CN108979754B - 一种阵列冲击射流冷却中的扰流结构 - Google Patents

一种阵列冲击射流冷却中的扰流结构 Download PDF

Info

Publication number
CN108979754B
CN108979754B CN201811049045.2A CN201811049045A CN108979754B CN 108979754 B CN108979754 B CN 108979754B CN 201811049045 A CN201811049045 A CN 201811049045A CN 108979754 B CN108979754 B CN 108979754B
Authority
CN
China
Prior art keywords
cross
section
column
turbulent flow
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811049045.2A
Other languages
English (en)
Other versions
CN108979754A (zh
Inventor
李润东
郭曾嘉
贺业光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Aerospace University
Original Assignee
Shenyang Aerospace University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Aerospace University filed Critical Shenyang Aerospace University
Priority to CN201811049045.2A priority Critical patent/CN108979754B/zh
Publication of CN108979754A publication Critical patent/CN108979754A/zh
Application granted granted Critical
Publication of CN108979754B publication Critical patent/CN108979754B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明属于燃气轮机及航空发动机高温部件冷却及其他一些涉及到阵列冲击射流冷却的领域,具体为一种阵列冲击射流冷却中高性能的扰流结构,提供三种扰流柱结构设计,包括一种异五边形扰流柱阵列排布的射流靶板,一种穹顶形扰流柱阵列排布的射流靶板,一种水滴形扰流柱阵列排布的射流靶板。本次设计的优势在于使用最少的冷却空气量,最大程度的提高冷却效率,并且降低冷却壁面整体的温度梯度,使传热更加均匀稳定。

Description

一种阵列冲击射流冷却中的扰流结构
技术领域:
本发明属于燃气轮机及航空发动机高温部件冷却及其他一些涉及到阵列冲击射流冷却的领域,具体为一种阵列冲击射流冷却中的扰流结构。
背景技术:
燃气轮机能够提供强大动力,主要通过其高温高压燃气来实现的,高温燃气的初始温度决定着燃气轮机的工作效率。为了提升燃气轮机的效率,涡轮进口处燃气的温度需要不断提高。但是随着燃气温度的提高,对燃气轮机的高温部件工作的稳定性以及寿命带来了严峻的考验。与此同时材料的发展却跟不上燃气轮机对性能的要求,因此必需采取有效的、先进的冷却技术来保证燃气轮机的安全运行和寿命。
目前,燃气轮机的发展趋势是提高温升和降低污染物的排放,二者都需要较大范围的提高用于燃气轮机燃烧室的空气比例,由此导致用于燃机热端部件的冷却空气比例降低。在保证燃气轮机热效率的情况下,如何通过更少的冷却空气量,更有效的冷却燃机的热端部件是目前迫切需要解决的问题。
在冲击冷却系统中,冲击射流在冲击换热靶板后形成的流动边界层极薄,换热系数比常规的对流换热要高出几倍甚至一个量级,能够最大限度的提高靶板表面的局部传热系数,提供良好的冷却效果,因此冲击冷却在燃气轮机高温部件的冷却中有着广泛的应用。但是在冲击冷却系统中只有在冲击驻点附近的边界层很薄,而其他区域的壁面存在着气体边界层,会影响了靶板表面的换热效果,导致整个靶板的换热不均匀,从而影响燃气轮机的冷却效率。而在冲击靶板上设置扰流元件的阵列射流冲击冷却,不仅可以在最大程度的降低边界层的厚度,还可以加强内部通道的扰动,加大冷却通道内部冷却气流的湍流度,扩展换热表面积,进一步强化换热效率。
现有的阵列射流冷却系统中具有如下局限性:
(1)上流冲击孔的冷却气流冲击靶板之后,会在冷却通道内产生一定量的横流,横流会对下流的射流产生影响,使下流射流发生偏移,导致靶板的换热效率降低以及靶板表面的冷却效果不均匀。
(2)在阵列射流冷却系统的靶板上设置扰流元件后,由于扰流柱形状的不理想,使其不能有效的阻碍横流的发展,导致换热效果的改善不理想,靶板的温度梯度虽然有所改善但温度梯度很大,冲击靶板的换热仍然很不均匀。
(3)在阵列射流冷却系统的靶板上设置扰流元件后,冲击冷却系统内部由于扰流柱的存在而产生了很大的额外的压力损失,其对冲击冷却系统总体换热性能的提升不如压力损失所增加的幅度,即使产生了更好的换热性能,但是对于冲击冷却系统来说也是不合理的。
发明内容:
本次设计目的在于使用最少的冷却空气量,最大程度的提高冷却效率,同时降低了冷却壁面整体的温度梯度,使传热更加均匀稳定。为实现上述目的,本发明的方案如下:
一种阵列冲击射流冷却中的扰流结构,包括射流孔板及射流靶板,所述的射流孔板上设有多个阵列排列的冲击孔,所述射流孔板位于所述射流靶板的上部,射流靶板与射流孔板之间为空腔设计,所述射流靶板上设有多个扰流柱,扰流柱为截面为异五边形柱体,或者为截面近半椭圆的穹顶形设计柱体,或者为截面是水滴形状设计柱体。
进一步地,所述的冲击孔的直径为D。
进一步地,设计的扰流柱的截面由一锐角等腰三角形底边接一长方形组成,截面三角形高为1.2D,截面长方形侧边长为0.2D,截面长方形底边长为0.7D,扰流柱截面锐角边正对来流方向,扰流柱的高度为2D。
进一步地,所述穹顶形扰流柱截面由半椭圆形接一长方形组成,半椭圆的长轴长为D,短轴长为0.3D,长方形截面侧边长为0.2D,截面底边长为0.6D,扰流柱截面半椭圆形为迎流面,扰流柱截面半椭圆形的短轴正与来流方向垂直,扰流柱的高度为2D。
进一步地,截面水滴形设计扰流柱截面的上、下两端圆弧直径分别为0.75D和0.56D,两端圆弧圆心距离为0.7D,上、下两端圆弧直径弧度分别为200°和160°,扰流柱的高度为2D。
进一步地,所述多个扰流柱与多个冲击孔分别为顺排布置,扰流柱的排与冲击孔的排交错排列,每个扰流柱中心与其周围的冲击孔圆心的水平距离为2.5D。
本发明的主要优点:
1、对于一般的阵列射流冷却而言,在上流冲击孔的射流冲击换热靶板之后,会在冷却通道内产生一定量的横流,横流会对下流的射流产生影响,使下流射流发生偏移,导致靶板的冷却效果不均匀。在射流靶板上增加扰流柱则可以有效的减少横流带来的影响,并且增加冷却通道内的换热效率,使冲击靶板的温度分布更加均匀。
2、对于一般的冲击孔而言,只有冲击孔垂直投影区域的壁面边界层很薄,故冲击驻点区域的具有很强的换热效果,在射流靶板上增加了扰流柱,使得冲击驻点以外的更大的范围内降低了靶板壁面边界层的厚度,达到了增强换热的效果。所说的边界层是指的在靠近壁面处的地方,流体会产生一种层流的流动状态,类似一种薄膜,边界层越厚,传热效果越差。
3、异五边形设计的扰流柱,由于其截面是异五边形,当射流冲击扰流柱时,会在扰流柱前表面处产生更多的涡,增加来流的湍流度,并且减少边界层对换热的影响,提高冷却通道的换热效率,使冲击靶板上的温度更加均匀,并且因为其流线型的形状可以使冲击冷却系统产生较少的额外流动阻力。
4、穹顶形设计的扰流柱的截面迎流面为面积较大的半椭圆形面,这种形状的扰流柱可以在阻碍横流发展,破坏边界层以及提高冷却通道的换热效率的同时,使扰流元件所带来的流动阻力损失降到最低。
5、水滴形设计的扰流柱的截面迎流面为大面积的半圆形,可以更加有效减少横流以及边界层带来的影响,使冲击靶板表面的温度梯度明显降低,换热系数的分布更加均匀,并且可以在减少流动阻力损失的同时使换热面积最大程度的增加,从而强化换热效率。
6、同时本发明设计的扰流柱结构的制造工艺简单,容易实现。
附图说明:
图1是本发明的结构示意图;
图2是异五边形设计扰流柱单独结构示意图;
图3是异五边形设计扰流柱结构矩阵排列的立体示意图;
图4是穹顶形设计扰流柱单独结构示意图;
图5是穹顶形设计扰流柱结构矩阵排列立体示意图;
图6是水滴形设计扰流柱单独结构示意图;
图7是水滴形设计扰流柱结构矩阵排列立体示意图;
图8是冲击冷却实验系统图;
图9是冲击冷却实验段示意图;
具体实施方式:
下面结合附图与具体实例对发明做进一步详细说明,但本发明并不限于以下实例。
参考图1,一种阵列冲击射流冷却中高性能的扰流结构,包括射流孔板1及射流靶板3,射流孔板1上设有多个阵列排列的冲击孔2;所述射流孔板1位于所述射流靶板3的上部,二者之间为空腔设计,扰流柱4设置在射流靶板3上,扰流柱4的上端与射流孔板1接触。本方案中将冲击孔2的直径设为D。
该扰流柱4为截面为异五边形的柱体,或者是截面为近半椭圆的穹顶形设计的柱体,或者为截面是水滴形状设计的柱体。
作为方案的改进,参考图2-3,扰流柱4为异五边形柱体设计,该扰流柱4的截面由一锐角等腰三角形底边接一长方形组成,所述异五边形设计扰流柱截面高为1.2D,截面侧边长为0.2D,截面边长为0.7D,扰流柱截面锐角边正对来流方向,异五边形扰流柱的高度为2D扰流柱4之间的间距为5D,冲击距离(冲击孔板到冲击靶板的距离)为2D。结果发现:在初始冷却空气流量、压强等条件相同的情况下,相较于无扰流柱的阵列冲击冷却,在射流靶板上设置异五边形设计的扰流柱不仅可以减少横流给下游冲击带来的影响,使冲击靶板的换热更加均匀,还可以将冷却效率提升14.8%左右。
作为方案的改进,参考图4-5,扰流柱4为穹顶形设计,所述穹顶形扰流柱截面由半椭圆形接一长方形组成,其中半椭圆的长轴长为D,短轴长为0.3D,截面侧边长为0.2D,截面边长为0.6D,扰流柱截面的半椭圆形面为迎流面,扰流柱截面半椭圆形的短轴正与来流方向垂直,穹顶形扰流柱的高度为2D。扰流柱4与扰流柱4间距为5D,冲击距离(冲击孔板到冲击靶板的距离)为2D。结果发现:在初始冷却空气流量、压强等条件相同的情况下,相较于无扰流柱的阵列冲击冷却,在射流靶板上设置穹顶形设计的扰流柱冲击靶板的冷却效率可以提升约12.2%,而产生的流动阻力仅提高了1.4%。
作为方案的改进,参考图6-7,扰流柱为水滴形设计,所述水滴形扰流柱截面的上、下两端圆弧直径分别为0.75D和0.56D,两端圆弧圆心距离为0.7D,上、下两端圆弧直径弧度分别为200°和160°,扰流柱的高度为2D。扰流柱4间距为5D,冲击距离(冲击孔板到冲击靶板的距离)为2D。结果发现:在初始冷却空气流量、压强等条件相同的情况下,相较于无扰流柱的阵列冲击冷却,在射流靶板上设置水滴形设计的扰流柱冲击靶板的冷却效率可以提升约26.2%,,并且靶板整体的温度梯度有明显的降低,整体的换热系数更加均匀。
测试实验:
实验装置主要包括变频风机、热式气体流量计、压差变送器、进口与出口稳压箱、丝网加热器、红外热像仪、压力和温度测量系统以及实验段,如图8与图9所示。压缩空气通过变频风机送入实验入口段,其质量流量由热式气体流量计测得。大功率的丝网加热器可以在1s之内将气体加热至320K以上,并且维持稳定1-2分钟。加热后的气体进入冲击冷却实验测试段,最后进入出口稳压箱。同时在冲击冷却实验测试段布置了热电偶以及压力传感器,用于测量温度与压力。气流的温度与压力信号通过Labview数据采集系统获得。
本文研究中使用实验与数值模拟的方法对3种扰流柱冲击冷却系统进行了研究,数值计算的结果与实验结果比较吻合,数据偏差约为3.1%,这样的偏差可以接受。表一显示了3种扰流柱对冲击靶板表面的平均努塞尔数的提升效果,其中,异五边形设计的扰流柱不仅可以减少横流给下游冲击带来的影响,使冲击靶板的换热更加均匀,并且通过数值计算以及实验发现其可以将靶板表面的平均努塞尔数提升约14.8%以及17.6%。而在射流靶板上设置穹顶形设计的扰流柱冲击靶板的冷却效率可以分别提升约12.2%以及15.5%,,但是其产生的流动阻力仅提高了1.4%和2.7%。水滴形设计的扰流柱可以使冲击靶板表面的平均努塞尔数得到最大程度的提升,其分别为26.2%以及29.5%,并且靶板整体的温度梯度有明显的降低,整体的换热系数更加均匀。
表1扰流柱换热强化系数
表1扰流柱换热强化系数
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种阵列冲击射流冷却中的扰流结构,包括射流孔板及射流靶板,所述的射流孔板上设有多个阵列排列的冲击孔,所述射流孔板位于所述射流靶板的上部,射流靶板与射流孔板之间为空腔设计,其特征在于:所述射流靶板上设有多个扰流柱,扰流柱为截面为异五边形柱体,或者为截面近半椭圆的穹顶形设计柱体,或者为截面是水滴形状设计柱体;所述的冲击孔的直径为D;截面异五边形设计的扰流柱的截面由一锐角等腰三角形底边接一长方形组成,截面三角形高为1.2D,截面长方形侧边长为0.2D,截面长方形底边长为0.7D,扰流柱截面锐角边正对来流方向,扰流柱的高度为2D;穹顶形扰流柱截面由半椭圆形接一长方形组成,半椭圆的长轴长为D,短轴长为0.3D,长方形截面侧边长为0.2D,截面底边长为0.6D,扰流柱截面半椭圆形为迎流面,扰流柱截面半椭圆形的短轴正与来流方向垂直,扰流柱的高度为2D;截面水滴形设计扰流柱截面的上、下两端圆弧直径分别为0.75D和0.56D,两端圆弧圆心距离为0.7D,上、下两端圆弧直径弧度分别为200°和160°,扰流柱的高度为2D;所述多个扰流柱与多个冲击孔分别为顺排布置,扰流柱的排与冲击孔的排交错排列,每个扰流柱中心与其周围的冲击孔圆心的水平距离为2.5D。
CN201811049045.2A 2018-09-10 2018-09-10 一种阵列冲击射流冷却中的扰流结构 Active CN108979754B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811049045.2A CN108979754B (zh) 2018-09-10 2018-09-10 一种阵列冲击射流冷却中的扰流结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811049045.2A CN108979754B (zh) 2018-09-10 2018-09-10 一种阵列冲击射流冷却中的扰流结构

Publications (2)

Publication Number Publication Date
CN108979754A CN108979754A (zh) 2018-12-11
CN108979754B true CN108979754B (zh) 2024-04-26

Family

ID=64545203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811049045.2A Active CN108979754B (zh) 2018-09-10 2018-09-10 一种阵列冲击射流冷却中的扰流结构

Country Status (1)

Country Link
CN (1) CN108979754B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111140287B (zh) * 2020-01-06 2021-06-04 大连理工大学 一种采用多边形扰流柱的层板冷却结构
CN113225997A (zh) * 2021-05-13 2021-08-06 西北工业大学 一种带多级圆柱形凸台的强化冲击换热结构
CN114658492A (zh) * 2021-12-13 2022-06-24 西北工业大学 一种基于棱柱形凸起的冲击气膜换热结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202202899U (zh) * 2011-06-30 2012-04-25 中航商用航空发动机有限责任公司 涡轮冷却叶片及其涡轮
CN104712372A (zh) * 2014-12-29 2015-06-17 上海交通大学 一种高性能冲击冷却系统
KR20180065729A (ko) * 2016-12-08 2018-06-18 두산중공업 주식회사 베인의 냉각 구조
CN108223022A (zh) * 2018-01-04 2018-06-29 沈阳航空航天大学 一种阵列射流冷却中的扰流结构
CN208918602U (zh) * 2018-09-10 2019-05-31 沈阳航空航天大学 一种阵列冲击射流冷却中的扰流结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9777635B2 (en) * 2014-12-31 2017-10-03 General Electric Company Engine component
KR20180065728A (ko) * 2016-12-08 2018-06-18 두산중공업 주식회사 베인의 냉각 구조

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202202899U (zh) * 2011-06-30 2012-04-25 中航商用航空发动机有限责任公司 涡轮冷却叶片及其涡轮
CN104712372A (zh) * 2014-12-29 2015-06-17 上海交通大学 一种高性能冲击冷却系统
KR20180065729A (ko) * 2016-12-08 2018-06-18 두산중공업 주식회사 베인의 냉각 구조
CN108223022A (zh) * 2018-01-04 2018-06-29 沈阳航空航天大学 一种阵列射流冷却中的扰流结构
CN208918602U (zh) * 2018-09-10 2019-05-31 沈阳航空航天大学 一种阵列冲击射流冷却中的扰流结构

Also Published As

Publication number Publication date
CN108979754A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
CN108979754B (zh) 一种阵列冲击射流冷却中的扰流结构
CN108223022B (zh) 一种阵列射流冷却中的扰流结构
CN104791020B (zh) 一种具有纵向相交肋冷却结构的燃气透平叶片
CN211715181U (zh) 一种带开缝圆形扰流柱的层板冷却结构
CN102828781B (zh) 燃气涡轮冷却叶片
Nidhul et al. Thermo-hydraulic and exergetic performance of a cost-effective solar air heater: CFD and experimental study
CN106403661B (zh) 一种低速冷却水热防护装置
Kong et al. Combined air-cooled condenser layout with in line configured finned tube bundles to improve cooling performance
CN110185554A (zh) 一种用于喷气发动机矢量喷管的双层壁冷却结构
CN208918602U (zh) 一种阵列冲击射流冷却中的扰流结构
CN113047912A (zh) 一种带梅花形扰流柱的层板冷却结构
US5107923A (en) Flow distribution device
CN104712372A (zh) 一种高性能冲击冷却系统
CN100489285C (zh) 古钱式扰流柱层板结构
CN108150224A (zh) 一种旋流与冲击相结合的透平叶片内部冷却结构
CN110344886B (zh) 一种带有分形沟槽的冲击-气膜复合冷却结构
CN204609950U (zh) 一种具有纵向相交肋冷却结构的燃气透平叶片
CN112145235B (zh) 一种ω型回转腔层板冷却结构
CN207348905U (zh) 一种具有叶尖间隙控制和叶顶流动控制的机匣结构
CN102943693A (zh) 一种高效冷却的中低热值燃机透平动叶
Kawaguchi et al. The heat transfer and pressure drop characteristics of finned tube banks in forced convection (comparison of the pressure drop characteristics of spiral fins and serrated fins)
CN100489287C (zh) 一种低流阻层板结构
CN205830227U (zh) 散热机构
CN209925033U (zh) 一种用于涡轮叶片强化换热的扰流柱结构
CN207797386U (zh) 共性聚合成排组合式换热器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant