CN108949102A - 一种纳米氧化锌/石墨烯复合材料及其制备方法 - Google Patents

一种纳米氧化锌/石墨烯复合材料及其制备方法 Download PDF

Info

Publication number
CN108949102A
CN108949102A CN201810803441.3A CN201810803441A CN108949102A CN 108949102 A CN108949102 A CN 108949102A CN 201810803441 A CN201810803441 A CN 201810803441A CN 108949102 A CN108949102 A CN 108949102A
Authority
CN
China
Prior art keywords
nano zine
zine oxide
composite material
graphene composite
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810803441.3A
Other languages
English (en)
Inventor
徐秉辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201810803441.3A priority Critical patent/CN108949102A/zh
Publication of CN108949102A publication Critical patent/CN108949102A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide

Abstract

本发明属于功能化纳米材料技术领域,涉及一种纳米氧化锌/石墨烯复合材料及其制备方法。包括以下步骤:将纳米氧化锌置于GO悬浮液中,充分混合均匀,于70~120℃保温24h后收集洗涤生成的固体产物,冷冻干燥后得到纳米氧化锌/石墨烯复合材料。通过温和条件下,以纳米氧化锌和GO水溶液为起始反应物,不使用额外还原剂的情况下,以简单的一锅法高效率地制备纳米氧化锌/石墨烯复合材料。

Description

一种纳米氧化锌/石墨烯复合材料及其制备方法
技术领域
本发明属于功能化纳米材料技术领域,涉及一种纳米氧化锌/石墨烯复合材料及其制备方法。
背景技术
石墨烯是由单层碳组成的二维晶格结构,是sp2杂化碳原子构成的高密度原子层排列形成的蜂窝网状结构。自2004年第一次被报道以来,石墨烯就以其独特的性能,如优异的电荷载流子迁移率、高透明度、优良的柔韧性、非凡的电子质量及优越的热力和机械性能吸引了科学界的广泛关注。石墨烯具有较高的机械强度(>1060GPa)和1TPa的特殊杨氏模量。此外,单层石墨烯是有史以来测试的最强的材料,它也表现出优异的热性能(≈5000W·m-1·K-1)、电导率(高达6000S·cm-1)和高理论比表面积(2630m2·g-1)。这些优势都为石墨烯的潜在应用提供了广阔的前景,在许多技术领域,如纳米电子、储氢、超级电容器和传感器中都可应用。
氧化-还原法是一种具有工业化生产潜质的石墨烯制备方法。将天然石墨与强酸和强氧化性物质反应生成氧化石墨(GO),经过超声分散制备成氧化石墨烯(单层氧化石墨),加入还原剂去除氧化石墨表面的含氧基团,如羧基、环氧基和羟基,得到石墨烯。氧化-还原法被提出后,以其简单易行的工艺成为实验室制备石墨烯的最简便的方法,得到广大石墨烯研究者的青睐。另外,氧化-还原法可以制备稳定的石墨烯悬浮液,解决了石墨烯难以分散在溶剂中的问题。
纳米氧化锌(ZnO)粒径介于1-100nm之间,是一种高端的高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。
制备ZnO/石墨烯复合材料,通常的方法是使用含锌盐作为前体,通过使用各类还原剂、采用水热法由GO制备还原氧化石墨烯(RGO)。这些方法通常是复杂的且高成本的。
发明内容
本发明的主要目的在于提供一种纳米氧化锌/石墨烯复合材料及其制备方法,通过温和条件下,以纳米氧化锌和GO水溶液为起始反应物,不使用额外还原剂的情况下,以简单的一锅法高效率地制备纳米氧化锌/石墨烯复合材料。
为了实现上述目的,本发明采用以下的技术方案:
一种纳米氧化锌/石墨烯复合材料的制备方法,包括以下步骤:
将纳米氧化锌置于GO悬浮液中,充分混合均匀,放置于70~120℃油浴锅内,保温1~24h后收集洗涤生成的黑色固体产物,冷冻干燥后得到纳米氧化锌/石墨烯复合材料。
所述GO悬浮液的制备方法,包括以下步骤:
步骤(1):将石墨、浓硫酸和硝酸钠混合搅拌得到混合液;
步骤(2):称取高锰酸钾加入步骤(1)所得的混合液继续搅拌;
步骤(3):冰水浴下向步骤(2)所得溶液中加入蒸馏水稀释搅拌;
步骤(4):向步骤(3)所得溶液加入过氧化氢水溶液搅拌;
步骤(5):离心分离除去步骤(4)所得混合物中的底层沉淀物及上层清液,收集中间层浅色产物,用蒸馏水反复洗涤至无沉淀可见,收集GO。
所述步骤(1)中将石墨1~10g、98%浓硫酸50~200mL、硝酸钠1~5g混合搅拌10~60min。
所述步骤(2)中加入的高锰酸钾为5~20g,搅拌时间为12~24h。
所述步骤(3)中加入的蒸馏水为100~300mL,搅拌时间为12~24h。
所述步骤(4)中加入的过氧化氢溶液为10~100mL、30wt%,搅拌时间为6~24h。
一种如上述所述方法制备的纳米氧化锌/石墨烯复合材料。
本发明具有以下有益效果:
针对现有技术中纳米氧化锌/石墨烯复合物制备技术方面存在的过程复杂、成本较高、反应条件苛刻等缺点,本发明提供一种纳米氧化锌/石墨烯复合材料的制备方法,该方法操作简便、制备条件温和。
附图说明
图1为氧化石墨烯(GO)、氧化石墨烯/纳米氧化锌反应前(GO/ZnO)、氧化石墨烯反应后(GO 90℃15h)以及氧化石墨烯/纳米氧化锌反应后(GO/ZnO 90℃15h)的粉体X射线衍射图谱(XRD及与标准物质PDF卡片对照);
图2为纳米氧化锌/石墨烯的场发射扫描电子显微镜图。
具体实施方式
下面结合附图对本发明作进一步说明。
实施例1
将5.0g石墨、120mL98%浓硫酸和2.5g硝酸钠混合搅拌30min,称取15g高锰酸钾加入上述混合液继续搅拌24h;冰水浴下加入150mL蒸馏水稀释搅拌24h;加入50mL、30wt%的H2O2水溶液搅拌24h;离心分离除去所得混合物中的底层黑色大块沉淀物以及上层清液,收集中间层浅色产物,用蒸馏水反复洗涤至无沉淀可见,收集GO悬浮液(3mg/mL)备用。
将稀释后的GO悬浮液(25.0mL,1.0mg/mL)转移至25mL样品瓶中。加入25mg纳米氧化锌至上述样品瓶中并超声混合30min,将样品瓶置于90℃油浴锅中。15h后,黄棕色悬浮液变得透明,得到黑色圆柱状固体于样品瓶中。收集黑色固体,用乙醇洗涤2次,去离子水洗涤2次。冷冻干燥后,得到气凝胶状纳米氧化锌/石墨烯复合物。
实施例2
将5.0g石墨、120mL98%浓硫酸和2.5g硝酸钠混合搅拌30min,称取15g高锰酸钾加入上述混合液继续搅拌24h;冰水浴下加入150mL蒸馏水稀释搅拌24h;加入50mL、30wt%的H2O2水溶液搅拌24h;离心分离除去所得混合物中的底层黑色大块沉淀物以及上层清液,收集中间层浅色产物,用蒸馏水反复洗涤至无沉淀可见,收集GO悬浮液(3mg/mL)备用。
将稀释后的GO悬浮液(25.0mL,1.0mg/mL)转移至25mL样品瓶中。加入25mg纳米氧化锌至上述样品瓶中并超声混合30min,将样品瓶置于90℃油浴锅中且样品瓶内加入磁子进行搅拌。15h后,黄棕色悬浮液变得透明,得到黑色粉末状固体于样品瓶中。收集黑色固体,用乙醇洗涤2次,去离子水洗涤2次。冷冻干燥后,得到粉末状纳米氧化锌/石墨烯复合物。
图1为氧化石墨烯(GO)、氧化石墨烯/纳米氧化锌反应前(GO/ZnO)、氧化石墨烯反应后(GO 90℃15h)以及氧化石墨烯/纳米氧化锌反应后(GO/ZnO 90℃15h)的粉体X射线衍射图谱(XRD及与标准物质PDF卡片对照)。
氧化石墨烯(GO)的特征峰出现在大约2θ=10.8°处;加入纳米氧化锌于氧化石墨烯后,其衍射峰除了在2θ=10.8°处的氧化石墨烯特征峰外,在2θ=31.7°,34.4°,36.3°,47.6°,56.6°,62.9°,66.3°,67.9°,69.1°和72.7°处的尖峰分别对应于ZnO的(100),(002),(101),(102),(110),(103),(200),(112),(201)和(004)衍射晶面,这与标准ZnO(JCPDS#36-1451)的特征峰相吻合,从而证明了反应物(GO/ZnO)是氧化石墨烯与氧化锌;氧化石墨烯水溶液在90℃温度条件下反应15h后,得到的产物(GO 90℃15h)的衍射峰出现在大约2θ=11.6°处,相比于GO的峰值略有增大,说明了GO略有还原;而氧化石墨烯/纳米氧化锌在90℃温度条件下反应15h后,得到的产物(GO/ZnO 90℃15h)除了属于氧化锌特征峰未发生变化外,在大约2θ=25.6°处出现的宽峰证明了氧化石墨烯已被还原成石墨烯,从而证明该产物是纳米氧化锌/石墨烯复合物。
图2为纳米氧化锌/石墨烯的场发射扫描电子显微镜图。从图中明显可见该产物是由褶皱状的石墨烯负载纳米氧化锌构成的复合物。
实施例3
将1.0g石墨、50mL98%浓硫酸和1g硝酸钠混合搅拌10min,称取5g高锰酸钾加入上述混合液继续搅拌12h;冰水浴下加入100mL蒸馏水稀释搅拌12h;加入10mL、30wt%的H2O2水溶液搅拌6h;离心分离除去所得混合物中的底层黑色大块沉淀物以及上层清液,收集中间层浅色产物,用蒸馏水反复洗涤至无沉淀可见,收集GO悬浮液(3mg/mL)备用。
将稀释后的GO悬浮液(25.0mL,1.0mg/mL)转移至25mL样品瓶中。加入25mg纳米氧化锌至上述样品瓶中并超声混合30min,将样品瓶置于70℃油浴锅中且样品瓶内加入磁子进行搅拌。5h后,黄棕色悬浮液变得透明,得到黑色粉末状固体于样品瓶中。收集黑色固体,用乙醇洗涤2次,去离子水洗涤2次。冷冻干燥后,得到粉末状纳米氧化锌/石墨烯复合物。
实施例4
将10g石墨、200mL98%浓硫酸和5g硝酸钠混合搅拌60min,称取20g高锰酸钾加入上述混合液继续搅拌24h;冰水浴下加入300mL蒸馏水稀释搅拌24h;加入100mL、30wt%的H2O2水溶液搅拌24h;离心分离除去所得混合物中的底层黑色大块沉淀物以及上层清液,收集中间层浅色产物,用蒸馏水反复洗涤至无沉淀可见,收集GO悬浮液(3mg/mL)备用。
将稀释后的GO悬浮液(25.0mL,1.0mg/mL)转移至25mL样品瓶中。加入25mg纳米氧化锌至上述样品瓶中并超声混合30min,将样品瓶置于120℃油浴锅中且样品瓶内加入磁子进行搅拌。24h后,黄棕色悬浮液变得透明,得到黑色粉末状固体于样品瓶中。收集黑色固体,用乙醇洗涤2次,去离子水洗涤2次。冷冻干燥后,得到粉末状纳米氧化锌/石墨烯复合物。

Claims (7)

1.一种纳米氧化锌/石墨烯复合材料的制备方法,其特征在于,包括以下步骤:
将纳米氧化锌置于GO悬浮液中,充分混合均匀,于70~120℃保温1~24h后收集洗涤生成的固体产物,冷冻干燥后得到纳米氧化锌/石墨烯复合材料。
2.根据权利要求1所述的纳米氧化锌/石墨烯复合材料的制备方法,其特征在于,所述GO悬浮液的制备方法,包括以下步骤:
步骤(1):将石墨、浓硫酸和硝酸钠混合搅拌得到混合液;
步骤(2):称取高锰酸钾加入步骤(1)所得的混合液继续搅拌;
步骤(3):冰水浴下向步骤(2)所得溶液中加入蒸馏水稀释搅拌;
步骤(4):向步骤(3)所得溶液加入过氧化氢水溶液搅拌;
步骤(5):离心分离除去步骤(4)所得混合物中的底层沉淀物及上层清液,收集中间层浅色产物,用蒸馏水反复洗涤至无沉淀可见,收集GO。
3.根据权利要求2所述的纳米氧化锌/石墨烯复合材料的制备方法,其特征在于,所述步骤(1)中将石墨1~10g、98%浓硫酸50~200mL、硝酸钠1~5g混合搅拌10~60min。
4.根据权利要求2所述的纳米氧化锌/石墨烯复合材料的制备方法,其特征在于,所述步骤(2)中加入的高锰酸钾为5~20g,搅拌时间为12~24h。
5.根据权利要求2所述的纳米氧化锌/石墨烯复合材料的制备方法,其特征在于,所述步骤(3)中加入的蒸馏水为100~300mL,搅拌时间为12~24h。
6.根据权利要求2所述的纳米氧化锌/石墨烯复合材料的制备方法,其特征在于,所述步骤(4)中加入的过氧化氢溶液为10~100mL、30wt%,搅拌时间为6~24h。
7.一种如权利要求1-6任意一项所述方法制备的纳米氧化锌/石墨烯复合材料。
CN201810803441.3A 2018-07-20 2018-07-20 一种纳米氧化锌/石墨烯复合材料及其制备方法 Pending CN108949102A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810803441.3A CN108949102A (zh) 2018-07-20 2018-07-20 一种纳米氧化锌/石墨烯复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810803441.3A CN108949102A (zh) 2018-07-20 2018-07-20 一种纳米氧化锌/石墨烯复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN108949102A true CN108949102A (zh) 2018-12-07

Family

ID=64497940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810803441.3A Pending CN108949102A (zh) 2018-07-20 2018-07-20 一种纳米氧化锌/石墨烯复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108949102A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111229316A (zh) * 2020-03-06 2020-06-05 浙江工业大学 一种氧化锌负载孔径可调的三维蜂窝状碳基纳米材料的制备方法
CN114084900A (zh) * 2021-10-21 2022-02-25 红河学院 Au@AuPt3D ZnO-GO复合纳米材料的制备方法及其对盐酸阿霉素的检测
CN115176814A (zh) * 2022-07-15 2022-10-14 江苏美百加电器科技有限公司 一种石墨烯气凝胶负载氧化锌纳米颗粒抗菌材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007236A (zh) * 2014-05-26 2014-08-27 太原理工大学 石墨烯/氧化锌纳米复合材料的制备方法及其应用
CN105692680A (zh) * 2016-02-26 2016-06-22 武汉理工大学 一种分级结构氧化锌石墨烯的纳米复合材料及其制备方法
CN106057481A (zh) * 2016-08-11 2016-10-26 安徽省宁国天成电工有限公司 一种石墨烯/氧化锌纳米复合材料的制备方法及其用途
CN107731550A (zh) * 2017-11-09 2018-02-23 青岛大学 一种金属氧化物/石墨烯复合材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007236A (zh) * 2014-05-26 2014-08-27 太原理工大学 石墨烯/氧化锌纳米复合材料的制备方法及其应用
CN105692680A (zh) * 2016-02-26 2016-06-22 武汉理工大学 一种分级结构氧化锌石墨烯的纳米复合材料及其制备方法
CN106057481A (zh) * 2016-08-11 2016-10-26 安徽省宁国天成电工有限公司 一种石墨烯/氧化锌纳米复合材料的制备方法及其用途
CN107731550A (zh) * 2017-11-09 2018-02-23 青岛大学 一种金属氧化物/石墨烯复合材料及其制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111229316A (zh) * 2020-03-06 2020-06-05 浙江工业大学 一种氧化锌负载孔径可调的三维蜂窝状碳基纳米材料的制备方法
CN114084900A (zh) * 2021-10-21 2022-02-25 红河学院 Au@AuPt3D ZnO-GO复合纳米材料的制备方法及其对盐酸阿霉素的检测
CN114084900B (zh) * 2021-10-21 2024-02-23 红河学院 Au@AuPt3D ZnO-GO复合纳米材料的制备方法及其对盐酸阿霉素的检测
CN115176814A (zh) * 2022-07-15 2022-10-14 江苏美百加电器科技有限公司 一种石墨烯气凝胶负载氧化锌纳米颗粒抗菌材料的制备方法

Similar Documents

Publication Publication Date Title
Xu et al. Harvesting vibration energy to piezo-catalytically generate hydrogen through Bi2WO6 layered-perovskite
CN104226337B (zh) 一种石墨烯负载片层状二硫化钼纳米复合物及其制备方法
Moolayadukkam et al. Role of transition metals in layered double hydroxides for differentiating the oxygen evolution and nonenzymatic glucose sensing
CN100575251C (zh) 碳纳米管负载磁性四氧化三铁纳米粒子的制备方法
CN102142558B (zh) 一种石墨烯和MoS2类石墨烯与无定形碳复合材料及制备方法
CN103030139B (zh) 一种磁性石墨烯复合材料的合成方法及其应用
CN102557021B (zh) 基于氧化石墨烯自催化的纳米复合材料的制备方法
CN108949102A (zh) 一种纳米氧化锌/石墨烯复合材料及其制备方法
Bu et al. Metal-organic frameworks-derived Co3O4/Ti3C2Tx Mxene nanocomposites for high performance ethanol sensing
CN107731550A (zh) 一种金属氧化物/石墨烯复合材料及其制备方法和应用
CN110482608B (zh) 一种花状二硫化钨微球及其制备方法
CN109248695B (zh) 一种氧空位介导的Bi基层状固氮光催化剂及其制备方法
CN103537307A (zh) 石墨烯-磷酸银复合光催化剂及其制备方法和应用
Yang et al. Hydrogen evolution reaction property of molybdenum disulfide/nickel phosphide hybrids in alkaline solution
CN105271405A (zh) 一种基于碳酸氧铋或氧化铋纳米管的材料及其制备方法
Zahid et al. Hybrid nanomaterials for water purification
Pore et al. Hydrothermally synthesized Co3O4 microflakes for supercapacitor and non-enzymatic glucose sensor
CN105289578A (zh) 一种金属氧化物/碳纳米管复合光催化剂及其制法与应用
Farhat et al. Insights into the structure and the electrochemical reactivity of cobalt-manganese layered double hydroxides: application to H2O2 sensing
CN107428553A (zh) 钛氧化物粒子、钛氧化物粒子的制造方法、包含钛氧化物粒子的蓄电元件用电极、具备包含钛氧化物粒子的电极的蓄电元件
Karaman et al. Fabrication of supercapacitors and flexible electrodes using biosilica from cultured diatoms
CN108579773B (zh) 一种钙钛矿基复合纳米材料及制备方法与用途
Sai-Dan et al. Application of inorganic layered materials in electrochemical sensors
BaQais et al. Probe-Sonicated Synthesis of CuO–ZnO Hybrid Nanocomposite for Photocatalytic and Supercapacitor Applications
CN107876064A (zh) 一种Au/rGO/Fe2O3三元复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181207

RJ01 Rejection of invention patent application after publication