充分地反映系统的高阶统计特性,因此在非高斯随机噪声影响下研究有机朗肯循环的控制问题就显得尤为重要。
在ORC控制系统中,采用传统的PID(Proportion Integration Differentiation)控制器在控制时会出现超调有残差等缺陷,且由于系统受到非高斯随机噪声的影响,采用均方误差(mean square error,MSE)算法来控制性能常常会下降,因而本发明针对这两个缺点,采用基于广义互熵(Generalized correntropy,GC)算法的单神经元自适应控制器来解决这些问题。
发明内容
本发明解决在控制ORC系统时,传统的PID控制器不具有自主学习的能力,同时,当系统受到非高斯随机噪声时,MSE算法不能很好地优化系统这两个问题,提供一种基于广义互熵算法的ORC系统单神经元控制器及其控制方法。
本发明是通过以下技术方案实现的:基于广义互熵算法的ORC系统单神经元控制器,包括将输入数据与设定值(被控对象要求达到的设定值与其得到的输出值)整合的整合器,所述整合器连接有两个单神经元。被控对象的输出数据与设定值通过整合器整合后输入给两个单神经元,两个单神经元相互耦合,从而从物理连接结构上考虑控制输入对被控系统的影响,增强该控制器的自适应性和鲁棒性。
基于广义互熵算法的ORC系统单神经元控制器控制方法,包括以下操作步骤:
一、根据基于广义互熵算法的ORC系统单神经元控制器得出,每个单神经元的输入为:
控制输入uk的表达式为:
uk=uk-1+K×vk 式2,
其中:
K=diag{K1,K2} 式3,
vk=diag{||W1k||-1,||W2k||-1}×Wk×xk 式4,
其中,uk-1代表第(k-1)时刻的控制输入,Ki>0是神经元的比例系数,
权重w1j and w2j(j=1,…,6)是两个单神经元自主学习的权重;
二、建立基于广义互熵的多步预测准则:
将暂态的基于广义互熵的性能指标转化为多步预测的基于广义互熵的性能指标,利用多步预测性能指标函数对单神经元自适应控制器的权值进行训练,提高控制器的控制效果;同时,在随机控制中,将跟踪误差和控制输入对系统的影响都考虑在内,得到:
其中,i和j代表第i步和j步预测,P和M分别是跟踪误差和控制输入的预测步长,且M≤P;
对于跟踪误差,采用基于广义互熵的性能指标结合多步预测的思想得到式7等号右边第一项,即:
对系统能量的约束结合多步预测的思想得到式7等号右边第二项;
三、利用广义互熵算法优化控制器:
设计合适的自学习率,同时通过最小化性能指标来得到最优的权重 Wk;基于单神经元自适应控制器的学习规则可以通过随机梯度算法得到,如下所示:
其中η=diag{η12}(ηi>0)是学习率矩阵;
由此,得到一个在非高斯重尾噪声下控制被控对象(ORC系统)的输出跟上设定值的基于广义互熵算法的ORC系统单神经元控制器控制方法。
本发明与现有的技术相比,具有如下的优点:1、传统的PID控制器的参数整定很繁琐且调节时间、超调量都难以让人满意,而本发明采用的单神经元自适应控制器具有自适应能力和非线性映射能力,不但具有结构简单、无需建模、计算量小、权值学习调整时间短、利于实时控制等优点,而且对模型参数的变化和外界扰动的影响具有较好的自适应性和鲁棒性;2、在控制ORC的过程中常常受到随机噪声的影响,面对高斯噪声,MSE算法具有良好的平滑性,但面对非高斯噪声,MSE算法的效果变差,而广义互熵算法在受到非高斯噪声的影响下具有很好的鲁棒性,因而本发明采用广义互熵作为跟踪误差的性能指标;3、相较以往的非高斯随机控制的方法,本发明在设计系统整体的性能指标时将控制输入的随机特性考虑进来,同时将以往只考虑某一刻性能指标的思想转换为考虑多步预测控制的思想;4、本发明的控制器及优化控制方法在废热转化回收利用领域可有效节能,对于节能减排具有深远意义。
附图说明
图1为基于广义互熵算法的ORC系统单神经元控制器应用环境结构示意图;其中方框内为本发明的单神经元控制器;
图2a为设定值r1蒸汽压力发生变化的输出响应图;图2b为设定值r2过热蒸汽温度发生变化时输出响应图;由图可以得出在本发明的控制器下被控对象的输出可以很好地跟上设定值的变化,证明本发明的控制器具有很好的跟踪效果;
图3a为设定值r1蒸汽压力发生变化时,使用MSE算法和本发明的基于GC 算法的输出响应对比图;图3b为设定值r2过热蒸汽温度发生变化时,使用MSE 算法和本发明的基于GC算法的输出响应对比图。由图可以得出广义互熵算法比均方误差算法在抵抗非高斯重尾噪声时具有更好的鲁棒性。
具体实施方式
本实施例是建立在附图1结构的基础上,通过Matlab2016a软件进行仿真来验证,当设定值发生变化且系统受到非高斯随机噪声时,本发明能使系统具有很好的自适应性和鲁棒性,从而证明本发明与现有技术相比具有有益效果。
首先,建立一个非高斯随机噪声下的ORC模型:该非高斯随机噪声下的ORC 模型描述为如下的状态空间形式:
其中,x=[lev,Pev,Tw,ev,Pcon,Tw,con]T是状态向量,其中,lev是蒸发器中汽液交换部分的长度,Pev是蒸汽的压力,Tw,ev蒸发器壁的温度,Pcon是冷凝液的压力, Tw,con是冷凝器壁的温度;u=[Nexp,Npp]T是控制输入,其中,Nexp是膨胀机的转速,Npp是泵的转速;
其次,对系统进行初始化赋值,同时设定值发生变化:
a、对每个单神经元的权重值进行初始化,选择合适的性能指标中涉及到的形状参数、核参数和预测步长,在本实施例中设置α=6,λ=0.1, P=M=5(M小于P时,其效果是一样的,无必要再另举一例);
b、设置系统进行采样的时间1s,给出控制输入的初始值u1=100, u2=13,同时加入非高斯随机噪声;
c、针对ORC系统模型式10进行设定值的变化调整,即在100s时,设定值r1由1516KPa增加到1530KPa,r2由11.39℃增加到12.22℃;如图2a、图2b所示,
然后,利用基于广义互熵算法的单神经元控制器优化系统:
d、根据式9估计出系统的性能指标,利用梯度下降法求解最优权值,其中η=0.00001:
e、通过式11计算下一时刻的控制输入:
f、收集得到的数据来更新历史值,令k=k+1,然后重复d至f步骤;
最后,采用MSE与GC算法两种性能指标优化系统:
g、在100s时,设定值r1由1520KPa增加到1523.2KPa,r2由11.74℃增加到11.92℃,观察系统的输出响应图,其中性能指标MSE采用如下公式进行计算:
MSE(r,y)=E(y-r)2 式12,
h、式12中r为系统的设定值,y为系统的输出响应,利用MSE代替式 7中性能指标JGC-loss,利用梯度下降法求解最优权值,其中η=0.00001:
i、循环h、e、f步骤得到使用MSE算法和本发明的基于GC算法的输出响应对比图,如图3a、图3b所示。
结果证明:1、在ORC系统中,采用单神经元自适应控制器控制系统可以使系统具有很好的自适应性和非线性映射能力,即设定值发生变化时,单神经元自适应控制器能使系统输出很好的跟上设定值;同时,通过Matlab仿真我们可以得到在系统受到非高斯随机噪声的影响下,基于广义互熵算法的ORC系统单神经元控制器比MSE具有更好的抗干扰能力;2、由图2a和图2b可以发现,该系统输出很好的跟上了设定值,比传统的PID调节更具有自适应性;3、由图3a和图 3b可以看出,当ORC系统受到非高斯随机噪声的干扰时,广义互熵算法比均方误差算法优化的系统更具鲁棒性。

Claims (2)

1.一种基于广义互熵算法的ORC系统单神经元控制器,其特征在于:包括将输入数据与设定值整合的整合器,所述整合器连接有两个单神经元。
2.一种基于广义互熵算法的ORC系统单神经元控制器控制方法,其特征在于:包括以下操作步骤:
一、根据基于广义互熵算法的ORC系统单神经元控制器得出,每个单神经元的输入为:
控制输入uk的表达式为:
uk=uk-1+K×vk 式2,
其中:
K=diag{K1,K2} 式3,
vk=diag{||W1 k||-1,||W2k||-1}×Wk×xk 式4,
其中,uk-1代表第(k-1)时刻的控制输入,Ki>0是神经元的比例系数,权重w1j and w2j(j=1,…,6)是两个单神经元自主学习的权重;
二、建立基于广义互熵的多步预测准则:
将暂态的基于广义互熵的性能指标转化为多步预测的基于广义互熵的性能指标,利用多步预测性能指标函数对单神经元自适应控制器的权值进行训练,提高控制器的控制效果;同时,在随机控制中,将跟踪误差和控制输入对系统的影响都考虑在内,得到:
其中,i和j代表第i步和j步预测,P和M分别是跟踪误差和控制输入的预测步长,且M≤P;
对于跟踪误差,采用基于广义互熵的性能指标结合多步预测的思想得到式7等号右边第一项,即:
对系统能量的约束结合多步预测的思想得到式7等号右边第二项;
三、利用广义互熵算法优化控制器:
设计合适的自学习率,同时通过最小化性能指标来得到最优的权重Wk;基于单神经元自适应控制器的学习规则可以通过随机梯度算法得到,如下所示:
其中η=diag{η1,η2}(ηi>0)是学习率矩阵;
由此,得到一个在非高斯重尾噪声下控制被控对象的输出跟上设定值的基于广义互熵算法的ORC系统单神经元控制器控制方法。
CN201810899624.XA 2018-08-08 2018-08-08 基于广义互熵算法的orc系统单神经元控制器控制方法 Active CN108983596B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810899624.XA CN108983596B (zh) 2018-08-08 2018-08-08 基于广义互熵算法的orc系统单神经元控制器控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810899624.XA CN108983596B (zh) 2018-08-08 2018-08-08 基于广义互熵算法的orc系统单神经元控制器控制方法

Publications (2)

Publication Number Publication Date
CN108983596A true CN108983596A (zh) 2018-12-11
CN108983596B CN108983596B (zh) 2021-08-03

Family

ID=64556142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810899624.XA Active CN108983596B (zh) 2018-08-08 2018-08-08 基于广义互熵算法的orc系统单神经元控制器控制方法

Country Status (1)

Country Link
CN (1) CN108983596B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2761907A (en) * 1951-04-11 1956-09-04 Int Standard Electric Corp Automatic telephone systems
CN102644488A (zh) * 2012-04-18 2012-08-22 华北电力大学 一种基于有机朗肯循环的锅炉烟气余热利用系统
CN104235820A (zh) * 2014-09-29 2014-12-24 苏州大学 一种基于改进型单神经元自适应pid控制策略的锅炉汽温控制方法
US9436909B2 (en) * 2013-06-19 2016-09-06 Brain Corporation Increased dynamic range artificial neuron network apparatus and methods
CN106406100A (zh) * 2016-11-23 2017-02-15 合肥工业大学 基于模糊自整定单神经元pid控制的转子动平衡控制系统及其方法
CN107040961A (zh) * 2017-06-15 2017-08-11 吉林大学 一种无线传感器网络拥塞控制方法
TW201802774A (zh) * 2016-07-12 2018-01-16 國立清華大學 以高動態範圍臨界值切割單一神經元影像的方法及其電腦可讀儲存媒體
CN107908103A (zh) * 2017-10-13 2018-04-13 国网河北能源技术服务有限公司 一种基于汽轮机效率修正的协调控制系统热值校正方法
US9984326B1 (en) * 2015-04-06 2018-05-29 Hrl Laboratories, Llc Spiking neural network simulator for image and video processing
CN108267970A (zh) * 2018-01-25 2018-07-10 合肥工业大学 基于Smith模型和单神经元PID的时滞转子主动平衡控制系统及其方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2761907A (en) * 1951-04-11 1956-09-04 Int Standard Electric Corp Automatic telephone systems
CN102644488A (zh) * 2012-04-18 2012-08-22 华北电力大学 一种基于有机朗肯循环的锅炉烟气余热利用系统
US9436909B2 (en) * 2013-06-19 2016-09-06 Brain Corporation Increased dynamic range artificial neuron network apparatus and methods
CN104235820A (zh) * 2014-09-29 2014-12-24 苏州大学 一种基于改进型单神经元自适应pid控制策略的锅炉汽温控制方法
US9984326B1 (en) * 2015-04-06 2018-05-29 Hrl Laboratories, Llc Spiking neural network simulator for image and video processing
TW201802774A (zh) * 2016-07-12 2018-01-16 國立清華大學 以高動態範圍臨界值切割單一神經元影像的方法及其電腦可讀儲存媒體
CN106406100A (zh) * 2016-11-23 2017-02-15 合肥工业大学 基于模糊自整定单神经元pid控制的转子动平衡控制系统及其方法
CN107040961A (zh) * 2017-06-15 2017-08-11 吉林大学 一种无线传感器网络拥塞控制方法
CN107908103A (zh) * 2017-10-13 2018-04-13 国网河北能源技术服务有限公司 一种基于汽轮机效率修正的协调控制系统热值校正方法
CN108267970A (zh) * 2018-01-25 2018-07-10 合肥工业大学 基于Smith模型和单神经元PID的时滞转子主动平衡控制系统及其方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANHUA ZHANG: "Multiple model predictive control for organic rankine cycle (ORC) based waste heat energy conversion systems", 《2016 UKACC 11TH INTERNATIONAL CONFERENCE ON CONTROL》 *
MIFENG REN: "A single neuron controller for non-Gaussian systems with unmodeled dynamics", 《2016 UKACC 11TH INTERNATIONAL CONFERENCE ON CONTROL 》 *
张建华: "有机朗肯循环控制系统的设定值优化", 《科学通报》 *

Also Published As

Publication number Publication date
CN108983596B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
Kong et al. Nonlinear multivariable hierarchical model predictive control for boiler-turbine system
Wu et al. Data-driven modeling and predictive control for boiler–turbine unit using fuzzy clustering and subspace methods
Fang et al. Backstepping-based nonlinear adaptive control for coal-fired utility boiler–turbine units
Yabanova et al. Development of ANN model for geothermal district heating system and a novel PID-based control strategy
CN107609667B (zh) 基于Box_cox变换和UFCNN的供热负荷预测方法及系统
Ma et al. Intelligent coordinated controller design for a 600 MW supercritical boiler unit based on expanded-structure neural network inverse models
CN107515598A (zh) 基于多参数动态矩阵控制的火电机组分布式协调控制系统
CN107479389A (zh) 一种火电机组过热汽温预测模糊自适应pid控制方法
Niu et al. Case-based reasoning based on grey-relational theory for the optimization of boiler combustion systems
CN101788789A (zh) 基于混沌混合优化算法的单元机组非线性预测控制方法
CN110515304A (zh) 基于ARX-Laguerre函数模型的过热汽温PID预测控制方法
CN109375503B (zh) 一种蒸汽余热梯级利用优化控制方法
Yin et al. Expandable deep width learning for voltage control of three-state energy model based smart grids containing flexible energy sources
CN114114922A (zh) 一种水轮机调节系统控制参数优化方法
CN105955032A (zh) 基于蝙蝠算法优化极限学习机的逆变器控制方法
CN108983596A (zh) 基于广义互熵算法的orc系统单神经元控制器及其控制方法
CN113050717A (zh) 一种基于广义预测控制的温控系统的控制方法
Deng et al. Optimal control of chilled water system with ensemble learning and cloud edge terminal implementation
WO2021139004A1 (zh) 基于自适应增强算法的涡扇发动机直接数据驱动控制方法
Abd Mohammed et al. CONTROLLING WATER LEVEL BY USING MODIFIED MODEL FREE ADAPTIVE CONTROLLER
Qian et al. Research on pressurizer pressure control based on adaptive prediction algorithm
Cheng et al. A composite weighted human learning network and its application for modeling of the intermediate point temperature in USC
Long et al. Research on Temperature Control System Based on IPSO Optimized Fuzzy PID
Manling et al. Frequency reformation of ground source heat pump system based on proportional control with grey prediction
Vieira et al. Exergoeconomic improvement: An alternative to conventional mathematical optimization of complex thermal systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant