CN108950403B - 一种合金钢及其制备方法 - Google Patents

一种合金钢及其制备方法 Download PDF

Info

Publication number
CN108950403B
CN108950403B CN201810921249.4A CN201810921249A CN108950403B CN 108950403 B CN108950403 B CN 108950403B CN 201810921249 A CN201810921249 A CN 201810921249A CN 108950403 B CN108950403 B CN 108950403B
Authority
CN
China
Prior art keywords
steel
molten steel
temperature
alloy
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810921249.4A
Other languages
English (en)
Other versions
CN108950403A (zh
Inventor
王帅
郑开宏
王娟
王海艳
郑志斌
龙骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of New Materials of Guangdong Academy of Sciences
Original Assignee
Guangdong Institute of Materials and Processing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Institute of Materials and Processing filed Critical Guangdong Institute of Materials and Processing
Priority to CN201810921249.4A priority Critical patent/CN108950403B/zh
Publication of CN108950403A publication Critical patent/CN108950403A/zh
Application granted granted Critical
Publication of CN108950403B publication Critical patent/CN108950403B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

本发明涉及一种合金钢及其制备方法,属于钢铁材料技术领域。一种合金钢,包括C:0.06~0.2%,Si:0.4~1.0%,Mn:0.5~1.5%,Cr:16~22%,Ni:28~34%,Ce:0.3~0.6%,Y:0.15~0.3%,余量的Fe和杂质元素。该合金钢具有良好的高温力学性能和高温抗氧化能力,适用于高温条件下服役的抗氧化零部件及耐热设备。一种合金钢的制备方法,包括:按配比将原料混合熔化、浇注成形,再进行后处理。该制备方法操作简单,可控性强,易于工业化生产。

Description

一种合金钢及其制备方法
技术领域
本发明涉及钢铁材料技术领域,且特别涉及一种合金钢及其制备方法。
背景技术
耐热钢作为特殊钢类重要的一种耐蚀合金材料,近年来迎来发展的新时期,未来几年是耐热钢向高品质化发展的重要阶段。随着技术的发展与生活的实际需要,人们对电力的需求也日益加剧。电站热力设备中许多零部件热电偶、风帽、燃烧器喷嘴都在高温氧化、严重腐蚀等恶劣环境下长期工作,要求材质必须具有优良的高温抗氧化性及高温强度等性能。
合金钢因其良好的韧性和抗氧化性以及较高的蠕变强度而被广泛应用于燃煤锅炉耐热构件、汽涡轮机、长期工作在蒸汽下的气体管道及乙烯裂解炉管等高温服役构件中。随着生产需求的提高,耐热钢的工作环境愈加复杂化且其服役温度也越来越高,因此改善材料的抗高温氧化性也越来越受到人们的关注。
对于奥氏体钢微量的稀土元素可以提高钢的各项性能。由于不同稀土元素具有不同的原子半径、负电性和外层价电子结构等物理化学特性,因此,在耐热钢中虽然基本作用相同,但是各元素的优势作用确存在较大差异。所以,耐热钢中添加单一稀土还远远达不到提高其综合性能的效果。因此,发明耐热钢,对改善耐热钢的综合性能具有重要的现实意义。
发明内容
针对现有技术的不足,本发明的目的在于提供一种合金钢,该合金钢具有良好的高温力学性能和高温抗氧化能力,适用于高温条件下服役的抗氧化零部件及耐热设备。
本发明的另一目的在于提供上述合金钢的制备方法,该制备方法操作简单,可控性强,易于工业化生产。
本发明解决其技术问题是采用以下技术方案来实现的。
本发明提出一种合金钢,按质量百分比计,包括C:0.06~0.2%,Si:0.4~1.0%,Mn:0.5~1.5%,Cr:16~22%,Ni:28~34%,Ce:0.3~0.6%,Y:0.15~0.3%,余量的Fe和杂质元素。
本发明提出一种合金钢的制备方法,包括:按配比将原料混合熔化、浇注成形,再进行后处理。
本发明的有益效果包括:
本发明通过加入稀土钇和稀土铈元素,并合理控制碳、硅、锰、铬、镍、稀土铈以及稀土钇的含量,复合添加双稀土元素、同时发挥两种稀土协同优势作用,使合金钢综合性能得以显著改善,通过本发明提供的制备方法,得到具有良好高温力学性能和高温抗氧化能力的合金钢。700℃时材料的抗拉强度和伸长率分别为大于319MPa和大于26%;在1000℃氧化150h单位面积的氧化增重小于30.1g/m2。适用于高温条件下服役的抗氧化零部件及耐热设备。该制备方法操作简单,可控性强,易于工业化生产。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本发明实施例的一种合金钢及其制备方法进行具体说明。
本发明实施例提供了一种合金钢,按质量百分比计,包括C:0.06~0.2%,Si:0.4~1.0%,Mn:0.5~1.5%,Cr:16~22%,Ni:28~34%,Ce:0.3~0.6%,Y:0.15~0.3%,余量的Fe和杂质元素。
在上述化学成分上,碳是有效地赋予耐热钢所需的适宜的拉伸强度和高温持久强度的组分。然而,如果碳含量过高,将使得合金的韧性降低并可能破坏焊接性。为此,本发明中碳含量限定为0.06~0.2%。碳含量可以为0.07%、0.08%、0.09%。优选地,碳含量可以为0.1~0.2%,其中,碳含量可以为0.11%、0.13%、0.15%、0.16%、0.19%。
硅有利于改善耐热钢的抗高温氧化性,但过量的硅将破坏合金的焊接性能,如果长期暴露在高温环境下容易形成σ相破坏合金的延展性和韧性。为此,硅含量限定为0.4~1.0%,硅含量可以为0.62%、0.65%、0.68%、0.71%、0.77%、0.79%、0.81%、0.82%、0.84%、0.88%、0.90%、0.94%、0.97%。优选地,硅含量可以为0.4~0.6%,其中,硅含量可以为0.42%、0.47%、0.49%、0.51%、0.53%、0.58%。
锰能稳定奥氏体,并能增加氮在奥氏体中的溶解度,锰含量过高会有损于抗氧化性,降低合金的蠕变极限。为此,锰含量不应超过1.5%,本发明中锰含量为0.5~1.5%。锰含量可以为0.55%、0.6%、0.65%、0.7%、0.75%。优选地,锰含量为0.8~1.5%。其中,锰含量可以为0.85%、0.9%、1.0%、1.05%、1.1%、1.3%、1.4%。
铬能提高耐热钢的抗氧化性和耐蚀性,在氧化的介质中能形成致密的含铬的氧化膜,能组织金属基体的继续破坏。就这方面而言,为了达到足够的耐蚀性,要求铬含量至少20%。然而如果铬含量过高,为了稳定奥氏体并抑制σ相的形成就需要增加镍的含量,基于这些考虑,铬含量限制在16~22%。铬含量可以为16.5%、21.5%。优选地,铬含量为17~21%。其中,铬含量可以为17.5%、18%、19%、19.5%、20%、20.5%。
镍是强烈形成并稳定奥氏体且扩大奥氏体相区的元素,在特定的铬含量下,增加镍含量抑制氧化物生长速度并增加形成连续氧化铬层的趋势。因此,镍含量优选在28~34%。镍含量可以为28.5%、33.5%。优选地,镍含量为29~33%。其中,镍含量可以为29.5%、30%、30.5%、31%、31.5%、32%。
微量元素不仅能净化钢液,而且能细化钢的凝固组织,改变夹杂物的性质、形态和分布,从而提高钢的各项性能。作为表面活性元素,其能增加晶界扩散激活能,既能阻碍晶界滑动,又增大晶界裂纹的表面能,对提高持久强度十分有效;另外,微量元素可使耐热钢在高温状态下的氧化层生长速度受到抑制,所形成的氧化层与基体结合良好,在高温循环作用下能保护基体不被进一步氧化。
加入稀土钇可明显提高氧化膜致密度以及膜与基体的结合能力,进而提高抗氧化性能。稀土铈可明显净化钢液、改善晶粒形态等,进而提高高温力学性能。本发明通过复合添加双稀土元素、同时发挥两种稀土协同优势作用,使合金钢综合性能得以显著改善。
本发明稀土铈含量为0.3~0.6%。可以为0.33%、0.34%、0.57%。优选地,稀土铈含量为0.35~0.55%。其中,铈含量可以为0.31%、0.32%、0.34%、0.56%、0.57%、0.59%。稀土钇含量为0.15~0.3%,可以为0.16%、0.18%、0.19%。优选地,稀土钇含量为0.2~0.3%。其中,钇含量可以为0.23%、0.25%、0.28%。
进一步地,在本发明较优的实施例中,合金钢含有少量的硫和磷,需要说明的是,S≤0.03%,P≤0.03%。硫和磷的含量较多会影响合金钢的高温力学性能和高温抗氧化能力,因此需控制其含量。
本发明实施例提供了上述合金钢的制备方法,包括:按配比将原料混合熔化、浇注成形,再进行后处理。
具体的,本发明以废钢、硅铁、锰铁、铬铁、镍铁、稀土钇铁和稀土铈铁合金为原材料,按照合金钢的各成分重量百分比,计算并称重各原材料,进行配料。
将废钢在电炉中加热至1420℃~1450℃熔化成第一钢水,待第一钢水熔清后,依次加入锰铁和硅铁熔清得第二钢水,使温度达到1520℃~1540℃,并采用铝丝脱氧。再依次加入镍铁、铬铁,升温至第三水钢水温度达到1600℃~1650℃,再次采用铝丝脱氧。
对第三钢水液面除渣后,将第三钢水迅速出炉倒入底端放置稀土钇铁和稀土铈铁合金的浇包中,此时包中第四钢水温度控制在1560℃~1580℃,静置一段时间使第四钢水温度降为1530℃~1550℃时,将第四钢水倒入铸型浇注成形,即得到铸态钢件。浇注完成10小时后打箱取出铸件。本发明中的第一钢水、第二钢水、第三钢水以及第四钢水是为了明确原料的混合顺序,在具体实施例中对其命名不做强制要求。本发明的实施例采用铝丝脱氧,铝丝脱氧为本技术领域的通用技术,在本发明的其他实施例中,可以采用其他的脱氧方法,本发明对其不做限定。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
本实施例提供了一种合金钢及其制备方法,包括:
本实施例耐热合金钢的化学成分(重量百分数):0.12%C,0.46%Si,0.86%Mn,17.5%Cr,29.8%Ni,0.38%Ce,0.22%Y,S≤0.03%,P≤0.03%,其余为Fe和不可避免的杂质元素。
计算并称重上述熔炼所需的原材料:废钢、锰铁、硅铁、铬铁、镍铁、稀土铈铁和稀土钇铁,进行配料。
将废钢在电炉中加热至1420℃熔化,待钢水熔清后,依次加入锰铁和硅铁熔清后使温度达到1530℃,并采用铝丝脱氧后,依次加入镍铁、铬铁后使此时钢水温度达到1630℃,再次采用铝丝脱氧并在钢水液面除渣后,将钢水迅速出炉倒入底端混合放置稀土钇铁和铈铁合金的浇包中,此时包中钢水温度控制在1565℃,静置一段时间使钢水温度降为1530℃,将钢水倒入铸型浇注成形,即得到铸态耐热钢件。
浇注完成10小时后打箱取出铸件;冷却后,经清砂、打磨等处理,获得合金钢铸件。铸件的性能测试结果为:700℃时材料的抗拉强度和伸长率分别为328MPa和26.7%;在1000℃氧化150h单位面积的氧化增重26.3g/m2
实施例2
本实施例提供了一种合金钢及其制备方法,包括:
本实施例合金钢的化学成分(重量百分数):0.16%C,0.51%Si,1.28%Mn,18.4%Cr,30.6%Ni,0.46%Ce,0.24%Y,S≤0.03%,P≤0.03其余为Fe和不可避免的杂质元素。
计算并称重上述熔炼所需的原材料:废钢、锰铁、硅铁、铬铁、镍铁、稀土铈铁和稀土钇铁,进行配料。
将废钢在电炉中加热至1430℃熔化,待钢水熔清后,依次加入锰铁和硅铁熔清后使温度达到1540℃,并采用铝丝脱氧后,依次加入镍铁、铬铁后使此时钢水温度达到1620℃,再次采用铝丝脱氧并在钢水液面除渣后,将钢水迅速出炉倒入底端混合放置稀土钇铁和铈铁合金的浇包中,此时包中钢水温度控制在1570℃,静置一段时间使钢水温度降为1540℃,将钢水倒入铸型浇注成形,即得到铸态耐热钢件。
浇注完成10小时后打箱取出铸件;冷却后,经清砂、打磨等处理,获得合金钢铸件。铸件抗氧化性能测试结果为:700℃时材料的抗拉强度和伸长率分别为336MPa和30.4%;在1000℃氧化150h单位面积的氧化增重30.1g/m2
实施例3
本实施例提供了一种合金钢及其制备方法,包括:
本实施例合金钢的化学成分(重量百分数):0.19%C,0.59%Si,1.46%Mn,20.4%Cr,32.3%Ni,0.55%Ce,0.26%Y,S≤0.03%,P≤0.03其余为Fe和不可避免的杂质元素。
计算并称重上述熔炼所需的原材料:废钢、锰铁、硅铁、铬铁、镍铁、稀土钇铁和稀土铈铁,进行配料。
将废钢在电炉中加热至1440℃熔化,待钢水熔清后,依次加入锰铁和硅铁熔清后使温度达到1540℃,并采用铝丝脱氧后,依次加入镍铁、铬铁后使此时钢水温度达到1650℃,再次采用铝丝脱氧并在钢水液面除渣后,将钢水迅速出炉倒入底端混合放置稀土钇铁和铈铁合金的浇包中,此时包中钢水温度控制在1580℃,静置使钢水温度为1550℃,将钢水倒入铸型浇注成形,即得到铸态耐热钢件。
浇注完成10小时后打箱取出铸件;冷却后,经清砂、打磨等处理,获得合金钢铸件。铸件抗氧化性能测试结果为:700℃时材料的抗拉强度和伸长率分别为319MPa和29.3%;在1000℃氧化150h单位面积的氧化增重28.3g/m2
对比例1
本对比例提供了一种合金钢及其制备方法,包括:
本对比例耐热合金钢的化学成分(重量百分数):0.08%C,0.42%Si,0.51%Mn,16.5%Cr,29.8%Ni,0.21%Ce,0.19%Y,S≤0.03%,P≤0.03%,其余为Fe和不可避免的杂质元素。
计算并称重上述熔炼所需的原材料:废钢、锰铁、硅铁、铬铁、镍铁、稀土铈铁和稀土钇铁,进行配料。
将废钢在电炉中加热至1420℃熔化,待钢水熔清后,依次加入锰铁和硅铁熔清后使温度达到1520℃,并采用铝丝脱氧后,依次加入镍铁、铬铁后使此时钢水温度达到1600℃,再次采用铝丝脱氧并在钢水液面除渣后,将钢水迅速出炉倒入底端混合放置稀土钇铁和铈铁合金的浇包中,此时包中钢水温度控制在1560℃,静置一段时间使钢水温度降为1530℃,将钢水倒入铸型浇注成形,即得到铸态耐热钢件。
浇注完成10小时后打箱取出铸件;冷却后,经清砂、打磨等处理,获得合金钢铸件。铸件的性能测试结果为:700℃时材料的抗拉强度和伸长率分别为278MPa和19.7%;在1000℃氧化150h单位面积的氧化增重32.3g/m2
对比例2
本对比例提供了一种合金钢及其制备方法,包括:
本对比例耐热合金钢的化学成分(重量百分数):0.12%C,0.45%Si,0.65%Mn,17.5%Cr,30.5%Ni,0.28%Ce,0.35%Y,S≤0.03%,P≤0.03%,其余为Fe和不可避免的杂质元素。
计算并称重上述熔炼所需的原材料:废钢、锰铁、硅铁、铬铁、镍铁、稀土铈铁和稀土钇铁,进行配料。
将废钢在电炉中加热至1430℃熔化,待钢水熔清后,依次加入锰铁和硅铁熔清后使温度达到1525℃,并采用铝丝脱氧后,依次加入镍铁、铬铁后使此时钢水温度达到1620℃,再次采用铝丝脱氧并在钢水液面除渣后,将钢水迅速出炉倒入底端混合放置稀土钇铁和铈铁合金的浇包中,此时包中钢水温度控制在1550℃,静置一段时间使钢水温度降为1535℃,将钢水倒入铸型浇注成形,即得到铸态耐热钢件。
浇注完成10小时后打箱取出铸件;冷却后,经清砂、打磨等处理,获得合金钢铸件。铸件的性能测试结果为:700℃时材料的抗拉强度和伸长率分别为298MPa和21.7%;在1000℃氧化150h单位面积的氧化增重38.3g/m2
试验例
分别对实施例1~3、对比例1~2制备的合金钢进行性能测试,由测试结果可知,相比与对比例,实施例制得的合金钢的高温力学性能和高温抗氧化性能均较好,即钇和铈的含量多少均会影响合金钢的性能。通过本发明提供的制备方法制得的合金钢在700℃时的抗拉强度大于319MPa,最高可达到336MPa,伸长率大于26%,最高可达到30.4%,1000℃氧化150h单位面积氧化增重小于30.1g/m2,最小可达26.3g/m2。说明本发明提供的制备方法较为科学合理,可以制得具有良好的高温力学性能和高温抗氧化能力的合金钢。
以上所描述的实施例是本发明一部分实施例,而不是全部的实施例。本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (4)

1.一种合金钢,其特征在于,按质量百分比计,包括C:0.06~0.2%,Si:0.4~1.0%,Mn:0.5~1.5%,Cr:16~22%,Ni:28~31.5%,Ce:0.3~0.6%,Y:0.15~0.3%,余量的Fe和杂质元素;
所述合金钢的制备方法包括以下步骤:
按配比称重废钢、硅铁、锰铁、铬铁、镍铁、稀土钇铁和稀土铈铁合金;
将所述废钢在1420~1450℃电炉中加热熔化,待第一钢水溶清后,将所述硅铁、所述锰铁加至所述第一钢水,并升高温度至1520~1540℃得第二钢水,待所述第二钢水熔清、脱氧后,将所述铬铁、所述镍铁加至所述第二钢水,并升高温度至1600~1650℃得第三钢水,经过脱氧、除渣后,将所述第三钢水倒入底端防止所述稀土钇铁和所述稀土铈铁合金的浇包中,此时所述浇包中的第四钢水温度为1560~1580℃,静置至所述第四钢水的温度为1530~1550℃,再将所述第四钢水倒入铸型浇注成形;
浇注完成后取出铸件,对所述铸件进行冷却、清砂、打磨处理。
2.根据权利要求1所述的合金钢,其特征在于,按质量百分比计,所述C为0.1~0.2%,所述Si为0.4~0.6%,所述Mn为0.8~1.5%,所述Cr为17~21%,所述Ni为29~31.5%,所述Ce为0.35~0.55%,所述Y为0.2~0.3%。
3.根据权利要求1所述的合金钢,其特征在于,按质量百分比计,所述合金钢还包括:S≤0.03%,P≤0.03%。
4.一种如权利要求1至3任一项所述的合金钢的制备方法,其特征在于,包括:
按配比称重废钢、硅铁、锰铁、铬铁、镍铁、稀土钇铁和稀土铈铁合金;
将所述废钢在1420~1450℃电炉中加热熔化,待第一钢水溶清后,将所述硅铁、所述锰铁加至所述第一钢水,并升高温度至1520~1540℃得第二钢水,待所述第二钢水熔清、脱氧后,将所述铬铁、所述镍铁加至所述第二钢水,并升高温度至1600~1650℃得第三钢水,经过脱氧、除渣后,将所述第三钢水倒入底端防止所述稀土钇铁和所述稀土铈铁合金的浇包中,此时所述浇包中的第四钢水温度为1560~1580℃,静置至所述第四钢水的温度为1530~1550℃,再将所述第四钢水倒入铸型浇注成形;
浇注完成后取出铸件,对所述铸件进行冷却、清砂、打磨处理。
CN201810921249.4A 2018-08-13 2018-08-13 一种合金钢及其制备方法 Active CN108950403B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810921249.4A CN108950403B (zh) 2018-08-13 2018-08-13 一种合金钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810921249.4A CN108950403B (zh) 2018-08-13 2018-08-13 一种合金钢及其制备方法

Publications (2)

Publication Number Publication Date
CN108950403A CN108950403A (zh) 2018-12-07
CN108950403B true CN108950403B (zh) 2020-07-03

Family

ID=64468996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810921249.4A Active CN108950403B (zh) 2018-08-13 2018-08-13 一种合金钢及其制备方法

Country Status (1)

Country Link
CN (1) CN108950403B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556423A (en) * 1982-01-08 1985-12-03 Nippon Kokan Kabushiki Kaisha Austenite stainless steels having excellent high temperature strength
JPH06248393A (ja) * 1993-02-26 1994-09-06 Nippon Steel Corp 耐高温腐食特性に優れたオーステナイト系ステンレス鋼
CN1519388A (zh) * 2003-01-29 2004-08-11 住友金属工业株式会社 奥氏体系不锈钢及其制造方法
CN1268776C (zh) * 2003-04-25 2006-08-09 住友金属工业株式会社 奥氏体系不锈钢
CN101194037A (zh) * 2005-04-11 2008-06-04 住友金属工业株式会社 奥氏体系不锈钢
CN108193135A (zh) * 2018-02-08 2018-06-22 四川维珍高新材料有限公司 一种低碳高强度奥氏体耐热钢及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556423A (en) * 1982-01-08 1985-12-03 Nippon Kokan Kabushiki Kaisha Austenite stainless steels having excellent high temperature strength
JPH06248393A (ja) * 1993-02-26 1994-09-06 Nippon Steel Corp 耐高温腐食特性に優れたオーステナイト系ステンレス鋼
CN1519388A (zh) * 2003-01-29 2004-08-11 住友金属工业株式会社 奥氏体系不锈钢及其制造方法
CN1268776C (zh) * 2003-04-25 2006-08-09 住友金属工业株式会社 奥氏体系不锈钢
CN101194037A (zh) * 2005-04-11 2008-06-04 住友金属工业株式会社 奥氏体系不锈钢
CN108193135A (zh) * 2018-02-08 2018-06-22 四川维珍高新材料有限公司 一种低碳高强度奥氏体耐热钢及其制备方法

Also Published As

Publication number Publication date
CN108950403A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
CN109852885B (zh) 一种双相不锈钢及其制备方法
CN118028696A (zh) 用于汽车涡轮壳、排气管的耐热钢及其制备方法
CN115247225B (zh) 一种中频炉冶炼uns n06600合金的方法
CN109454357B (zh) 一种镍基焊条及其制备方法
CN101381849A (zh) 一种合金化抗磨耐热钢
CN113106315B (zh) 一种耐热1200度换热设备用镍铬铝合金及制造方法
JP3483493B2 (ja) 圧力容器用鋳鋼材及びそれを用いる圧力容器の製造方法
CN108823503B (zh) 一种含稀土钇的奥氏体耐热钢及其制备方法
CN112853155A (zh) 具有优异高温耐腐蚀性和抗蠕变性的高铝奥氏体合金
CN106563888A (zh) 一种高性价比埋弧焊焊丝及其生产方法
CN108950403B (zh) 一种合金钢及其制备方法
CN115922144A (zh) 一种奥氏体不锈钢焊丝及其制备方法
CN108950404B (zh) 一种含锆的奥氏体耐热钢及其制备方法
JPH10195587A (ja) 中温延性に優れた球状黒鉛鋳鉄、エキゾーストマニホールド、およびその製造方法
CN110468329B (zh) ZG-SY09MnCrNiMo RE钢及铸件制备方法
CN107675094A (zh) 一种用于制作铜硫包、渣包的新材料
JP2007177259A (ja) 原子力用オーステナイト系ステンレス鋼およびその製造方法
CN113584350A (zh) 一种抗高温氧化的铸造高钨镍基合金及其制备方法
CN113337783A (zh) 一种钡洁净化铁铬铝合金的生产方法
CN113234997A (zh) 一种新型锰氮铬耐热钢及其制造方法
JP3576234B2 (ja) 蒸気タービン車室又は圧力容器用鋳鋼材
JP3504835B2 (ja) 低合金耐熱鋳鋼及び蒸気タービン用鋳鋼部品
CN111304555A (zh) 原位内生析出陶瓷颗粒增强Cr-Mn-Ni-C-N奥氏体耐热钢及其制备方法与应用
JPH07103447B2 (ja) 高純度耐熱鋼
JPH03177539A (ja) 被削性の優れた機械構造用電気抵抗溶接鋼管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 510000 363 Changxin Road, Tianhe District, Guangzhou, Guangdong.

Patentee after: Institute of materials and processing, Guangdong Academy of Sciences

Address before: 510000 363 Changxin Road, Tianhe District, Guangzhou, Guangdong.

Patentee before: Guangdong Institute Of Materials And Processing

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220129

Address after: 510000 363 Changxin Road, Tianhe District, Guangzhou, Guangdong.

Patentee after: Institute of new materials, Guangdong Academy of Sciences

Address before: 510000 363 Changxin Road, Tianhe District, Guangzhou, Guangdong.

Patentee before: Institute of materials and processing, Guangdong Academy of Sciences