CN108982418A - 基于微腔激光色散干涉法的空气折射率测量装置和方法 - Google Patents

基于微腔激光色散干涉法的空气折射率测量装置和方法 Download PDF

Info

Publication number
CN108982418A
CN108982418A CN201810707591.4A CN201810707591A CN108982418A CN 108982418 A CN108982418 A CN 108982418A CN 201810707591 A CN201810707591 A CN 201810707591A CN 108982418 A CN108982418 A CN 108982418A
Authority
CN
China
Prior art keywords
air
measuring device
light beam
laser
vacuum tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810707591.4A
Other languages
English (en)
Other versions
CN108982418B (zh
Inventor
杨宏雷
张升康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Radio Metrology and Measurement
Original Assignee
Beijing Institute of Radio Metrology and Measurement
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Radio Metrology and Measurement filed Critical Beijing Institute of Radio Metrology and Measurement
Priority to CN201810707591.4A priority Critical patent/CN108982418B/zh
Publication of CN108982418A publication Critical patent/CN108982418A/zh
Application granted granted Critical
Publication of CN108982418B publication Critical patent/CN108982418B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供了一种空气折射率测量装置和方法,其中,所述空气折射率测量装置包括:泵浦激光器、微腔、第一反射镜、平行平晶、真空管、空心角镜、第二反射镜、分光光谱仪及计算机;所述泵浦激光器输出的激光通过微腔至第一反射镜,依次经平行平晶、真空管、空心角镜、第二反射镜、分光光谱仪至计算机。本发明提供的空气折射率测量装置通过泵浦激光器、微腔、第一反射镜、平行平晶、真空管、空心角镜、第二反射镜、分光光谱仪及计算机测量空气折射率,在保证高精度空气折射率测量的前提下,根据光谱色散干涉原理,使测试系统易于实现小型仪器化。

Description

基于微腔激光色散干涉法的空气折射率测量装置和方法
技术领域
本发明涉及距离测量技术领域,特别涉及一种基于微腔激光色散干涉法的空气折射率测量装置和方法。
背景技术
在激光绝对距离测量领域,空气折射率的精确测量起着举足轻重的作用。通常,空气折射率主要由Edlén经验公式求解。Edlén经验公式是依据实验数据的拟合数据,其不确定度为10-8水平。空气折射率的直接实验测量采用准合成波长法。这种方法由于测量原理的要求,测量时间较长,测量结果的准确性大打折扣。
飞秒激光器的发展引出了宽带相干激光色散干涉的空气折射率测量,测量不确定度达到10-8水平。此类测量装置主要采用常规的锁模激光器,光源结构体积巨大,并且重复频率通常为100MHz-1.5GHz,测量后端的色散光谱探测部件因无法分辨单纵模而需要加入额外的光谱滤波元件,进一步增加系统体积。
发明内容
为了解决现有技术的问题,本发明实施例提供一种基于微腔激光色散干涉法的空气折射率测量装置。
本实施例提供的一种基于微腔激光色散干涉法的空气折射率测量装置,包括:微腔、平行平晶、真空管、空心角镜、分光光谱仪和计算机;
入射激光束在微腔内产生光学非线性效应,获得宽带频域内的纵模梳状离散分布的激光束;
所述激光束经第一反射镜入射至平行平晶,产生两路光束,并经真空管产生两路具有光程差的光束;
所述两路具有光程差的光束经空心角镜反射,再次经由真空管入射至平行平晶上重合,产生相位干涉光束;
所述干涉光束通过第二反射镜入射至分光光谱仪进行处理,获得待分析数据;
所述计算机基于所述待分析数据,计算得到空气折射率。
可选地,该装置进一步包括:作为激光束光源的泵浦激光器。
可选地,分光光谱仪包括:光栅、第三反射镜及线阵CCD;
所述相位干涉光束经光栅分光后,由第三反射镜传输至线阵CCD。
可选地,所述线阵CCD采集到的宽带相干激光的色散干涉g(ν)=a(ν)+b(ν)cosΦ(ν);
其中,ν为纵模频率,a(ν)为干涉光束的平均强度,b(ν)为干涉调制幅度,Φ(ν)为干涉光束相位差,Φ(ν)=2πνα,n(ν)为空气相折射率,L为真空管长度,c为光速。
可选地,所述计算机确定相位变化斜率与空气折射率满足如下公式:
其中,ng为空气群折射率。
可选地,所述泵浦激光器输出的激光通过光波导或光纤进入微腔。
可选地,所述平行平晶将激光分为2束,1束沿真空管外侧传播,1束沿真空管内侧传播。
可选地,1束被反射沿真空管外侧传播,1束透射至平行平晶下表面后,内反射后沿真空管内侧传播。
可选地,2束激光经过空心角镜再次经过真空管与平行平晶,在平行平晶上表面重合叠加。
可选地,重合叠加后的光束经第二反射镜至分光光谱仪中。
可选地,所述光栅将所述相位干涉光束分为不同频率的多个光束。
一种基于微腔激光色散干涉法的空气折射率测量方法,方法的步骤包括:
对入射激光束进行采集,获得宽带离散激光束;
所述宽带离散激光束经平行平晶产生两路光束,并在真空管中往复传输后,在平行平晶上产生相位干涉光束;
对所述相位干涉光束进行处理,获得待分析数据;
基于所述待分析数据,计算得到空气折射率。
有益效果如下:
基于微腔激光色散干涉法的空气折射率测量装置通过泵浦激光器、微腔、第一反射镜、平行平晶、真空管、空心角镜、第二反射镜、分光光谱仪及计算机测量空气折射率,在保证高精度空气折射率测量的前提下,根据光谱色散干涉原理,使测试系统易于实现小型仪器化。
附图说明
下面将参照附图描述本发明的具体实施例,其中:
图1为本发明实施例中的一种基于微腔激光色散干涉法的空气折射率测量装置的结构示意图。
具体实施方式
为了使本发明的技术方案及优点更加清楚明白,以下结合附图对本发明的示例性实施例进行进一步详细的说明,显然,所描述的实施例仅是本发明的一部分实施例,而不是所有实施例的穷举。并且在不冲突的情况下,本发明中的实施例及实施例中的特征可以互相结合。
飞秒激光器的发展引出了宽带相干激光色散干涉的空气折射率测量,测量不确定度达到10-8水平。此类测量装置主要采用常规的锁模激光器,光源结构体积巨大,并且重复频率通常为100MHz-1.5GHz,测量后端的色散光谱探测部件因无法分辨单纵模而需要加入额外的光谱滤波元件,进一步增加系统体积。
基于此,本发明实施例提供了一种基于微腔激光色散干涉法的空气折射率测量装置,通过泵浦激光器、微腔、第一反射镜、平行平晶、真空管、空心角镜、第二反射镜、分光光谱仪及计算机测量空气折射率,在保证高精度空气折射率测量的前提下,根据光谱色散干涉原理,使测试系统易于实现小型仪器化。
本实施例提供的空气折射率测量装置,包括:泵浦激光器、微腔、第一反射镜、平行平晶、真空管、空心角镜、第二反射镜、分光光谱仪及计算机。
空气折射率测量装置,还可以包括分束器。
其中,泵浦激光器输出的激光通过微腔至第一反射镜,依次经平行平晶、真空管、空心角镜、第二反射镜、分光光谱仪至计算机。
另外,分光光谱仪可直接使用商用光谱仪,也可自行搭建,包括:光栅、第三反射镜及线阵CCD;
激光经光栅经第三反射镜至线阵CCD。
泵浦激光器输出的激光通过光波导或光纤进入微腔。
光栅对光束分光。
其中,线阵CCD采集到的宽带相干激光的色散干涉g(ν)=a(ν)+b(ν)cosΦ(ν)。
ν为纵模频率,a(ν)为干涉光束的平均强度,b(ν)为干涉调制幅度,Φ(ν)为干涉光束相位差,Φ(ν)=2πνα,n(ν)为空气相折射率,L为真空管长度,c为光速。
另外,平行平晶将激光分为2束,1束沿真空管外侧传播,1束沿真空管内侧传播。
具体的,1束被反射沿真空管外侧传播,1束透射至平行平晶下表面后,内反射后沿真空管内侧传播。2束激光经过空心角镜再次经过真空管与平行平晶,在平行平晶上表面重合叠加。重合叠加后的光束经第二反射镜至分光光谱仪中。
另外,计算机确定相位变化斜率与空气折射率满足如下公式:
其中,ng为空气群折射率。
上述空气折射率测量装置为一种微腔激光色散干涉法的空气折射率测量装置。可以在保证高精度空气折射率测量的前提下,根据光谱色散干涉原理,采用微腔锁模激光,由此可减小光源体积,并且使测试系统易于实现小型仪器化。
图1示出了本实施例提供的空气折射率测量装置的一种实现结构。包括泵浦激光器、微腔、第一反射镜、平行平晶、真空管、空心角镜、第二反射镜、分光光谱仪及计算机。其中,分光光谱仪可直接使用商用光谱仪,也可自行搭建,其主要部件包括光栅、第三反射镜及线阵CCD。
泵浦激光器通过光波导或光纤直接微腔,可以产生宽带、相干离散激光纵模序列。宽带激光经第一反射镜引导至平行平晶,在平行平晶上表面A点分为两束,一束被反射沿真空管外侧传播(实线),另一束透射至平行平晶下表面后,内反射后沿真空管内侧传播(虚线)。两束激光经过空心角镜再次经过真空管与平行平晶,在平行平晶上表面B点重合叠加。虽然,两束激光在A、B两点之间经过物理长度L相同(实线与虚线部分长度相等),但真空管使得两束激光历经不同的光程,因此,具有相位差。干涉光束经第二反射镜引入分光光谱仪中。实际中,亦可自行搭建分光光谱仪。光栅对干涉光束分光,不同频率的干涉光束被线阵CCD探测采集。采用第三反射镜增加径向距离,可提高光谱空间分辨能力。线阵CCD将测量数据传输至计算机中,完成数据处理,计算出空气折射率。
其中,泵浦激光器通过光波导或光纤直接泵浦微腔,可以产生宽带、相干离散激光纵模序列。纵模间隔序列的频率间隔通常为10GHz量级,直接达到普通光栅的分光能力。线阵CCD采集到的宽带相干激光的色散干涉可表示为
g(ν)=a(ν)+b(ν)cosΦ(ν) (1)
其中,ν为纵模频率,a(ν)为干涉光束的平均强度,b(ν)为干涉调制幅度,Φ(ν)为干涉光束相位差,Φ(ν)=2πνα,n(ν)为空气相折射率,L为真空管长度,c为光速。
公式(1)的复数表达式为
对公式(2)作傅里叶变换为
其中,t为距离引起的时延,δ(t)为狄拉克函数。可以看到,公式(3)中的α包含了长度L信息,对G(t)滤波并进行傅里叶反变换,得到
g′(ν)中的相位项可通过反正切函数解算
反正切函数计算值位于[-π,π],对其解包裹得到连续变化的相位信息,相位变化斜率为
其中,ng为空气群折射率。
至此,公式(6)建立了相位变化斜率与空气折射率的联系。需要注意的是,公式(6)中真空管长度L是空气折射率测量精度的限制因素,可采用精密三坐标测量机获得L。
有益效果:基于微腔激光色散干涉法的空气折射率测量装置通过泵浦激光器、微腔、第一反射镜、平行平晶、真空管、空心角镜、第二反射镜、分光光谱仪及计算机测量空气折射率,在保证高精度空气折射率测量的前提下,根据光谱色散干涉原理,使测试系统易于实现小型仪器化。
上述各实施例仅用于说明本发明,其中各部件的型号、连接方式等均可有所变化,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。

Claims (10)

1.一种基于微腔激光色散干涉法的空气折射率测量装置,其特征在于,包括:微腔、平行平晶、真空管、空心角镜、分光光谱仪和计算机;
入射激光束在微腔内产生光学非线性效应,获得宽带频域内的纵模梳状离散分布的激光束;
所述激光束经第一反射镜入射至平行平晶,产生两路光束,并经真空管产生两路具有光程差的光束;
所述两路具有光程差的光束经空心角镜反射,再次经由真空管入射至平行平晶上表面重合,产生相位干涉光束;
所述干涉光束通过第二反射镜入射至分光光谱仪进行处理,获得待分析数据;
所述计算机基于所述待分析数据,计算得到空气折射率。
2.根据权利要求1所述的空气折射率测量装置,其特征在于,该装置进一步包括:作为激光束光源的泵浦激光器。
3.根据权利要求1所述的空气折射率测量装置,其特征在于,分光光谱仪包括:光栅、第三反射镜及线阵CCD;
所述相位干涉光束经光栅分光后,由第三反射镜传输至线阵CCD。
4.根据权利要求1所述的空气折射率测量装置,其特征在于,所述线阵CCD采集到的宽带相干激光的色散干涉g(ν)=a(ν)+b(ν)cosΦ(ν);
其中,ν为纵模频率,a(ν)为干涉光束的平均强度,b(ν)为干涉调制幅度,Φ(ν)为干涉光束相位差,Φ(ν)=2πνα,n(ν)为空气相折射率,L为真空管长度,c为光速。
5.根据权利要求4所述的空气折射率测量装置,其特征在于,所述计算机确定相位变化斜率与空气折射率满足如下公式:
其中,ng为空气群折射率。
6.根据权利要求2所述的空气折射率测量装置,其特征在于,所述泵浦激光器输出的激光通过光波导或光纤进入微腔。
7.根据权利要求1所述的空气折射率测量装置,其特征在于,所述平行平晶将激光束分为两路光束,一路光束沿真空管外侧传播,另一路沿真空管内侧传播。
8.根据权利要求7所述的空气折射率测量装置,其特征在于,两路光束经过空心角镜反射,再经过真空管传输后,在平行平晶上表面重合叠加,形成相位干涉光束。
9.根据权利要求8所述的空气折射率测量装置,其特征在于,所述光栅将所述相位干涉光束分为不同频率的多个光束。
10.一种基于微腔激光色散干涉法的空气折射率测量方法,器特征在于,方法的步骤包括:
对入射激光束进行处理,获得宽带激光束;
所述宽带离散激光束经平行平晶产生两路光束,并在真空管中往复传输后,在平行平晶上表面产生相位干涉光束;
对所述相位干涉光束进行采集,获得待分析数据;
基于所述待分析数据,计算得到空气折射率。
CN201810707591.4A 2018-07-02 2018-07-02 基于微腔激光色散干涉法的空气折射率测量装置和方法 Active CN108982418B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810707591.4A CN108982418B (zh) 2018-07-02 2018-07-02 基于微腔激光色散干涉法的空气折射率测量装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810707591.4A CN108982418B (zh) 2018-07-02 2018-07-02 基于微腔激光色散干涉法的空气折射率测量装置和方法

Publications (2)

Publication Number Publication Date
CN108982418A true CN108982418A (zh) 2018-12-11
CN108982418B CN108982418B (zh) 2022-04-19

Family

ID=64539398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810707591.4A Active CN108982418B (zh) 2018-07-02 2018-07-02 基于微腔激光色散干涉法的空气折射率测量装置和方法

Country Status (1)

Country Link
CN (1) CN108982418B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252823A (zh) * 2011-04-07 2011-11-23 山东大学 基于双波长相移干涉测量光学非均匀性的方法
KR101288876B1 (ko) * 2010-05-25 2013-07-23 캐논 가부시끼가이샤 굴절률 분포 계측방법 및 굴절률 분포 계측장치
CN104215176A (zh) * 2014-09-17 2014-12-17 中国科学院上海光学精密机械研究所 高精度光学间隔测量装置和测量方法
CN104466620A (zh) * 2014-12-25 2015-03-25 武汉邮电科学研究院 一种基于光学微腔的频率稳定型光生微波信号源
CN104807781A (zh) * 2015-05-08 2015-07-29 清华大学 一种基于色散干涉法的空气折射率测量装置及测量方法
CN105428990A (zh) * 2015-12-15 2016-03-23 电子科技大学 光学微腔中克尔光梳的确定性孤子锁模方法
US9562853B2 (en) * 2011-02-22 2017-02-07 Vanderbilt University Nonaqueous backscattering interferometric methods
JP6300430B2 (ja) * 2012-03-28 2018-03-28 国立大学法人千葉大学 膜厚測定方法および膜厚測定装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288876B1 (ko) * 2010-05-25 2013-07-23 캐논 가부시끼가이샤 굴절률 분포 계측방법 및 굴절률 분포 계측장치
US9562853B2 (en) * 2011-02-22 2017-02-07 Vanderbilt University Nonaqueous backscattering interferometric methods
CN102252823A (zh) * 2011-04-07 2011-11-23 山东大学 基于双波长相移干涉测量光学非均匀性的方法
JP6300430B2 (ja) * 2012-03-28 2018-03-28 国立大学法人千葉大学 膜厚測定方法および膜厚測定装置
CN104215176A (zh) * 2014-09-17 2014-12-17 中国科学院上海光学精密机械研究所 高精度光学间隔测量装置和测量方法
CN104466620A (zh) * 2014-12-25 2015-03-25 武汉邮电科学研究院 一种基于光学微腔的频率稳定型光生微波信号源
CN104807781A (zh) * 2015-05-08 2015-07-29 清华大学 一种基于色散干涉法的空气折射率测量装置及测量方法
CN105428990A (zh) * 2015-12-15 2016-03-23 电子科技大学 光学微腔中克尔光梳的确定性孤子锁模方法

Also Published As

Publication number Publication date
CN108982418B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
CN108844470B (zh) 一种基于色散干涉法的微腔激光绝对距离测量装置和方法
CN108827601A (zh) 一种光纤干涉仪臂长差的测量装置
CN110132138B (zh) 基于级联干涉仪的双扫频光源测距系统及方法
KR101000974B1 (ko) 간섭무늬 측정시스템을 이용한 광도파로샘플의 색분산 특성측정방법
CN104706322B (zh) 一种基于光计算的扫频光学相干成像系统
CN108562237B (zh) 一种采用hcn气室在光频域反射传感系统中进行光谱校准的装置和方法
CN104296698A (zh) 一种超高精度的光学表面平整度测量方法
CN103837077A (zh) 一种双飞秒激光频率梳合成波干涉测距系统
CN108332785A (zh) 一种大规模光纤光栅传感器的测量装置和方法
CN105333815B (zh) 一种基于光谱色散线扫描的超横向分辨率表面三维在线干涉测量系统
CN104006948B (zh) 基于多峰分裂周期解调保偏光纤偏振耦合点位置的方法
CN107860405A (zh) 一种基于游标效应的光谱解调方法及其解调装置
CN107144537B (zh) 一种可见光傅里叶变换吸收光谱测量方法及系统
CN106643811B (zh) 光纤多频振动检测与补偿系统及方法
CN105928605B (zh) 一种检测水中声场信息的方法、装置及水下声传感器
CN101660998B (zh) 利用小波变换测量群延迟的方法
CN108844717A (zh) 一种光纤干涉仪臂长差的测量方法
CN105953919B (zh) 一种全光纤傅里叶光谱分析仪
US20140347659A1 (en) Stationary Waveguide Spectrum Analyser
CN101187556A (zh) 一种光纤测距方法及装置
CN104011497B (zh) 用于产生信息信号的方法
CN205581298U (zh) 一种基于f-p标准具的高精度调频连续波激光测距系统
CN106197303B (zh) 一种光频域反射中利用阿基米德螺旋线的光纤铺设方法
CN105806789A (zh) 一种光纤白光干涉差分谱仪
CN108982418A (zh) 基于微腔激光色散干涉法的空气折射率测量装置和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant