CN108977809A - 用于1045碳钢共晶盐相变蓄冷材料溶液的蛋氨酸/脯氨酸复配缓蚀剂的制备方法 - Google Patents

用于1045碳钢共晶盐相变蓄冷材料溶液的蛋氨酸/脯氨酸复配缓蚀剂的制备方法 Download PDF

Info

Publication number
CN108977809A
CN108977809A CN201810812266.4A CN201810812266A CN108977809A CN 108977809 A CN108977809 A CN 108977809A CN 201810812266 A CN201810812266 A CN 201810812266A CN 108977809 A CN108977809 A CN 108977809A
Authority
CN
China
Prior art keywords
pure
methionine
analysis
proline
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810812266.4A
Other languages
English (en)
Inventor
阮乐
张卫鹏
张哲�
李文武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201810812266.4A priority Critical patent/CN108977809A/zh
Publication of CN108977809A publication Critical patent/CN108977809A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/144Aminocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/066Cooling mixtures; De-icing compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

本发明公开了一种用于1045碳钢共晶盐相变蓄冷材料溶液的蛋氨酸/脯氨酸复配缓蚀剂的制备方法。(1)称取分析纯无水硫酸钠、分析纯氯化铵、分析纯氯化钾、分析纯磷酸二氢铵、分析纯硼砂和羧甲基纤维素,加入蒸馏水,使用磁力搅拌器将其溶解得共晶盐相变蓄冷材料。(2)称取分析纯蛋氨酸溶解于步骤(1)所得共晶盐相变蓄冷材料溶液中,搅拌下加入分析纯脯氨酸,分析纯蛋氨酸与分析纯脯氨酸的摩尔比5:1~5:5,充分溶解后即得溶度范围为0.001 mol/L~0.05 mol/L的蛋氨酸/脯氨酸复配缓蚀剂。本发明能够抑制1045碳钢作为共晶盐相变蓄冷材料溶液容器的腐蚀速率,而且操作简单,成本低廉,绿色环保。

Description

用于1045碳钢共晶盐相变蓄冷材料溶液的蛋氨酸/脯氨酸复 配缓蚀剂的制备方法
技术领域
本发明涉及一种适用于1045碳钢共晶盐相变蓄冷材料溶液的蛋氨酸/脯氨酸复配缓蚀剂的制备方法。
背景技术
共晶盐相变蓄冷材料是由无机盐、水和其他的添加剂所构成的高浓度离子混合溶液,能够在受到升温(或降温)产生相变化的过程中,以潜热的形式从外部环境中吸收(或释放) 出大量的热量。具有生产的成本低、储能的密度大、过程容易控制、储蓄/释放热量近似等温和可多次重复利用等特点,在多种领域受到广泛应用。但共晶盐相变蓄冷材料高离子浓度的液相状态会使金属容器发生严重的腐蚀,严重限制了其发展与应用。
缓蚀剂是一种以一定浓度和形式存在于环境或腐蚀介质中,并防止或减缓金属腐蚀的化学物质或几种化学物质的混合物。缓蚀剂的用量通常都是微量的,在适当的低浓度状态下就能起到很高效的缓蚀效果,减缓金属基体的腐蚀甚至可以将腐蚀的速度降为零,同时还能保持金属材料的性能不变。
氨基酸作为人体需要的营养物质,具有水溶性好,价格低,来源广,绿色无害,可被生物降解等优点。一般来说含有杂原子或者芳香环的官能团是有机分子与金属发生配位吸附的活性位点,而氨基酸同时具有酸性羧基和碱性氨基基团,能够在铁表面吸附形成一层分子膜,以此来防止铁在腐蚀介质中腐蚀,具有较高的缓蚀性能。
发明内容
本发明的目的旨在解决1045碳钢在共晶盐相变蓄冷材料溶液中的腐蚀,通过蛋氨酸复配脯氨酸作为缓蚀剂来抑制1045碳钢在共晶盐相变蓄冷材料溶液中腐蚀(最高缓蚀性能为 94.32%)的蛋氨酸/脯氨酸复配缓蚀剂的制备方法。
作为一种链状氨基酸,蛋氨酸分子的体积较大,分子刚性较弱,蛋氨酸分子吸附在金属表面时,难以生成致密有序的缓蚀膜层;脯氨酸分子构型为五元环状,分子体积小,分子结构的刚性较强,与蛋氨酸缓蚀剂复配时可以对蛋氨酸吸附膜层中的缺陷进行补充和完善,形成致密的吸附膜,从而提高缓蚀效率。
具体步骤为:
(1)用分析天平分别称取38.108g分析纯无水硫酸钠、12.4g分析纯氯化铵、6.2g分析纯氯化钾、6.2g分析纯磷酸二氢铵、3.8g分析纯硼砂和5.0g羧甲基纤维素(CMC),加入128.3mL蒸馏水,使用磁力搅拌器将其溶解,配制成共晶盐相变蓄冷材料溶液。
(2)称取0.0149~0.7460g的分析纯蛋氨酸溶解于100mL步骤(1)所得的共晶盐相变蓄冷材料溶液中,缓慢搅拌下加入0.0115~0.5757g分析纯脯氨酸,分析纯蛋氨酸与分析纯脯氨酸的摩尔比5:1~5:5,充分溶解后即制得的100mL溶度范围为0.001mol/L~0.05mol/L的蛋氨酸/脯氨酸复配缓蚀剂。
(3)在室温下,以包封了环氧树脂且一端裸露面积为0.5024cm2,另一端以铜导线连接的 1045碳钢棒为工作电极,饱和甘汞电极作为参比电极,尺寸为1.0cm×1.8cm的铂片电极为对电极,电解池为100mL烧杯,采用CHI760e电化学工作站以传统三电极体系的方式测量 1045碳钢工作电极在步骤(2)制备好的腐蚀溶液中的交流阻抗数据和Tafel极化曲线数据,评价缓蚀性能。
蛋氨酸的溶度范围为0.001mol/L~0.05mol/L,其中最优溶度为0.05mol/L;脯氨酸的溶度范围为:0.001mol/L~0.05mol/L,最优溶度为0.05mol/L。蛋氨酸与脯氨酸的复配比例(摩尔比)范围为:5:1~5:5,其中最优复配比例为5:3。
本发明的特点在于于室温条件下只需要在缓慢搅拌的状态下在共晶盐相变蓄冷材料溶液分别加入一定质量的蛋氨酸和脯氨酸至完全溶解,并静置2小时,即可较好的抑制共晶盐相变蓄冷材料溶液对1045碳钢的腐蚀。于室温条件下测试其交流阻抗数据可得出蛋氨酸/脯氨酸复配缓蚀剂添加溶度为0.001mol/L~0.05mol/L时,蛋氨酸与脯氨酸的复配比例(摩尔比)范围为:5:1~5:5之间,缓蚀效率最高可达到94.32%。Tafel极化曲线测试可以得出蛋氨酸/脯氨酸复配缓蚀剂添加溶度范围在添加溶度为0.001mol/L~0.05mol/L时,蛋氨酸与脯氨酸的复配比例(摩尔比)范围为:5:1~5:5之间,1045碳钢的腐蚀电流密度由27.12μ A/cm2减少到1.87μA/cm2。极大程度的抑制了1045碳钢在共晶盐相变蓄冷材料溶液中的腐蚀速率。
缓蚀效率()计算公式如下:
其中为Rct为添加缓蚀剂后的电荷转移阻抗,R0 ct为未添加缓蚀剂的共晶盐相变蓄冷材料溶液的电荷转移阻抗。
附图说明
图1是实施例1中交流阻抗测试所得到的Nyquist阻抗图谱。
图2是实施例1中Tafel极化曲线测试所得到的Tafel极化曲线图谱。
图3是实施例2中交流阻抗测试所得到的Nyquist阻抗图谱。
图4是实施例2中Tafel极化曲线测试所得到的Tafel极化曲线图谱。
具体实施方式
实施例1:
(1)用分析天平分别称取38.108g分析纯无水硫酸钠、12.4g分析纯氯化铵、6.2g分析纯氯化钾、6.2g分析纯磷酸二氢铵、3.8g分析纯硼砂和5.0g CMC,用量筒量取128.3 mL蒸馏水,使用磁力搅拌器将称取的药品溶解在量取的蒸馏水中,配制成共晶盐相变蓄冷材料溶液。
(2)先称取0.7460g的分析纯蛋氨酸溶解于100mL步骤(1)所得的共晶盐相变蓄冷材料溶液中,缓慢搅拌下加入0.3454g分析纯脯氨酸,充分溶解后即制得分析纯蛋氨酸与分析纯脯氨酸的摩尔比为5:3的100mL浓度为0.05mol/L的蛋氨酸/脯氨酸复配缓蚀剂。
(3)在室温下,以包封了环氧树脂且一端裸露面积为0.5024cm2,另一端以铜导线连接的 1045碳钢棒为工作电极,饱和甘汞电极作为参比电极,尺寸为1.0cm×1.8cm的铂片电极为对电极,电解池为100mL烧杯,采用CHI760e电化学工作站以传统三电极体系的方式测量 1045碳钢工作电极在步骤(2)制备好的腐蚀溶液中的交流阻抗数据和Tafel极化曲线数据,评价缓蚀性能。
图1是实施例1得到的1045碳钢在添加蛋氨酸/脯氨酸复配缓蚀剂的共晶盐相变蓄冷材料溶液中的Nyquist阻抗图谱。图2是实施例1得到的添加蛋氨酸/脯氨酸复配缓蚀剂的Tafel 极化曲线图谱。
实施例2:
(1)用分析天平分别称取38.108g分析纯无水硫酸钠、12.4g分析纯氯化铵、6.2g分析纯氯化钾、6.2g分析纯磷酸二氢铵、3.8g分析纯硼砂和5.0g CMC,用量筒量取128.3 mL蒸馏水,使用磁力搅拌器将称取的药品溶解在量取的蒸馏水中,配制成共晶盐相变蓄冷材料溶液。
(2)称取0.7460g的分析纯蛋氨酸溶解于100mL步骤(1)所得的共晶盐相变蓄冷材料溶液中,缓慢搅拌下加入0.5757g分析纯脯氨酸,充分溶解后即制得分析纯蛋氨酸与分析纯脯氨酸的摩尔比为5:5的100mL浓度为0.05mol/L的蛋氨酸/脯氨酸复配缓蚀剂。
(3)在室温下,以包封了环氧树脂且一端裸露面积为0.5024cm2,另一端以铜导线连接的 1045碳钢棒为工作电极,饱和甘汞电极作为参比电极,尺寸为1.0cm×1.8cm的铂片电极为对电极,电解池为100mL烧杯,采用CHI760e电化学工作站以传统三电极体系的方式测量 1045碳钢工作电极在步骤(2)制备好的腐蚀溶液中的交流阻抗数据和Tafel极化曲线数据,评价缓蚀性能。
图3是实施例2得到的1045碳钢在添加蛋氨酸/脯氨酸复配缓蚀剂的共晶盐相变蓄冷材料溶液中的Nyquist阻抗图谱。图4是实施例2得到的添加蛋氨酸/脯氨酸复配缓蚀剂的Tafel 极化曲线图谱。
图1~图4可以突出本发明的特点。

Claims (1)

1.一种用于1045碳钢共晶盐相变蓄冷材料溶液的蛋氨酸/脯氨酸复配缓蚀剂的制备方法,其特征在于具体步骤为:
(1) 用分析天平分别称取38.108 g分析纯无水硫酸钠、12.4 g分析纯氯化铵、6.2 g分析纯氯化钾、6.2 g分析纯磷酸二氢铵、3.8 g分析纯硼砂和5.0g羧甲基纤维素,加入128.3mL蒸馏水,使用磁力搅拌器将其溶解,配制成共晶盐相变蓄冷材料溶液;
(2) 称取0.0149 ~ 0.7460 g的分析纯蛋氨酸溶解于100 mL步骤(1)所得的共晶盐相变蓄冷材料溶液中,缓慢搅拌下加入0.0115 ~ 0.5757 g分析纯脯氨酸,分析纯蛋氨酸与分析纯脯氨酸的摩尔比5:1 ~ 5:5,充分溶解后即制得的100 mL溶度范围为0.001 mol/L~ 0.05 mol/L的蛋氨酸/脯氨酸复配缓蚀剂。
CN201810812266.4A 2018-07-23 2018-07-23 用于1045碳钢共晶盐相变蓄冷材料溶液的蛋氨酸/脯氨酸复配缓蚀剂的制备方法 Pending CN108977809A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810812266.4A CN108977809A (zh) 2018-07-23 2018-07-23 用于1045碳钢共晶盐相变蓄冷材料溶液的蛋氨酸/脯氨酸复配缓蚀剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810812266.4A CN108977809A (zh) 2018-07-23 2018-07-23 用于1045碳钢共晶盐相变蓄冷材料溶液的蛋氨酸/脯氨酸复配缓蚀剂的制备方法

Publications (1)

Publication Number Publication Date
CN108977809A true CN108977809A (zh) 2018-12-11

Family

ID=64550175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810812266.4A Pending CN108977809A (zh) 2018-07-23 2018-07-23 用于1045碳钢共晶盐相变蓄冷材料溶液的蛋氨酸/脯氨酸复配缓蚀剂的制备方法

Country Status (1)

Country Link
CN (1) CN108977809A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1123253A (zh) * 1994-09-12 1996-05-29 罗姆和哈斯公司 用聚氨基酸在水系统中防腐蚀的方法
CN101285193A (zh) * 2007-04-09 2008-10-15 比亚迪股份有限公司 一种用于处理镁合金表面的酸性溶液及处理方法
CN105002505A (zh) * 2015-07-03 2015-10-28 桂林理工大学 用于1045碳钢盐酸酸洗溶液的靛蓝二磺酸钠/苄基三甲基溴化铵复配缓蚀剂的制备方法
CN107460486A (zh) * 2017-04-12 2017-12-12 西南石油大学 一种三苯胺醛类衍生物与氨基酸复合缓蚀剂及其使用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1123253A (zh) * 1994-09-12 1996-05-29 罗姆和哈斯公司 用聚氨基酸在水系统中防腐蚀的方法
CN101285193A (zh) * 2007-04-09 2008-10-15 比亚迪股份有限公司 一种用于处理镁合金表面的酸性溶液及处理方法
CN105002505A (zh) * 2015-07-03 2015-10-28 桂林理工大学 用于1045碳钢盐酸酸洗溶液的靛蓝二磺酸钠/苄基三甲基溴化铵复配缓蚀剂的制备方法
CN107460486A (zh) * 2017-04-12 2017-12-12 西南石油大学 一种三苯胺醛类衍生物与氨基酸复合缓蚀剂及其使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHE ZHANG等: "Inhibition of carbon steel corrosion in phase-change-materials solution by methionine and proline", 《CORROSION SCIENCE》 *

Similar Documents

Publication Publication Date Title
Palomar-Pardavé et al. Influence of the alkyl chain length of 2 amino 5 alkyl 1, 3, 4 thiadiazole compounds on the corrosion inhibition of steel immersed in sulfuric acid solutions
Barouni et al. Amino acids as corrosion inhibitors for copper in nitric acid medium: Experimental and theoretical study
Krishnaveni et al. Effect of aqueous extract of leaves of Morinda tinctoria on corrosion inhibition of aluminium surface in HCl medium
Abdel Hameed et al. Inhibiting properties of some heterocyclic amide derivatives as potential nontoxic corrosion inhibitors for carbon steel in 1.0 M sulfuric acid
Li et al. Adsorption and inhibition effect of vanillin on cold rolled steel in 3.0 M H3PO4
Döner et al. Investigation of corrosion inhibition effect of 3-[(2-hydroxy-benzylidene)-amino]-2-thioxo-thiazolidin-4-one on corrosion of mild steel in the acidic medium
Mu et al. Synergistic inhibition between o-phenanthroline and chloride ion on cold rolled steel corrosion in phosphoric acid
Touir et al. Study of phosphonate addition and hydrodynamic conditions on ordinary steel corrosion inhibition in simulated cooling water
Pavithra et al. Synergistic effect of halide ions on improving corrosion inhibition behaviour of benzisothiozole-3-piperizine hydrochloride on mild steel in 0.5 M H2SO4 medium
Yurt et al. Diphenolic Schiff bases as corrosion inhibitors for aluminium in 0.1 M HCl: potentiodynamic polarisation and EQCM investigations
Morad et al. Effect of amino acids containing sulfur on the corrosion of mild steel in phosphoric acid solutions polluted with Cl−, F− and Fe3+ ions–behaviour near and at the corrosion potential
Li et al. Inhibition effect of methyl violet on the corrosion of cold rolled steel in 1.0 M HCl solution
Bereket et al. Electrochemical thermodynamic and kinetic studies of the behaviour of aluminium in hydrochloric acid containing various benzotriazole derivatives
Abd-El-Nabey et al. Inhibitive Action of Some Plant Extracts on the Alkaline Corrosion of Aluminum.
Adejo Proposing a new empirical adsorption isotherm known as Adejo-Ekwenchi isotherm
WO2018119973A1 (zh) 一种盐酸酸洗缓蚀剂及其制备方法
Barouni et al. Inhibition of corrosion of copper in nitric acid solution by four amino acids
Ashassi-Sorkhabi et al. Corrosion inhibition of mild steel in acidic media by Basic yellow 13 dye
Thirumalaikumar et al. Inhibition effects of nitrones on the corrosion of mild steel in organic acid media
CN103102310B (zh) 肉桂基咪唑啉衍生物及其制备方法
El Azzouzi et al. Investigation of isomers of hydroxyphenylamino propane nitrile as mild steel corrosion inhibitors in 1 M HCl
Yang et al. Indolizine quaternary ammonium salt inhibitors, part III: Insights into the highly effective low-toxicity acid corrosion inhibitor–synthesis and protection performance
Tang et al. The synergistic inhibition between hexadecyl trimethyl ammonium bromide (HTAB) and NaBr for the corrosion of cold rolled steel in 0.5 M sulfuric acid
CN108977809A (zh) 用于1045碳钢共晶盐相变蓄冷材料溶液的蛋氨酸/脯氨酸复配缓蚀剂的制备方法
CN105510414B (zh) 一种醇醚替代燃料系统腐蚀抑制剂的评价方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181211