CN108949174B - 一种纳米尺寸近红外光长余辉材料的制备方法 - Google Patents

一种纳米尺寸近红外光长余辉材料的制备方法 Download PDF

Info

Publication number
CN108949174B
CN108949174B CN201810708875.5A CN201810708875A CN108949174B CN 108949174 B CN108949174 B CN 108949174B CN 201810708875 A CN201810708875 A CN 201810708875A CN 108949174 B CN108949174 B CN 108949174B
Authority
CN
China
Prior art keywords
long
afterglow
nano
afterglow material
calcining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810708875.5A
Other languages
English (en)
Other versions
CN108949174A (zh
Inventor
解荣军
吕营
庄逸熙
周天亮
李烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201810708875.5A priority Critical patent/CN108949174B/zh
Publication of CN108949174A publication Critical patent/CN108949174A/zh
Application granted granted Critical
Publication of CN108949174B publication Critical patent/CN108949174B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种纳米尺寸近红外光长余辉材料的制备方法,涉及长余辉发光材料。将Na2CO3、Ga2O3和GeO2按照化学计量比混合,研磨,煅烧,得Na2Ga2(1‑x‑y)GexO4‑x粉末,将其配制成悬浊液。将悬浊液与化学计量比的Zn(CH3COO)2和Cr(CH3COO)3混合进行离子交换,得到近红外光长余辉材料前驱体;将近红外光长余辉材料前驱体煅烧,或将得到的近红外光长余辉材料前驱体转移到聚四氟乙烯内衬的反应釜中,水热反应后,离心,再用水和乙醇交替洗涤干燥,煅烧,即得纳米尺寸近红外光长余辉材料。合成方法制备简单且煅烧温度相对较低,所制备的纳米颗粒余辉性能良好,易于大规模推广应用。

Description

一种纳米尺寸近红外光长余辉材料的制备方法
技术领域
本发明涉及长余辉发光材料,尤其是涉及一种纳米尺寸近红外光长余辉材料的制备方法。
背景技术
长余辉发光材料具有在停止光源激发后还能够持续发光的特性被人们广泛关注。相比于蓝色和绿色长余辉材料,红光与近红外光长余辉材料的进展较为缓慢。而在2007年,法国科学家将红光长余辉材料应用到生物成像领域,掀开了长余辉材料应用的新篇章([1]Chermont Q M,Chanéac C,Seguin J,et al.Nanoprobes with near-infraredpersistent luminescence for in vivo imaging.Proceedings ofthe NationalAcademy ofSciences,2007,104(22):9266-9271.)。得益于长余辉材料无需外界辐射便可探测到光信号的特性,当其应用于生物成像中时,通常具有高信噪比和低辐射探伤的优良特性。由于近红外光具有较好的生物组织穿透特性,所以为了获得更好的探测信号,开发和研制近红外光长余辉材料是非常有必要的。镓酸锌(ZnGa2O4)或镓锗酸锌(Zn-Ga-Ge-O)掺铬由于具有很好的近红外光长余辉特性而备受关注。但它们的合成方法通常为高温固相法,该方法通常只能得到微米级别的长余辉发光材料。并且所得长余辉发光材料会表现出明显的团聚现象。这在生物成像应用中存在着颗粒过大的弊端,也因此阻碍了其在生物成像领域的发展。所以探索其纳米级别的合成方法显得尤其必要。
发明内容
本发明的目的在于针对上述提出的问题,提供一种纳米尺寸近红外光长余辉材料的制备方法。
本发明包括以下步骤:
1)将Na2CO3、Ga2O3和GeO2按照化学计量比混合,研磨,煅烧,得Na2Ga2(1-x-y)GexO4-x粉末,将其配制成悬浊液。
在步骤1)中,所述煅烧的条件可在700~850℃下煅烧12h;所述Na2Ga2(1-x-y)GexO4-x粉末的悬浊液浓度可为0.05~0.3mol·L-1
2)将步骤1)得到的悬浊液与化学计量比的Zn(CH3COO)2和Cr(CH3COO)3混合进行离子交换,得到近红外光长余辉材料前驱体;
在步骤2)中,所述离子交换的时间可为3h。
3)将步骤2)得到的近红外光长余辉材料前驱体煅烧,或将步骤2)得到的近红外光长余辉材料前驱体转移到聚四氟乙烯内衬的反应釜中,水热反应后,离心,再用水和乙醇交替洗涤干燥,煅烧,即得纳米尺寸近红外光长余辉材料。
在步骤3)中,所述煅烧可在750~950℃空气中煅烧4~12h;所述水热反应可在烘箱温度调到160~220℃水热反应8~16h;所述离心的转速可为9000~11000rpm;所述交替洗涤干燥可交替洗涤3次后在50℃真空干燥;所述干燥后的粉末样品在750~950℃空气中煅烧4~12h;所得纳米尺寸近红外光长余辉材料的化学组成为:ZnGa2(1-x-y)GexO4-x:2yCr3+,其中0≤x≤1,0.001≤y≤0.03。
本发明能够以镓或锗的氧化物作为原料制得纳米尺寸的近红外光长余辉材料,并且该长余辉发光材料还具有合成温度低特性,为其大规模的生产提供了有利条件。
本发明能够得到颗粒尺寸为10~70nm的长余辉发光材料。并且在水中具有良好的分散性,为其在生物应用领域提供了必要条件。该合成方法制备简单且煅烧温度相对较低,所制备的纳米颗粒余辉性能良好,易于大规模推广应用。
附图说明
图1为本发明实施例1和实施例2中所得材料的X射线衍射图谱。在图1中,曲线a)为实施例1,曲线b)为实施例2。
图2为本发明实施例1中得到的长余辉发光材料的TEM图。
图3是通过实施例7获得的长余辉发光材料,经过太阳光模拟氙灯照射40s后,测得的长余辉衰减曲线。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1
将Na2CO3(分析纯)和Ga2O3(分析纯)按照摩尔比为1︰1取料后研磨混匀、干燥后在装入刚玉坩埚,在高温炉内,于850℃煅烧12h,得到NaGaO2粉末,将其配成0.1mol·L-1的悬浊液。再量取适量的0.05mol·L-1的Zn(CH3COO)2和0.02mol·L-1的Cr(CH3COO)3溶液与10mL上述配制的NaGaO2溶液混合,在室温下进行离子交换3h,搅拌速度为500rpm。搅拌后,将其转入反应釜中,在200℃水热反应10h,在9000rpm转速下离心后用水和乙醇交替洗涤3次所得沉淀,再放置于50℃的真空干燥箱中干燥10h,得到目标产物。
利用X射线衍射对实施例1中得到的材料进行分析,结果如图1中所示,确认此样品的衍射图谱与ZnGa2O4的标准图谱(PDF#38-1240)一致,没有观察到明显的杂峰。如图2所示,实施例1的TEM图,从图中可以看出所得样品单颗粒尺寸为10~20nm。其在254nm紫外光照射下表现为红光发射;在停止激发后,具有红光发射的余辉性质。
实施例2
将Na2CO3(分析纯)和Ga2O3(分析纯)按照摩尔比为1︰1取料后研磨混匀、干燥后在装入刚玉坩埚,在高温炉内,于850℃煅烧12h,得到NaGaO2粉末,将其配成0.1mol·L-1的悬浊液。再量取适量的0.05mol·L-1的Zn(CH3COO)2和0.02mol·L-1的Cr(CH3COO)3溶液与10mL上述配制的NaGaO2溶液混合,在室温下进行离子交换3h,搅拌速度为500rpm。搅拌后,将其转入反应釜中,在200℃水热反应10h,在9000rpm转速下离心后用水和乙醇交替洗涤3次所得沉淀,再放置于50℃的真空干燥箱中干燥10h,得到粉末样品。为提高所得样品的长余辉发光性能,将其放置在马弗炉中,在750℃煅烧6h,亦可得到余辉较强的纳米长余辉发光材料。
利用X射线衍射对实施例2中得到的材料进行分析,结果如图1中所示,确认此样品的衍射图谱与ZnGa2O4的标准图谱(PDF#38-1240)一致,没有观察到明显的杂峰。其在254nm紫外光照射下表现为红光发射;在停止激发后,具有较好的红光发射余辉性质。
实施例3
将Na2CO3(分析纯)和Ga2O3(分析纯)按照摩尔比为1︰1取料后研磨混匀、干燥后在装入刚玉坩埚,在高温炉内,于850℃煅烧12h,得到NaGaO2粉末,将其配成0.1mol·L-1的悬浊液。再量取适量的0.05mol·L-1的Zn(CH3COO)2和0.02mol·L-1的Cr(CH3COO)3溶液与10mL上述配制的NaGaO2溶液混合,在室温下进行离子交换3h,搅拌速度为500rpm。搅拌后,将其转入反应釜中,在200℃水热反应8h,在9000rpm转速下离心后用水和乙醇交替洗涤3次所得沉淀,再放置于50℃的真空干燥箱中干燥10h,得到粉末样品。为提高所得样品的长余辉发光性能,将其放置在马弗炉中,在750℃煅烧6h,亦可得到余辉较强的纳米长余辉发光材料。
利用X射线衍射对实施例3中得到的材料进行分析,确认此样品的衍射图谱与ZnGa2O4的标准图谱(PDF#38-1240)一致,没有观察到明显的杂峰。其在254nm紫外光照射下表现为红光发射;在停止激发后,具有红光发射的余辉性质。
实施例4
将Na2CO3(分析纯)和Ga2O3(分析纯)按照摩尔比为1︰1取料后研磨混匀、干燥后在装入刚玉坩埚,在高温炉内,于850℃煅烧12h,得到NaGaO2粉末,将其配成0.1mol·L-1的悬浊液。再量取适量的0.05mol·L-1的Zn(CH3COO)2和0.02mol·L-1的Cr(CH3COO)3溶液与10mL上述配制的NaGaO2溶液混合,在室温下进行离子交换3h,搅拌速度为500rpm。搅拌后,将其转入反应釜中,在200℃水热反应14h,在9000rpm转速下离心后用水和乙醇交替洗涤3次所得沉淀,再放置于50℃的真空干燥箱中干燥10h,得到粉末样品。为提高所得样品的长余辉发光性能,将其放置在马弗炉中,在750℃煅烧6h,亦可得到余辉较强的纳米长余辉发光材料。
利用X射线衍射对实施例4中得到的材料进行分析,确认此样品的衍射图谱与ZnGa2O4的标准图谱(PDF#38-1240)一致,没有观察到明显的杂峰。
实施例5
将Na2CO3(分析纯)、Ga2O3(分析纯)和GeO2(分析纯)按照摩尔比为3︰2︰1取料后研磨混匀、干燥后在装入刚玉坩埚,在高温炉内,于850℃煅烧12h,得到Na6Ga4GeO11粉末,将其配成0.1mol·L-1的悬浊液。再量取适量的0.05mol·L-1的Zn(CH3COO)2和0.02mol·L-1的Cr(CH3COO)3溶液与10mL上述配制的Na6Ga4GeO11溶液混合,在室温下进行离子交换3h,搅拌速度为500rpm。搅拌后,将其转入反应釜中,在200℃水热反应10h,在9000rpm转速下离心后用水和乙醇交替洗涤3次所得沉淀,再放置于50℃的真空干燥箱中干燥10h,得到粉末样品。为提高所得样品的长余辉发光性能,将其放置在马弗炉中,在850℃煅烧6h,亦可得到余辉较强的纳米长余辉发光材料。
利用X射线衍射对实施例5中得到的材料进行分析,与ZnGa2O4的标准图谱(PDF#38-1240)一致,此为镓锗酸锌的固溶体材料。并且没有观察到明显的杂峰。其在254nm紫外光照射下表现为红光发射;在停止激发后,具有红光发射的余辉性质。
实施例6
将Na2CO3(分析纯)、Ga2O3(分析纯)和GeO2(分析纯)按照摩尔比为3︰1︰2取料后研磨混匀、干燥后在装入刚玉坩埚,在高温炉内,于750℃煅烧12h,得到Na6Ga2Ge2O10粉末,将其配成0.1mol·L-1的悬浊液。再量取适量的0.05mol·L-1的Zn(CH3COO)2和0.02mol·L-1的Cr(CH3COO)3溶液与10mL上述配制的Na6Ga2Ge2O10溶液混合,在室温下进行离子交换3h,搅拌速度为500rpm。搅拌后,将其转入反应釜中,在200℃水热反应10h,在9000rpm转速下离心后用水和乙醇交替洗涤3次所得沉淀,再分散在0.05mol·L-1的稀硝酸中,搅拌后再次离心洗涤,再放置于50℃的真空干燥箱中干燥10h,得到粉末样品。为提高所得样品的长余辉发光性能,将其放置在马弗炉中,在850℃煅烧6h,亦可得到余辉较强的纳米长余辉发光材料。
利用X射线衍射对实施例6中得到的材料进行分析,与ZnGa2O4的标准图谱(PDF#38-1240)一致,此为镓锗酸锌固溶体材料。在254nm的紫外光激发后,样品同样表现出良好的近红外光长余辉性能。
实施例7
将Na2CO3(分析纯)、Ga2O3(分析纯)和GeO2(分析纯)按照摩尔比为3︰2︰1取料后研磨混匀、干燥后在装入刚玉坩埚,在高温炉内,于850℃煅烧12h,得到Na6Ga4GeO11粉末,将其配成0.1mol·L-1的悬浊液。再量取适量的0.05mol·L-1的Zn(CH3COO)2和0.02mol·L-1的Cr(CH3COO)3溶液与10mL上述配制的Na6Ga4Ge1O11溶液混合,此时为了增加缺陷数量,将Zn的含量减少至少于化学计量比2%。在室温下进行离子交换3h,搅拌速度为500rpm。搅拌完后,将其转入反应釜中,在200℃水热反应10h,在9000rpm转速下离心后用水和乙醇交替洗涤3次所得沉淀,再放置于50℃的真空干燥箱中干燥10h,得到粉末样品。为提高所得样品的长余辉发光性能,将其放置在马弗炉中,在850℃煅烧6h,亦可得到余辉较强的纳米长余辉发光材料。
利用X射线衍射对实施例7中得到的材料进行分析,与ZnGa2O4的标准图谱(PDF#38-1240)一致,此为镓锗酸锌的固溶体材料。并且没有观察到明显的杂峰。如图3所示用太阳光模拟氙灯激发实施例7样品后测得的余辉衰减曲线,从图可以看出样品表现出良好的长余辉发光性能,在40min后还具有接近两个数量级的信噪比。
实施例8
将Na2CO3(分析纯)、Ga2O3(分析纯)和GeO2(分析纯)按照摩尔比为3︰1︰2取料后研磨混匀、干燥后在装入刚玉坩埚,在高温炉内,于750℃煅烧12h,得到Na6Ga2Ge2O10粉末,将其配成0.1mol·L-1的悬浊液。再量取适量的0.05mol·L-1的Zn(CH3COO)2和0.02mol·L-1的Cr(CH3COO)3溶液与10mL上述配制的Na6Ga2Ge2O10溶液混合,此时为了增加缺陷数量,将Zn的含量减少至少于化学计量比2%。在室温下进行离子交换3h,搅拌速度为500rpm。搅拌后,将其转入反应釜中,在200℃水热反应10h,在9000rpm转速下离心后用水和乙醇交替洗涤3次所得沉淀,再分散在0.05mol·L-1的稀硝酸中,搅拌后再次离心洗涤,再放置于50℃的真空干燥箱中干燥10h,得到粉末样品。为提高所得样品的长余辉发光性能,将其放置在马弗炉中,在850℃煅烧6h,亦可得到余辉较强的纳米长余辉发光材料。
利用X射线衍射对实施例8中得到的材料进行分析,与ZnGa2O4的标准图谱(PDF#38-1240)一致,此为尖晶石结构的镓锗酸锌固溶体材料。在254nm的紫外光激发后,样品同样表现出良好的近红外光长余辉性能。
实施例9
将Na2CO3(分析纯)、Ga2O3(分析纯)和GeO2(分析纯)按照摩尔比为3︰2︰1取料后研磨混匀、干燥后在装入刚玉坩埚,在高温炉内,于850℃煅烧12h,得到Na6Ga4GeO11粉末,将其配成0.1mol·L-1的悬浊液。再量取适量的0.05mol·L-1的Zn(CH3COO)2和0.02mol·L-1的Cr(CH3COO)3溶液与10mL上述配制的Na6Ga4GeO11溶液混合,此时为了增加缺陷数量,将Zn的含量减少至少于化学计量比2%。在室温下进行离子交换3h,搅拌速度为500rpm。搅拌完后,将其转入反应釜中,在200℃水热反应12h,在9000rpm转速下离心后用水和乙醇交替洗涤3次所得沉淀,再放置于50℃的真空干燥箱中干燥10h,得到粉末样品。为提高所得样品的长余辉发光性能,将其放置在马弗炉中,在850℃煅烧6h,亦可得到余辉较强的纳米长余辉发光材料。
利用X射线衍射对实施例7中得到的材料进行分析,与ZnGa2O4的标准图谱(PDF#38-1240)一致,此为镓锗酸锌的固溶体材料。在254nm的紫外光激发后,样品同样表现出良好的近红外光长余辉性能。
本发明采用离子交换法合成出具有纳米尺寸的近红外光长余辉材料前驱体,再结合水热与热处理的方式得到近红外光长余辉材料ZnGa2(1-x-y)GexO4-x:2yCr3+;式中0≤x≤1,0.001≤y≤0.03。具体步骤如下:将Na2CO3与Ga2O3和GeO2按照化学计量比混合后均匀研磨且煅烧后,得到Na2Ga2(1-x-y)GexO4-x前驱体,再与化学计量比的Zn(CH3COO)2和Cr(CH3COO)3混合进行离子交换。可得到近红外光长余辉材料前驱体。通过对所得到的前驱体进行热处理或水热后再热处理的方式可得到颗粒大小为10~70nm的近红外光长余辉发光材料。与常用于合成该材料的高温固相法相比,本发明方法煅烧温度低,能够得到纳米尺寸的长余辉发光材料,为其在生物成像领域的应用提供了必要的条件。

Claims (4)

1.一种纳米尺寸近红外光长余辉材料的制备方法,其特征在于包括以下步骤:
1)将Na2CO3、Ga2O3和GeO2按照化学计量比混合,研磨,煅烧,得Na2Ga2(1-x-y)GexO4-x粉末,将其配制成悬浊液;所述Na2Ga2(1-x-y)GexO4-x粉末的悬浊液浓度为0.05~0.3mol·L-1;所述煅烧的条件是在700~850℃下煅烧12h;
2)将步骤1)得到的悬浊液与化学计量比的Zn(CH3COO)2和Cr(CH3COO)3混合进行离子交换,得到近红外光长余辉材料前驱体;所述离子交换的时间为3h;
3)将步骤2)得到的近红外光长余辉材料前驱体煅烧,或将步骤2)得到的近红外光长余辉材料前驱体转移到聚四氟乙烯内衬的反应釜中,水热反应后,离心,再用水和乙醇交替洗涤干燥,煅烧,即得纳米尺寸近红外光长余辉材料;所得纳米尺寸近红外光长余辉材料的化学组成为:ZnGa2(1-x-y)GexO4-x:2yCr3+,其中0≤x≤1,0.001≤y≤0.03;所述煅烧是在750~950℃空气中煅烧4~12h;所述水热反应是在烘箱温度调到160~220℃水热反应8~16h。
2.如权利要求1所述一种纳米尺寸近红外光长余辉材料的制备方法,其特征在于在步骤3)中,所述离心的转速为9000~11000rpm。
3.如权利要求1所述一种纳米尺寸近红外光长余辉材料的制备方法,其特征在于在步骤3)中,所述交替洗涤干燥是交替洗涤3次后在50℃真空干燥。
4.如权利要求1所述一种纳米尺寸近红外光长余辉材料的制备方法,其特征在于在步骤3)中,所述干燥后的粉末样品在750~950℃空气中煅烧4~12h。
CN201810708875.5A 2018-07-02 2018-07-02 一种纳米尺寸近红外光长余辉材料的制备方法 Expired - Fee Related CN108949174B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810708875.5A CN108949174B (zh) 2018-07-02 2018-07-02 一种纳米尺寸近红外光长余辉材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810708875.5A CN108949174B (zh) 2018-07-02 2018-07-02 一种纳米尺寸近红外光长余辉材料的制备方法

Publications (2)

Publication Number Publication Date
CN108949174A CN108949174A (zh) 2018-12-07
CN108949174B true CN108949174B (zh) 2020-11-20

Family

ID=64484647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810708875.5A Expired - Fee Related CN108949174B (zh) 2018-07-02 2018-07-02 一种纳米尺寸近红外光长余辉材料的制备方法

Country Status (1)

Country Link
CN (1) CN108949174B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109943330B (zh) * 2019-03-25 2021-05-07 常州工程职业技术学院 一种Cr3+激活的近红外荧光粉、制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105754595A (zh) * 2016-03-28 2016-07-13 武汉大学 一种基于离子掺杂的长余辉纳米材料及其制备方法和应用
CN106967428A (zh) * 2017-03-13 2017-07-21 吉林大学 一种铒、铬共掺的镓锡酸锌近红外长余辉材料及其制备方法
CN108130079A (zh) * 2018-01-24 2018-06-08 南开大学 批量合成水分散小粒径超长近红外余辉纳米粒子的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105754595A (zh) * 2016-03-28 2016-07-13 武汉大学 一种基于离子掺杂的长余辉纳米材料及其制备方法和应用
CN106967428A (zh) * 2017-03-13 2017-07-21 吉林大学 一种铒、铬共掺的镓锡酸锌近红外长余辉材料及其制备方法
CN108130079A (zh) * 2018-01-24 2018-06-08 南开大学 批量合成水分散小粒径超长近红外余辉纳米粒子的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A Room-Temperature Reactive-Template Route to Mesoporous ZnGa2O4 with Improved Photocatalytic Activity in Reduction of CO2;Shi Cheng Yan等;《Angew.Chem.Int.Ed.》;20100722;第49卷;第6400-6404页 *
An Ion-Exchange Phase Transformation to ZnGa2O4 Nanocube Towards Effi cient Solar Fuel Synthesis;Shicheng Yan等;《Adv.Funct.Mater.》;20120914;第23卷;第758-763页 *
Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4;Mathieu Allix等;《Chem.Mater.》;20130401;第25卷;第1600-1606页 *

Also Published As

Publication number Publication date
CN108949174A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
Chen et al. Preparation and characterization of ZrO2: Eu3+ phosphors
Tian et al. Self-assembled 3D flower-shaped NaY (WO 4) 2: Eu 3+ microarchitectures: microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties
CN106520121B (zh) 稀土掺杂硫氧化钆和含氧硫酸钆上转换荧光粉的制备方法
CN110093154B (zh) Mg2+/Si4+取代Ga3+的掺Cr3+镓酸锌基近红外长余辉材料及制备方法
CN109133922B (zh) 双掺杂稀土离子石榴石结构光功能陶瓷粉体及其制备方法
CN109609120B (zh) 一种长余辉发光气凝胶及其制备方法
CN102976344B (zh) 一种硅酸锌纳米材料的制备方法
Lian et al. Hydrothermal synthesis and photoluminescence properties of Gd2O2SO4: Eu3+ spherical phosphor
CN106753365A (zh) 一种由表面活性剂CTAB辅助合成BiPO4:Eu3+荧光粉及其方法
CN108949174B (zh) 一种纳米尺寸近红外光长余辉材料的制备方法
Seetha et al. Optical investigations on indium oxide nano-particles prepared through precipitation method
CN108559500B (zh) 一种溶剂热辅助制备复相钛酸盐红色长余辉荧光粉的方法
Zhang et al. Fluorescence enhanced ultrathin nano-plate Gd2O2SO4: Bi3+, Eu3+ transformed from layered gadolinium hydroxide
CN108998023A (zh) 一种荧光粉基质材料及其制备方法
CN108130079B (zh) 批量合成水分散小粒径超长近红外余辉纳米粒子的方法
CN101648726B (zh) 一种LuO(OH)纳米棒和Lu2O3纳米棒发光粉体的水热合成方法
CN106479501B (zh) 上转换发光稀土Lu基氟化物材料及其制备方法
CN103694998B (zh) 一种硫氧化物红色长余辉发光材料及其制备方法
CN103450899B (zh) 一种掺杂氧化钇纳米荧光粉的制备方法
Isobe Low‐temperature wet chemical syntheses of nanocrystal phosphors with surface modification and their characterization
CN112264020A (zh) 一种硼酸根插层镍铁类水滑石负载TiO2光催化剂的制备方法
Wei et al. KY (MoO4) 2: Eu3+ Phosphor: Template-Free Hydrothermal Synthesis and Luminescent Properties
CN111017992A (zh) 一种黑色多孔二氧化锆及其制备方法、应用
Ge et al. Preparation and luminescent properties of persistent luminescent materials ZnGa2O4: Cr3+ by sol-gel-combustion
CN109607600A (zh) Li2ZnGeO4纳米棒的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201120

Termination date: 20210702