CN106403661B - 一种低速冷却水热防护装置 - Google Patents

一种低速冷却水热防护装置 Download PDF

Info

Publication number
CN106403661B
CN106403661B CN201610912731.2A CN201610912731A CN106403661B CN 106403661 B CN106403661 B CN 106403661B CN 201610912731 A CN201610912731 A CN 201610912731A CN 106403661 B CN106403661 B CN 106403661B
Authority
CN
China
Prior art keywords
water
cooling
collection chamber
wall
cover board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610912731.2A
Other languages
English (en)
Other versions
CN106403661A (zh
Inventor
田宁
邹样辉
齐斌
曹知红
岳晖
张凯
张利嵩
那伟
杨驰
赵玲
李彦良
王镭
夏吝时
肖泽娟
张昕
曹宇清
姜通
姜一通
李文浩
鲁宇
朱广生
李建林
孟刚
周岩
水涌涛
张岩
陈卫国
刘召军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Beijing Aerospace Changzheng Aircraft Institute
Original Assignee
China Academy of Launch Vehicle Technology CALT
Beijing Aerospace Changzheng Aircraft Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT, Beijing Aerospace Changzheng Aircraft Institute filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN201610912731.2A priority Critical patent/CN106403661B/zh
Publication of CN106403661A publication Critical patent/CN106403661A/zh
Application granted granted Critical
Publication of CN106403661B publication Critical patent/CN106403661B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section

Abstract

一种低速冷却水热防护装置,涉及飞行器防热地面试验技术领域;包括集水腔、进水口、出水口和水冷通道;其中,集水腔为中空筒状结构;集水腔外壁的一端固定安装有进水口,集水腔外壁的另一端固定安装有出水口;集水腔的外壁与内壁之间,沿集水腔轴向设置有多条相邻的水冷通道,水冷通道实现将进水口与出水口冷却水通道的连接;采用过冷沸腾设计方法,实现在较低流速、较小压力下对兆瓦级热环境下扩压器的长时间的热防护,确保高温热燃气流风洞的正常运行;解决了高温热结构风洞中扩压器长时间防热问题,可实现在较低流速、较小压力下对兆瓦级热环境下扩压器的防护,降低了结构设计的难度和对冷却水量的需求,保证了燃气流风洞的正常运行。

Description

一种低速冷却水热防护装置
技术领域
本发明涉及一种飞行器防热地面试验技术领域,特别是一种低速冷却水热防护装置。
背景技术
在燃气高温燃气流风洞中,扩压器是重要组成部分,用于对燃气进行减速增压,将试验舱内的高速低压燃气扩压至抽气系统需要的压力条件,保证燃气的顺利排出。扩压器由收敛段、第二喉道和扩张段组成,离试验件最近的收敛段承受的最大热流在2MW/m2左右,其长时间的热防护是一大难关,具体有两个方面:一是热流密度大,这要求热防护的换热形式具有较高的换热系数,同时对扩压器的材料选择提出了很高的要求;二是防热时间长,这要求冷却工质充足。
传统的冷却方式是采用夹套水冷的方法,夹套内高压高速冷却水以强制对流换热的方式实现对扩压器的热防护。这样的方法难以高效地解决扩压器高热流、长时间热防护的难题。具体有以下两个难点:一是结构设计难度大,由于冷却水高压高流速的特点,对扩压器的强度提出了很高的要求,因此通常选择强度更好的不锈钢,但是不锈钢的导热系数较小,是碳钢的1/3左右,这就需要将扩压器的内壁做得很薄,以降低导热热阻;二是冷却水需求量大,热防护的时间长(1000s以上),扩压器需要防护的面积大,水的流速快,这些特点决定了冷却水的需求量很大,增大了试验设备的建设成本。
发明内容
本发明的目的在于克服现有技术的上述不足,提供一种低速冷却水热防护装置,解决了高温热结构风洞中扩压器长时间防热问题,可实现在较低流速、较小压力下对兆瓦级热环境下扩压器的防护,降低了结构设计的难度和对冷却水量的需求,保证了燃气流风洞的正常运行。
本发明的上述目的是通过如下技术方案予以实现的:
一种低速冷却水热防护装置,包括集水腔、进水口、出水口和水冷通道;其中,集水腔为中空筒状结构;集水腔外壁的一端固定安装有进水口,集水腔外壁的另一端固定安装有出水口;集水腔的外壁与内壁之间,沿集水腔轴向设置有多条相邻的水冷通道,水冷通道实现将进水口与出水口冷却水的通道连接。
在上述的一种低速冷却水热防护装置,所述水冷通道包括盖板、连接板、隔板和内套;其中内套包裹在集水腔的内壁外表面;盖板固定安装在集水腔的外壁内表面;多个盖板紧密排列覆盖集水腔的外壁内表面;相邻盖板之间设置有连接板,连接板与内套之间集水腔径向设置有隔板。
在上述的一种低速冷却水热防护装置,所述隔板为矩形结构,高h为 10-18mm;厚度为5-7mm,材料为碳钢。
在上述的一种低速冷却水热防护装置,所述盖板为矩形结构,集水腔的外壁内表面共设置有n块盖板,n为不小于90的正整数;盖板厚度为9-11mm;盖板的材料为碳钢。
在上述的一种低速冷却水热防护装置,所述盖板长度L=2πR/n,其中R为集水腔外壁半径,集 水腔外壁半径R为900-3000mm。
在上述的一种低速冷却水热防护装置,所述水冷通道中冷却水的流速v为 2-3m/s,其中q为冷却水流量,通过外部阀门控制。
在上述的一种低速冷却水热防护装置,所述内套沿外表面向内部设置有多个蒸汽孔,蒸汽孔直径为0.9-1.1mm;开口为0.2mm,相邻蒸汽孔间距为 0.1-0.35mm。
本发明与现有技术相比具有如下优点:
(1)本发明通过控制夹套水冷通道内冷却水的流速和流量,使水冷通道内壁面处的换热方式稳定在过冷沸腾换热区域,在较低的供应压力和较小的流速下,进行较大热流条件下的热防护,本发明实现了水流速2m/s的情况下对 2WM/m2热流状态的热防护;
(2)本发明通过调节冷却水压力来控制冷却水侧壁面(冷壁)温度,进而通过调整水冷通道的壁厚来实现对燃气侧壁面(热壁)温度的控制;
(3)本发明通过合理设计水冷通道的几何尺寸,配合水泵调节和管路设计实现对冷却水的流量和流速的控制,并有效降低沿程压力损失。
附图说明
图1为本发明扩压器防热结构示意图;
图2为本发明搭接焊接示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的描述:
本发明采用过冷沸腾设计方法,实现在较低流速、较小压力下对兆瓦级热环境下扩压器的长时间的热防护,确保高温热燃气流风洞的正常运行。
兆瓦级热流条件下扩压器长时间热防护方法的结构组成包括集水腔1、进水口2、出水口3和水冷通道4;首先根据实际的热流条件计算所需的冷却水流量,然后计算出扩压器不同部段夹套内水的流速,再通过调节阀调节冷却水流速来达到需要的流量,使水冷通道内壁面处的换热方式稳定在过冷沸腾换热区域。通过水泵调节、管路设计和调节阀的配合,实现对扩压器不同部段的水流量分配。在设计压力下,计算冷却水侧壁面冷壁温度,进而通过设计不同厚度的水冷通道壁面厚度来控制燃气侧壁面热壁的温度,实现对热壁温度的控制。
如图1所示为扩压器防热结构示意图,由图可知,一种低速冷却水热防护装置,包括集水腔1、进水口2、出水口3和水冷通道4;其中,集水腔1为中空筒状结构;集水腔1外壁的一端固定安装有进水口2,集水腔1外壁的另一端固定安装有出水口3;集水腔1的外壁与内壁之间,沿集水腔1轴向设置有多条相邻的水冷通道4,水冷通道4实现将进水口2与出水口3冷却水的通道连接。
所述水冷通道4包括盖板5、连接板6、隔板7和内套8;其中内套8包裹在集水腔1的内壁外表面;盖板5固定安装在集水腔1的外壁内表面;多个盖板紧密排列覆盖集水腔1的外壁内表面;相邻盖板5之间设置有连接板6,连接板6与内套8之间集水腔1径向设置有隔板7。
其中,隔板为矩形结构,高h为10-18mm;厚度为5-7mm,材料为碳钢;盖板5为矩形结构,集水腔1的外壁内表面共设置有n块盖板5,n为不小于 90的正整数;盖板5厚度为9-11mm;盖板5的材料为碳钢;盖板5长度 L=2πR/n,其中R为集水腔1外壁半径,集 水腔1外壁半径R为900-3000mm。
如图2所示为搭接焊接示意图,由图可知,内套8沿外表面向内部设置有多个蒸汽孔9,蒸汽孔9直径为0.9-1.1mm;开口为0.2mm,相邻蒸汽孔9间距为0.1-0.35mm。
水冷通道4中冷却水的流速v为2-3m/s,其中q为冷却水流量,通过外部阀门控制。
冷却水通道内的换热类型一般包括对流换热、过冷沸腾、核态沸腾、膜态沸腾、过热蒸汽换热等类型。由于扩压器热环境较高,达到了兆瓦量级,而同时通过冷却水流量控制可保证水主流温度低于饱和温度,因此冷却水与壁面的换热类型一般为过冷沸腾换热,只有在冷却水入口很短的一段内是对流换热。过冷沸腾的过程为冷却水主流尚未达到饱和温度,管壁附近的液体被壁面加热产生小气泡,小气泡逐渐扩大并被带到液体的主流中去,对流换热系数急剧增加。在扩压器的防热结构设计中,通过控制水冷通道内冷却水的流量,使冷却水主流温度低于饱和温度,在水冷通道内壁面形成过冷沸腾换热,提高表面传热系数,从而达到强化换热的目的。
本项目关键技术包括:
1、过冷沸腾夹套水冷防热技术
通过控制夹套水冷通道内冷却水的流速和流量,使水冷通道内壁面处的换热方式稳定在过冷沸腾换热区域,在较低的供应压力和较小的流速下,进行较大热流条件下的热防护,本发明实现了水流速2m/s的情况下对2MW/m2热流状态的热防护。
2、热壁温度控制技术
通过调节冷却水压力来控制冷却水侧壁面(冷壁)温度,进而通过调整水冷通道的壁厚来实现对燃气侧壁面(热壁)温度的控制。
3、流量分配技术
通过合理设计水冷通道的几何尺寸,配合水泵调节和管路设计实现对冷却水的流量和流速的控制,并有效降低沿程压力损失。
效果
过冷沸腾夹套水冷防热方法应用于国家重点建设项目高温燃气流超声速热结构风洞扩压器设计中,实现了扩压器在兆瓦级热流环境下长时间稳定工作,降低了扩压器的设计难度和对能源的需求,确保风洞的正常运行。
高温燃气流超声速热结构风洞试验系统是为国家新一代战略武器型号提供防热系统地面热结构试验保障条件的重要系统,主要承担武器型号热防护系统的试验考核任务,开展部段结构整体和局部1:1热结构及热密封试验考核,满足新一代战略武器型号防隔热方案、热结构和热密封研究需求,为未来武器型号的研制提供重要支撑和保障。
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。

Claims (6)

1.一种低速冷却水热防护装置,其特征在于:包括集水腔(1)、进水口(2)、出水口(3)和水冷通道(4);其中,集水腔(1)为中空筒状结构;集水腔(1)外壁的一端固定安装有进水口(2),集水腔(1)外壁的另一端固定安装有出水口(3);集水腔(1)的外壁与内壁之间,沿集水腔(1)轴向设置有多条相邻的水冷通道(4),水冷通道(4)实现将进水口(2)与出水口(3)冷却水的通道连接;
所述水冷通道(4)包括盖板(5)、连接板(6)、隔板(7)和内套(8);其中内套(8)包裹在集水腔(1)的内壁外表面;盖板(5)固定安装在集水腔(1)的外壁内表面;多个盖板紧密排列覆盖集水腔(1)的外壁内表面;相邻盖板(5)之间设置有连接板(6),连接板(6)与内套(8)之间集水腔(1)径向设置有隔板(7);
内套(8)沿外表面向内部设置有多个蒸汽孔(9),通过控制水冷通道(4)内冷却水的流速和流量,使水冷通道(4)内壁面处的换热方式稳定在过冷沸腾换热区域,在低供应压力和小流速下,进行大热流条件下的热防护。
2.根据权利要求1所述的一种低速冷却水热防护装置,其特征在于:所述隔板(7)为矩形结构,高h为10-18mm;厚度为5-7mm,材料为碳钢。
3.根据权利要求1所述的一种低速冷却水热防护装置,其特征在于:所述盖板(5)为矩形结构,集水腔(1)的外壁内表面共设置有n块盖板(5),n为不小于90的正整数;盖板(5)厚度为9-11mm;盖板(5)的材料为碳钢。
4.根据权利要求3所述的一种低速冷却水热防护装置,其特征在于:所述盖板(5)长度L=2πR/n,其中R为集水腔(1)外壁半径,集 水腔(1)外壁半径R为900-3000mm。
5.根据权利要求1-4任一项所述的一种低速冷却水热防护装置,其特征在于:所述水冷通道(4)中冷却水的流速v为2-3m/s,其中q为冷却水流量,通过外部阀门控制;n为盖板(5)的个数;L为盖板(5)的长度;h为隔板(7)的高度。
6.根据权利要求1所述的一种低速冷却水热防护装置,其特征在于:蒸汽孔(9)直径为0.9-1.1mm;开口为0.2mm,相邻蒸汽孔(9)间距为0.1-0.35mm。
CN201610912731.2A 2016-10-19 2016-10-19 一种低速冷却水热防护装置 Active CN106403661B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610912731.2A CN106403661B (zh) 2016-10-19 2016-10-19 一种低速冷却水热防护装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610912731.2A CN106403661B (zh) 2016-10-19 2016-10-19 一种低速冷却水热防护装置

Publications (2)

Publication Number Publication Date
CN106403661A CN106403661A (zh) 2017-02-15
CN106403661B true CN106403661B (zh) 2019-01-11

Family

ID=58012219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610912731.2A Active CN106403661B (zh) 2016-10-19 2016-10-19 一种低速冷却水热防护装置

Country Status (1)

Country Link
CN (1) CN106403661B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108800190B (zh) * 2018-06-25 2020-07-03 西北工业大学 一种试验介质混合装置
CN109000878B (zh) * 2018-09-20 2019-07-02 中国空气动力研究与发展中心超高速空气动力研究所 一种用于等离子体风洞的扩压器
CN109945716B (zh) * 2019-03-25 2019-11-12 中国空气动力研究与发展中心超高速空气动力研究所 一种高温冷却器换热管束支撑装置
CN109945730B (zh) * 2019-03-25 2019-11-29 中国空气动力研究与发展中心超高速空气动力研究所 一种高温冷却器方形截面壳体结构及其设计方法
CN110127083A (zh) * 2019-05-30 2019-08-16 北京卫星环境工程研究所 用于地面高温高热流环境模拟的加热系统
CN110307564B (zh) * 2019-06-12 2023-03-10 中南大学 分体式燃烧室及其发动机与热防护方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215256A (ja) * 1990-12-11 1992-08-06 Fuji Electric Co Ltd 燃料電池の冷却装置
JP2005273512A (ja) * 2004-03-24 2005-10-06 Isuzu Motors Ltd エンジンのegrクーラー
CN202793104U (zh) * 2012-09-05 2013-03-13 合肥合意环保科技工程有限公司 一种多通道水冷却管
CN103163173B (zh) * 2013-03-15 2015-07-15 北京航空航天大学 大型高速飞行器圆壳体结构内壁非分段式高温热试验装置
CN104776973B (zh) * 2015-03-24 2017-06-30 中国科学院力学研究所 一种应用于高马赫数喷管喉道的冷却装置及其构造方法
CN204988734U (zh) * 2015-08-12 2016-01-20 西安航天动力试验技术研究所 一种发动机试验用燃气扩压器

Also Published As

Publication number Publication date
CN106403661A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN106403661B (zh) 一种低速冷却水热防护装置
CN107060892B (zh) 一种气液耦合的涡轮叶片冷却单元
CN106568568B (zh) 一种高温燃气流超声速风洞试验系统
CN207795410U (zh) 支板结构、滑油冷却装置和航空发动机
CN113090335A (zh) 一种用于涡轮转子叶片的冲击加气膜双层壁冷却结构
CN210396821U (zh) 一种船用燃气轮机高压涡轮导叶冷却结构
CN204424405U (zh) 一种强制风冷的内置式电动汽车车用电池包散热装置
CN108657442B (zh) 飞行器及热防护系统
Li et al. Loop thermosiphon as a feasible cooling method for the stators of gas turbine
CN108298097B (zh) 一种小尺度强化换热结构
CN113006881B (zh) 一种叶片前缘双旋流冲击冷却实验测试系统及方法
Chitsazan et al. Review of jet impingement heat and mass transfer for industrial application
CN206524996U (zh) 一种叠片式电弧加热器电极冷却结构
CN104712372A (zh) 一种高性能冲击冷却系统
CN112282858A (zh) 一种基于记忆合金的燃气透平叶片冷却结构
Zhao et al. Effect of guide wall on jet impingement cooling in blade leading edge channel
US20180266253A1 (en) Actively cooled component
Prajapati et al. Thermal Visualization and Performance Evaluation of the Open Matrix Structures Using Liquid Crystal Thermography
CN205279811U (zh) 一种带壳体冷却的管翅式气-液换热器
CN205279810U (zh) 一种管翅式气-液换热器
CN203214189U (zh) 一种塞式轴对称喷管中心锥循环可调冷却结构
CN109590804A (zh) 主轴系统冷却套及主轴系统
CN115898693A (zh) 一种波纹扰流平面冷却装置及应用
CN204404235U (zh) 一种带有冷却结构的燃气轮机燃烧室过渡段
Bunker et al. Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade: Part 1—Experimental Measurements

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant