CN108950179B - 一种难选铁矿石低温氢还原磁化焙烧工艺 - Google Patents

一种难选铁矿石低温氢还原磁化焙烧工艺 Download PDF

Info

Publication number
CN108950179B
CN108950179B CN201810623883.XA CN201810623883A CN108950179B CN 108950179 B CN108950179 B CN 108950179B CN 201810623883 A CN201810623883 A CN 201810623883A CN 108950179 B CN108950179 B CN 108950179B
Authority
CN
China
Prior art keywords
iron ore
roasting
magnetizing
size fraction
hydrogen reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810623883.XA
Other languages
English (en)
Other versions
CN108950179A (zh
Inventor
王明华
雷鹏飞
张志刚
权芳民
王永刚
杏仲全
张红军
王建平
寇明月
靳建毅
马胜军
邢德君
陈平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gansu Jiu Steel Group Hongxing Iron and Steel Co Ltd
Original Assignee
Gansu Jiu Steel Group Hongxing Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gansu Jiu Steel Group Hongxing Iron and Steel Co Ltd filed Critical Gansu Jiu Steel Group Hongxing Iron and Steel Co Ltd
Priority to CN201810623883.XA priority Critical patent/CN108950179B/zh
Publication of CN108950179A publication Critical patent/CN108950179A/zh
Application granted granted Critical
Publication of CN108950179B publication Critical patent/CN108950179B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种难选铁矿石低温氢还原磁化焙烧工艺,属于矿物加工、冶金技术领域,工艺,包括以下步骤:破碎分级、5‑15mm粒级铁矿石磁化焙烧、1‑5mm粒级铁矿石磁化焙烧、0‑1mm粒级铁矿石磁化焙烧、冷却物料、物料干选和物料分离。本发明根据不同粒级铁矿石具有不同磁化焙烧特性的机理,将铁矿石分级为大、中、小三种粒级后采用不同的入窑方式进行磁化焙烧,并从回转窑窑头抛入粒状高挥份粒煤来实现低温氢还原快速磁化焙烧,得到优质铁精矿,有效缩短回转窑磁化焙烧时间、提高产能,并大幅降低系统能耗。

Description

一种难选铁矿石低温氢还原磁化焙烧工艺
技术领域
本发明属于矿物加工、冶金技术领域,涉及一种难选铁矿石低温氢还原磁化焙烧工艺。
背景技术
目前,从磁化焙烧工艺来看,铁粉矿的磁化焙烧一般只能采用回转窑焙烧,或流态化焙烧,铁块矿一般通过竖炉焙烧或破碎后采用回转窑焙烧。综合来看,流态化焙烧虽然试验结果表现出焙烧效率高,但现场规模化应用仍然有待进一步完善;竖炉焙烧关键在于对原料透气性要求极高,粉矿很难满足竖炉要求,焙烧块矿时,经常存在大粒级欠烧和小粒级过烧的问题;相对而言,粉矿通过回转窑磁化焙烧是目前最成熟最可靠的选择,块矿破碎后也可满足回转窑焙烧要求。但回转窑焙烧粉状铁矿石的生产实践表明,铁矿石磁化焙烧时间长、焙烧不均匀、焙烧成本高、焙烧高温段“结圈”等问题仍然存在,制约着回转窑磁化焙烧工艺的顺行和规模化推广应用。
发明内容
本发明的目的是提供一种难选铁矿石低温氢还原磁化焙烧工艺,以解决现有回转窑磁化焙烧工艺焙烧时间长、焙烧不均匀、焙烧成本高和结圈的问题。
为了达到上述目的,本发明采用的技术方案为:
一种难选铁矿石低温氢还原磁化焙烧工艺,包括以下步骤:
步骤一、破碎分级:
将铁矿石破碎为0-15mm后分级为0-1mm、1-5mm和5-15mm三个级别;
步骤二、5-15mm粒级铁矿石磁化焙烧:
将5-15mm粒级铁矿石由回转窑入料端加入进行磁化焙烧,5-15mm粒级铁矿石在回转窑内随着窑的转动向出料端移动,行进过程中进行预热和升温,进入焙烧前段时将料温控制在780-830℃;
步骤三、1-5mm粒级铁矿石磁化焙烧:
将1-5mm粒级铁矿石和还原剂由回转窑出料端窑头罩喷枪抛入焙烧中段进行磁化焙烧,二者与步骤二得到的780-830℃的5-15mm粒级铁矿石在混合行进焙烧过程中料温逐步降至660-700℃,实现低温氢还原磁化焙烧;
步骤四、0-1mm粒级铁矿石磁化焙烧:
将0-1mm粒级铁矿石由回转窑出料端窑头罩喷枪抛入焙烧后段进行磁化焙烧,与步骤三得到的660-700℃的5-15mm粒级铁矿石、1-5mm粒级铁矿石和还原剂在混合行进焙烧过程中料温逐步降至620-660℃,实现低温氢还原磁化焙烧;
步骤五、冷却物料:
将步骤四得到的物料进行冷却;
步骤六、物料干选:
将步骤五得到的物料进行干选;
步骤七、物料分离:
将步骤六得到物料中的磁性物料和非磁性物料进行分离,磁性物料进行磨矿和磁选,得到精铁矿和尾矿;从非磁性物料分选出废石和残炭。
步骤一中所述的铁矿石为褐铁矿(nFe2O3•mH2O)、赤铁矿/镜铁矿(Fe2O3)、菱铁矿(FeCO3)及混合型弱磁性铁矿石。
步骤三中所述的还原剂为高挥发份煤种,挥发份不低于40%,粒度为5-15mm,还原剂和铁矿石的质量比为2.5-3:100。
步骤二中所述5-15mm粒级铁矿石磁化焙烧的时间为30-35min。
步骤三中所述1-5mm粒级铁矿石磁化焙烧的的时间为12-18min。
步骤四中所述0-1mm粒级铁矿石磁化焙烧的的时间为5-8min。
步骤五中所述冷却的方式采用空水间接冷却方式。
本发明铁矿石低温氢还原磁化焙烧机理:通过在焙烧段配入高挥发份粒煤充当还原剂,煤当中的挥发份在600℃左右时剧烈析出,挥发份当中含较高比例的H2,通过控制焙烧段料温在650-680℃左右,实现H2对铁矿石铁氧化物的快速低温还原;H2由于分子半径小,其扩散能力比CO强,对铁氧化物的内外扩散速度较快,在低料温条件下即可实现快速还原,可大幅提高回转窑系统焙烧效率;由于采用低温焙烧,既能降低系统能耗,又能从根本上解决回转窑“结圈”的问题。本发明针对褐铁矿(nFe2O3•mH2O)、赤铁矿/镜铁矿(Fe2O3)、菱铁矿(FeCO3)及混合型铁矿石磁化焙烧的主要化学反应式为:
mFe2O3•nH2O= mFe2O3+nH2O (1)
3FeCO3=Fe3O4+CO+2CO2 (2)
3Fe2O3 + H2=2Fe3O4 + H2O (3)
3Fe2O3+CO=2Fe3O4+CO2 (4)
H2O+C=CO+ H2 (5)
本发明的有益效果为:
(1)将铁矿石分级为大、中、小三种粒级后采用不同的入窑方式进行磁化焙烧,提高了回转窑传热效率,可以满足不同粒级铁矿石所需要的焙烧时间,防止大粒级铁矿石欠还原和小粒级铁矿石过还原,解决了回转窑磁化焙烧工艺焙烧不均匀的问题。
(2)采用低温氢还原磁化焙烧,可在低料温条件下实现铁氧化物的快速还原,降低回转窑磁化焙烧成本,解决回转窑“结圈”的问题。
(3)通过窑背风机合理控制回转窑焙烧段料温,结合铁矿石分级入窑和低温氢还原磁化焙烧技术,可均匀控制回转窑焙烧段料层还原气氛,将磁化焙烧总时间缩短至30-35min,大幅度提高回转窑磁化焙烧产能。
(4)采用在焙烧中段抛入粒状高挥发份还原剂的方式,可将传统回转窑磁化焙烧工艺还原剂配比降低至2.5-3%,有效利用了煤中挥发份,进一步降低了系统能耗。
(5)通过低料温实现磁化焙烧,提高了回转窑热能利用效率,低料温的焙烧矿可使冷却时间进一步缩短,为规模化生产低成本焙烧矿奠定基础。
本发明根据不同粒级铁矿石具有不同磁化焙烧特性的机理,将铁矿石分级为大、中、小三种粒级后采用不同的入窑方式进行磁化焙烧,并从回转窑窑头抛入粒状高挥份粒煤来实现低温氢还原快速磁化焙烧,得到优质铁精矿,有效缩短回转窑磁化焙烧时间、提高产能,并大幅降低系统能耗。
具体实施方式
下面结合具体实施方式对本发明做进一步说明。
一种难选铁矿石低温氢还原磁化焙烧工艺,包括以下步骤:
步骤一、破碎分级:
将铁矿石破碎为0-15mm后分级为0-1mm、1-5mm和5-15mm三个级别,铁矿石为褐铁矿(nFe2O3•mH2O)、赤铁矿/镜铁矿(Fe2O3)、菱铁矿(FeCO3)及混合型弱磁性铁矿石;
步骤二、5-15mm粒级铁矿石磁化焙烧:
将5-15mm粒级铁矿石由回转窑入料端加入进行磁化焙烧30-35min,5-15mm粒级铁矿石在回转窑内随着窑的转动向出料端移动,行进过程中进行预热和升温,进入焙烧前段时将料温控制在780-830℃;
步骤三、1-5mm粒级铁矿石磁化焙烧:
将1-5mm粒级铁矿石和还原剂由回转窑出料端窑头罩喷枪抛入焙烧中段进行磁化焙烧12-18min,还原剂为高挥发份煤种,挥发份不低于40%,粒度为5-15mm,还原剂和铁矿石的质量比为2.5-3:100,二者与步骤二得到的780-830℃的5-15mm粒级铁矿石在混合行进焙烧过程中料温逐步降至660-700℃,实现低温氢还原磁化焙烧;
步骤四、0-1mm粒级铁矿石磁化焙烧:
将0-1mm粒级铁矿石由回转窑出料端窑头罩喷枪抛入焙烧后段进行磁化焙烧5-8min,与步骤三得到的660-700℃的5-15mm粒级铁矿石、1-5mm粒级铁矿石和还原剂在混合行进焙烧过程中料温逐步降至620-660℃,实现低温氢还原磁化焙烧;
步骤五、冷却物料:
采用空水间接冷却方式将步骤四得到的物料冷却;
步骤六、物料干选:
将步骤五得到的物料进行干选;
步骤七、物料分离:
将步骤六得到物料中的磁性物料和非磁性物料进行分离,磁性物料进行磨矿和磁选,得到精铁矿和尾矿;从非磁性物料分选出废石和残炭。
实施例1:
原料难选铁矿石TFe含量36.45%,FeO含量6.40%,铁矿物主要以镜铁矿、赤铁矿、菱铁矿、褐铁矿的形式存在,粒度0-15mm;还原剂粒煤Ad 7.56%、Vdaf 48.54%、Fcad 45.28%、St.d 0.39% Mt 10.7、Qnet.var 23060J/g, 粒度5-15mm。
采用如下工艺步骤进行处理:
步骤一、破碎分级:
将铁矿石破碎为0-15mm后分级为0-1mm、1-5mm和5-15mm三个级别;
步骤二、5-15mm粒级铁矿石磁化焙烧:
将5-15mm粒级铁矿石由回转窑入料端加入进行磁化焙烧,5-15mm粒级铁矿石在回转窑内随着窑的转动向出料端移动,行进过程中进行预热和升温,进入焙烧前段时将料温控制在780℃,磁化焙烧的时间为30min;
步骤三、1-5mm粒级铁矿石磁化焙烧:
将1-5mm粒级铁矿石和还原剂由回转窑出料端窑头罩喷枪抛入焙烧中段进行磁化焙烧,还原剂和铁矿石的质量比为2.5:100,二者与步骤二得到的780℃的5-15mm粒级铁矿石在混合行进焙烧过程中料温逐步降至660℃,磁化焙烧的的时间为12min,实现低温氢还原磁化焙烧;
步骤四、0-1mm粒级铁矿石磁化焙烧:
将0-1mm粒级铁矿石由回转窑出料端窑头罩喷枪抛入焙烧后段进行磁化焙烧,与步骤三得到的660℃的5-15mm粒级铁矿石、1-5mm粒级铁矿石和还原剂在混合行进焙烧过程中料温逐步降至620℃,磁化焙烧的的时间为5min,实现低温氢还原磁化焙烧。
步骤五、冷却物料:
采用空水间接冷却方式将步骤四得到的物料进行冷却;
步骤六、物料干选:
将步骤五得到的物料进行干选;
步骤七、物料分离:
将步骤六得到物料中的磁性物料和非磁性物料进行分离,磁性物料进行磨矿和磁选,得到精铁矿和尾矿;从非磁性物料分选出废石和残炭。
对得到的焙烧矿进行TFe、FeO含量检测(其中TFe表示焙烧矿中铁的百分含量,FeO表示焙烧矿中氧化亚铁的百分含量);然后对磨选后的铁精矿进行TFe含量检测。检测结果见表一:
表一 焙烧矿及铁精矿部分化学成分检测结果(%)
Figure DEST_PATH_IMAGE001
实施例2:
原料难选铁矿石TFe含量37.44%,FeO含量10.22%,铁矿物主要以菱、褐铁矿的形式存在,粒度0-100mm;还原剂粒煤Ad 7.56%、Vdaf 48.54%、Fcad 45.28%、St.d 0.39% Mt10.7、Qnet.var 23060J/g, 粒度5-15mm。
采用如下工艺步骤进行处理:
步骤一、破碎分级:
将铁矿石破碎为0-15mm后分级为0-1mm、1-5mm和5-15mm三个级别;
步骤二、5-15mm粒级铁矿石磁化焙烧:
将5-15mm粒级铁矿石由回转窑入料端加入进行磁化焙烧,5-15mm粒级铁矿石在回转窑内随着窑的转动向出料端移动,行进过程中进行预热和升温,进入焙烧前段时将料温控制在830℃,磁化焙烧的时间为35min;
步骤三、1-5mm粒级铁矿石磁化焙烧:
将1-5mm粒级铁矿石和还原剂由回转窑出料端窑头罩喷枪抛入焙烧中段进行磁化焙烧,还原剂和铁矿石的质量比为3:100,二者与步骤二得到的830℃的5-15mm粒级铁矿石在混合行进焙烧过程中料温逐步降至700℃,磁化焙烧的时间为18min,实现低温氢还原磁化焙烧;
步骤四、0-1mm粒级铁矿石磁化焙烧:
将0-1mm粒级铁矿石由回转窑出料端窑头罩喷枪抛入焙烧后段进行磁化焙烧,与步骤三得到的700℃的5-15mm粒级铁矿石、1-5mm粒级铁矿石和还原剂在混合行进焙烧过程中料温逐步降至660℃,磁化焙烧的时间为8min,实现低温氢还原磁化焙烧。
步骤五、冷却物料:
采用空水间接冷却方式将步骤四得到的物料进行冷却;
步骤六、物料干选:
将步骤五得到的物料进行干选;
步骤七、物料分离:
将步骤六得到物料中的磁性物料和非磁性物料进行分离,磁性物料进行磨矿和磁选,得到精铁矿和尾矿;从非磁性物料分选出废石和残炭。
对得到的焙烧矿进行TFe、FeO含量检测(其中TFe表示焙烧矿中铁的百分含量,FeO表示焙烧矿中氧化亚铁的百分含量);然后对磨选后的铁精矿进行TFe含量检测。检测结果见表二:
表二 焙烧矿及铁精矿部分化学成分检测结果(%)
Figure 4391DEST_PATH_IMAGE002
实施例3:
原料难选铁矿石TFe含量36.45%,FeO含量6.40%,铁矿物主要以镜铁矿、赤铁矿、菱铁矿、褐铁矿的形式存在,粒度0-15mm;还原剂粒煤Ad 7.56%、Vdaf 48.54%、Fcad 45.28%、St.d 0.39% Mt 10.7、Qnet.var 23060J/g, 粒度5-15mm。
采用如下工艺步骤进行处理:
步骤一、破碎分级:
将铁矿石破碎为0-15mm后分级为0-1mm、1-5mm和5-15mm三个级别;
步骤二、5-15mm粒级铁矿石磁化焙烧:
将5-15mm粒级铁矿石由回转窑入料端加入进行磁化焙烧,5-15mm粒级铁矿石在回转窑内随着窑的转动向出料端移动,行进过程中进行预热和升温,进入焙烧前段时将料温控制在800℃,磁化焙烧的时间为33min;
步骤三、1-5mm粒级铁矿石磁化焙烧:
将1-5mm粒级铁矿石和还原剂由回转窑出料端窑头罩喷枪抛入焙烧中段进行磁化焙烧,还原剂和铁矿石的质量比为2.8:100,二者与步骤二得到的800℃的5-15mm粒级铁矿石在混合行进焙烧过程中料温逐步降至680℃,磁化焙烧的的时间为15min,实现低温氢还原磁化焙烧;
步骤四、0-1mm粒级铁矿石磁化焙烧:
将0-1mm粒级铁矿石由回转窑出料端窑头罩喷枪抛入焙烧后段进行磁化焙烧,与步骤三得到的680℃的5-15mm粒级铁矿石、1-5mm粒级铁矿石和还原剂在混合行进焙烧过程中料温逐步降至630℃,磁化焙烧的时间为6min,实现低温氢还原磁化焙烧。
步骤五、冷却物料:
采用空水间接冷却方式将步骤四得到的物料进行冷却;
步骤六、物料干选:
将步骤五得到的物料进行干选;
步骤七、物料分离:
将步骤六得到物料中的磁性物料和非磁性物料进行分离,磁性物料进行磨矿和磁选,得到精铁矿和尾矿;从非磁性物料分选出废石和残炭。
对得到的焙烧矿进行TFe、FeO含量检测(其中TFe表示焙烧矿中铁的百分含量,FeO表示焙烧矿中氧化亚铁的百分含量);然后对磨选后的铁精矿进行TFe含量检测。检测结果见表三:
表三 焙烧矿及铁精矿部分化学成分检测结果(%)
Figure DEST_PATH_IMAGE003

Claims (6)

1.一种难选铁矿石低温氢还原磁化焙烧工艺,其特征在于包括以下步骤:
步骤一、破碎分级:
将铁矿石破碎为0-15mm后分级为0-1mm、1-5mm和5-15mm三个级别;
步骤二、5-15mm粒级铁矿石磁化焙烧:
将5-15mm粒级铁矿石由回转窑入料端加入进行磁化焙烧,5-15mm粒级铁矿石在回转窑内随着窑的转动向出料端移动,行进过程中进行预热和升温,进入焙烧前段时将料温控制在780-830℃;
步骤三、1-5mm粒级铁矿石磁化焙烧:
将1-5mm粒级铁矿石和还原剂由回转窑出料端窑头罩喷枪抛入焙烧中段进行磁化焙烧,二者与步骤二得到的780-830℃的5-15mm粒级铁矿石在混合行进焙烧过程中料温逐步降至660-700℃,还原剂为高挥发份煤种,挥发份不低于40%,粒度为5-15mm,还原剂和铁矿石的质量比为2.5-3:100;
步骤四、0-1mm粒级铁矿石磁化焙烧:
将0-1mm粒级铁矿石由回转窑出料端窑头罩喷枪抛入焙烧后段进行磁化焙烧,与步骤三得到的660-700℃的5-15mm粒级铁矿石、1-5mm粒级铁矿石和还原剂在混合行进焙烧过程中料温逐步降至620-660℃;
步骤五、冷却物料:
将步骤四得到的物料进行冷却;
步骤六、物料干选:
将步骤五得到的物料进行干选;
步骤七、物料分离:
将步骤六得到物料中的磁性物料和非磁性物料进行分离,磁性物料进行磨矿和磁选,得到精铁矿和尾矿;从非磁性物料分选出废石和残炭。
2.如权利要求1所述的难选铁矿石低温氢还原磁化焙烧工艺,其特征在于:步骤一中所述的铁矿石为褐铁矿(nFe2O3•mH2O)、赤铁矿/镜铁矿(Fe2O3)、菱铁矿(FeCO3)。
3.如权利要求1或2所述的难选铁矿石低温氢还原磁化焙烧工艺,其特征在于:步骤二中所述5-15mm粒级铁矿石磁化焙烧的时间为30-35min。
4.如权利要求3所述的难选铁矿石低温氢还原磁化焙烧工艺,其特征在于:步骤三中所述1-5mm粒级铁矿石磁化焙烧的的时间为12-18min。
5.如权利要求4所述的难选铁矿石低温氢还原磁化焙烧工艺,其特征在于:步骤四中所述0-1mm粒级铁矿石磁化焙烧的的时间为5-8min。
6.如权利要求5所述的难选铁矿石低温氢还原磁化焙烧工艺,其特征在于:步骤五中所述冷却的方式采用空水间接冷却方式。
CN201810623883.XA 2018-06-15 2018-06-15 一种难选铁矿石低温氢还原磁化焙烧工艺 Active CN108950179B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810623883.XA CN108950179B (zh) 2018-06-15 2018-06-15 一种难选铁矿石低温氢还原磁化焙烧工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810623883.XA CN108950179B (zh) 2018-06-15 2018-06-15 一种难选铁矿石低温氢还原磁化焙烧工艺

Publications (2)

Publication Number Publication Date
CN108950179A CN108950179A (zh) 2018-12-07
CN108950179B true CN108950179B (zh) 2020-07-03

Family

ID=64489347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810623883.XA Active CN108950179B (zh) 2018-06-15 2018-06-15 一种难选铁矿石低温氢还原磁化焙烧工艺

Country Status (1)

Country Link
CN (1) CN108950179B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195155A (zh) * 2019-06-14 2019-09-03 甘肃酒钢集团宏兴钢铁股份有限公司 一种难选铁矿石煤基浅度氢冶金工艺及其装置
CN111748684A (zh) * 2020-07-08 2020-10-09 酒泉钢铁(集团)有限责任公司 一种铁矿石链篦机-回转窑浅度氢冶金生产铁精矿工艺及系统
CN113684336A (zh) * 2021-07-21 2021-11-23 酒泉钢铁(集团)有限责任公司 一种铁矿石煤基逐级增氧-分段增氢回转窑直接还原工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1700057A1 (ru) * 1986-04-16 1991-12-23 Институт Горного Дела Со Ан Ссср Способ магнетизирующего обжига слабомагнитного железорудного материала
CN103849759A (zh) * 2014-01-28 2014-06-11 酒泉钢铁(集团)有限责任公司 一种高效控制铁矿石磁化的焙烧方法
CN104745805A (zh) * 2015-04-03 2015-07-01 甘肃酒钢集团宏兴钢铁股份有限公司 粉状铁矿石三座回转窑串联全粒级磁化焙烧工艺
CN107377206A (zh) * 2017-07-11 2017-11-24 甘肃酒钢集团宏兴钢铁股份有限公司 一种回转窑焙烧磁选铁矿石尾矿闭路回收利用工艺
CN108043578A (zh) * 2017-11-28 2018-05-18 酒泉钢铁(集团)有限责任公司 一种选矿废石选铁工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1700057A1 (ru) * 1986-04-16 1991-12-23 Институт Горного Дела Со Ан Ссср Способ магнетизирующего обжига слабомагнитного железорудного материала
CN103849759A (zh) * 2014-01-28 2014-06-11 酒泉钢铁(集团)有限责任公司 一种高效控制铁矿石磁化的焙烧方法
CN104745805A (zh) * 2015-04-03 2015-07-01 甘肃酒钢集团宏兴钢铁股份有限公司 粉状铁矿石三座回转窑串联全粒级磁化焙烧工艺
CN107377206A (zh) * 2017-07-11 2017-11-24 甘肃酒钢集团宏兴钢铁股份有限公司 一种回转窑焙烧磁选铁矿石尾矿闭路回收利用工艺
CN108043578A (zh) * 2017-11-28 2018-05-18 酒泉钢铁(集团)有限责任公司 一种选矿废石选铁工艺

Also Published As

Publication number Publication date
CN108950179A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
CN101413057B (zh) 低品位及复杂铁矿高效分选方法
CN108950179B (zh) 一种难选铁矿石低温氢还原磁化焙烧工艺
CN1920064B (zh) 一种从褐铁矿制取磁铁精矿的方法
CN108531717B (zh) 一种基于分级联合磁化焙烧处理难选红铁矿的方法
CN104818378A (zh) 复杂难选铁矿石的预富集-三段悬浮焙烧-磁选处理方法
CN108504855A (zh) 一种以菱铁矿为还原剂悬浮磁化焙烧生产铁精矿的方法
CN1995411A (zh) 利用低品位菱铁矿生产铁精矿粉的工艺
CN101879599B (zh) 一种用铁矿石制备还原铁粉及高纯铁精粉方法
CN101457291A (zh) 生产氧化球团的设备及利用该设备生产氧化球团的方法
WO2021244616A1 (zh) 基于气基能源的两步法高磷含铁资源铁磷高效分离的方法
CN104862440A (zh) 一种低品位铁矿直接还原的方法
CN102747217B (zh) 粉状难选氧化铁矿冷压球造块、竖炉磁化焙烧选别工艺
CN101724745B (zh) 一种金属化球团的生产方法
CN104212931A (zh) 一种利用回转窑深度还原生产金属铁粉的方法
CN105734192B (zh) 一种低品位赤铁矿的选矿生产方法
CN103882224A (zh) 一种低品位红土镍矿的耦合式烧结方法
CN101538628A (zh) 红土镍矿在隧道窑中直接还原含镍粒铁的方法
CN103447148A (zh) 利用微波还原含赤铁矿物料的磁选装置及磁选方法
CN104651564A (zh) 一种低温快速还原分离粒铁的方法
CN107119185A (zh) 一种复杂难选混合型铁矿石的磁化焙烧方法
CN103305650B (zh) 一种菱铁矿资源高效综合利用方法
WO2023174031A1 (zh) 一种贫矿预富集、焙烧和分选的多段处理工艺
CN108676951A (zh) 一种铁精矿碳氢联合直接还原工艺
Zhong et al. Highly efficient beneficiation of low-grade iron ore via ore–coal composite-fed rotary kiln reduction: pilot-scale study
CN104846189A (zh) 含菱铁矿的混合铁矿流态化焙烧分选方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant