CN108933619B - 一种大规模mimo混合预编码码本设计方法 - Google Patents

一种大规模mimo混合预编码码本设计方法 Download PDF

Info

Publication number
CN108933619B
CN108933619B CN201810743511.0A CN201810743511A CN108933619B CN 108933619 B CN108933619 B CN 108933619B CN 201810743511 A CN201810743511 A CN 201810743511A CN 108933619 B CN108933619 B CN 108933619B
Authority
CN
China
Prior art keywords
codebook
matrix
digital
analog
error function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810743511.0A
Other languages
English (en)
Other versions
CN108933619A (zh
Inventor
何云
申敏
翁明江
郑焕平
吴广富
陈吕洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201810743511.0A priority Critical patent/CN108933619B/zh
Publication of CN108933619A publication Critical patent/CN108933619A/zh
Application granted granted Critical
Publication of CN108933619B publication Critical patent/CN108933619B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0482Adaptive codebooks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明涉及一种大规模MIMO混合预编码码本设计方法,属于通信技术领域。该方法中的部分连接码本产生器设计的思路是使得混合预编码矩阵优化逼近信道矩阵的右酉矩阵,具体设计准则是使得误差函数最小,误差函数定义为模拟码本矩阵和数字码本矩阵之积与信道矩阵的右酉矩阵之差的内积。其中信道估计器用来估计信道矩阵,并对信道矩阵进行SVD分解得到右酉矩阵。本发明提出的全连接码本产生器设计的思路是利用傅里叶变换基的正交性和恒模性质,将傅里叶变换基作为全连接模拟码本,而对右酉矩阵的列向量进行傅里叶反变换后所形成的矩阵作为全连接数字码本。

Description

一种大规模MIMO混合预编码码本设计方法
技术领域
本发明属于通信技术领域,涉及一种大规模MIMO混合预编码码本设计方法。
背景技术
基于大规模多输入多输出(Massive MIMO)的无线传输技术能够深度利用空间维度的无线资源,进而显著提升系统频谱效率和能量效率,已经成为当前学术界和工业界的研究热点之一。
传统数字预编码的每个天线阵元均需要一条射频链路,射频元器件的造价高且功耗大,使其并不适合大规模的天线阵列。另外,受到实现复杂度的限制,射频模拟预编码信号处理的灵活性比数字域差,因此大规模MIMO系统的一部分预编码功能转移到数字域,另一部分则保留在模拟域,从而形成的数字模拟混合处理结构,将成为阵列预编码技术的发展趋势。
发明内容
有鉴于此,本发明的目的在于提供一种大规模MIMO混合预编码码本设计方法,混合预编码器结构分为全连接结构和部分连接结构。全连接结构通过模拟预编码矩阵将一个射频连接到所有阵元上,移相器的总数为
Figure BDA0001723779940000011
而部分连接结构将一个射频连接到
Figure BDA0001723779940000012
个阵元上,移相器的总数为
Figure BDA0001723779940000013
其结构参考图1所示。
为达到上述目的,本发明提供如下技术方案:
混合预编码的码本表示为Vt可以分解为模拟码本矩阵和数字码本矩阵的乘积,即Vt=VRFVD。混合预编码码本
Figure BDA0001723779940000014
全连接结构模拟预编码码本
Figure BDA0001723779940000015
数字预编码码本
Figure BDA0001723779940000016
部分连接结构模拟预编码码本
Figure BDA0001723779940000017
数字预编码码本
Figure BDA0001723779940000018
这里Nt为发送天线个数,Nr为接收天线个数,
Figure BDA0001723779940000019
为发送射频链路数,Ns为数据流数目。
部分连接模拟码本VRF的结构如下:
Figure BDA00017237799400000110
vk为列向量,
Figure BDA00017237799400000111
vk的每个元素的模为1。当为部分连接结构时,
Figure BDA00017237799400000112
当为全连接结构时,
Figure BDA00017237799400000113
(一)部分连接码本设计
部分连接码本设计依次执行以下4步骤:
1、信道估计器
信道估计器能准确估计大规模MIMO的频域信道冲激响应矩阵H,对信道矩阵进行SVD分解H=UΣVH,H的维度为Nr×Nt,其右酉矩阵V为Nt×Nt的矩阵。实际中没有取右酉矩阵V的所有列向量,而是根据数据流的个数Ns选取右酉向量的个数,即
Figure BDA0001723779940000021
Ns<Nr
2、部分连接模拟码本形成器
右酉矩阵V的第i行第j列元素表示为a(i,j),模拟预编码矩阵的第i行第k列元素表示为b(i,k),数字预编码矩阵VD第k行第j列元素表示为c(k,j)。其中j∈[1,...,Ns]。模拟预编码矩阵VRF的列向量的个数为发送端射频链路数
Figure BDA0001723779940000022
Figure BDA0001723779940000023
列向量vk的行元素的范围为
Figure BDA0001723779940000024
设数字预编码矩阵VD和右酉矩阵V已知,假设待求模拟预编码矩阵VRF的第i*行第k*列元素为b(i*,k*),
Figure BDA0001723779940000025
误差函数表示为:
Figure BDA0001723779940000026
将其分解为常数项和b(i*,k*)的函数项,则待求b(i*,k*)需要满足:
Figure BDA0001723779940000027
Figure BDA0001723779940000028
m(i*,j)是模拟矩阵VRF第i*行中除元素b(i*,k*)外的其他元素b(i*,k)与数字预编码矩阵的元素乘积之和,是与b(i*,k*)无关项。根据部分连接结构的VRF矩阵性质,当k≠k*时,b(i*,k)=0。则m(i*,j)=0。
常数项表示为e(i,j):
e(i*,j)=a(i*,j) (5)
由于模拟预编码矩阵的恒模限定:|b(i*,k*)|2=1,将误差函数展开为常数项和函数项,则
Figure BDA0001723779940000029
定义常数项为g,b(i*,k*)的系数为t,即
Figure BDA0001723779940000031
Figure BDA0001723779940000032
则将公式(6)可写为
f(b(i*,k*))=g-t'b(i*,k*)-tb(i*,k*)' (9)
因为b(i*,k*)模为1,则可以表示为
Figure BDA0001723779940000038
则b(i*,k*)'=1/b(i*,k*),将系数t与b(i*,k*)'的乘积作为待求变量x,即
x=tb(i*,k*)'=t/b(i*,k*) (10)
则公式(3)可写为
Figure BDA0001723779940000033
对于函数f(x)的最小值的x变量求解,需要分为f(x)最小值大于零和等于零两种情况。
情况1:当g≥2|x|=2|t|,则f(x)最小值大于零,即minf(x)=g-2|t|,x取t的模值,即x=|t|,则b(i*,k*)和t的相位相等。
情况2:当g<2|x|=2|t|,则f(x)最小值等于零,即minf(x)=0,x的实部取g/2,即Re(x)=g/2,由于x和t的模值相等,则x的虚部为
Figure BDA0001723779940000034
根据公式(10)得到
b(i*,k*)=t/x=t/(Re(x)+jIm(x)) (12)
所以满足误差函数最小的最优解b(i*,k*)满足:
Figure BDA0001723779940000035
以上操作是获取使误差函数最小的第k*个列向量的第i*个行元素b(i*,k*),其他元素的获取遵循先行元素再列向量的原则。下一个获取的元素为b(i*+1,k*),当第k*个列向量的所有元素i都更新之后,再对第k*+1个列向量进行操作。直到矩阵VRF的每个元素都得到更新,矩阵VRF的一次迭代过程结束。
3、部分连接数字码本形成器
右酉矩阵V的第i行第j列元素表示为a(i,j),模拟预编码矩阵的第i行第k列元素表示为b(i,k),数字预编码矩阵VD第k行第j列元素表示为c(k,j)。其中j∈[1,...,Ns],行向量的范围为i∈[1,...,Nt],模拟预编码矩阵VRF的列向量的个数为发送端射频链路数
Figure BDA0001723779940000036
Figure BDA0001723779940000037
设模拟预编码矩阵VRF和右酉矩阵V已知,假设待求数字预编码矩阵VD的第k*行第j*列元素为c(k*,j*)。
Figure BDA0001723779940000041
j*∈[1,...,Ns]。误差函数表示为:
Figure BDA0001723779940000042
这里m(i,j*)是和c(k*,j*)无关的函数,它是数字矩阵VD第j*列中除元素c(k*,j*)外的其他元素c(k,j*)与数字预编码矩阵的元素乘积之和,即
Figure BDA0001723779940000043
将常数项合并为
e(i,j*)=a(i,j*)-m(i,j*) (16)
因为模拟预编码元素的恒模限定,多个|b(i,k*)|2的和为常数,即
Figure BDA0001723779940000044
则误差函数为
Figure BDA0001723779940000045
x=c(k*,j*) (19)
Figure BDA0001723779940000046
Figure BDA0001723779940000047
则公式(18)可表示为:
f(x)=g+pxx'-t'x-tx' (22)
将和系数t和x写为模和相位的乘积形式,即
t=|t|ej(θ) (23)
Figure BDA0001723779940000048
θ为t的相位角,
Figure BDA0001723779940000049
为x的相位角。f(x)变为|x|和
Figure BDA00017237799400000410
的函数,公式(22)写为
Figure BDA00017237799400000411
Figure BDA00017237799400000412
的|x|求导,则
Figure BDA00017237799400000413
Figure BDA00017237799400000414
时,存在极值点。极值点对应的解|x|*为:
Figure BDA0001723779940000051
当|x|≥|x|*时候,
Figure BDA0001723779940000052
为增函数;当|x|<|x|*
Figure BDA0001723779940000053
为减函数。为了让
Figure BDA0001723779940000054
最小,则
Figure BDA0001723779940000055
为减函数的持续时间越长越好,即|x|*越大越好。当|x|*最大时,则
Figure BDA0001723779940000056
最小。而|x|*最大值为:
Figure BDA0001723779940000057
Figure BDA0001723779940000058
时,公式(28)才成立。即
Figure BDA0001723779940000059
所以得到f(x)最小的x的解为:
Figure BDA00017237799400000510
以上操作是获取使误差函数最小的第j*个列向量的第k*个行元素c(k*,j*),其他元素的获取遵循先行元素再列向量的原则。下一个获取的元素为c(k*+1,j*),当第j*个列向量的所有元素i都更新之后,再对第j*+1个列向量进行操作。直到矩阵VD的每个元素都得到更新,矩阵VD的一次迭代过程结束。
4、迭代控制器
将第2步产生的模拟码本VRF、第3步产生的数字码本VD,和第1步产生的右酉矩阵V,作为迭代控制器的输入计算误差函数
Figure BDA00017237799400000511
当误差精度不满足需求,则输出当前的模拟码本和数字码本作为下次码本形成器的初值码本,返回第2步或者第3步重新计算模拟码本或者数字码本;当精度满足需求则停止迭代,输出模拟码本和数字码本作为最终结果。
由于模拟码本的计算量和发送天线数相关,当发送天线数目较大时,模拟码本形成器的运算量较大。而数字码本的计算量和射频链路和数据流个数有关,并且数字码本的解形式简单,所以数字码本形成器的计算量要低于模拟码本形成器。且仿真结果表明首次模拟码本形成器和数字码本形成器完成后能够将误差控制到较低程度。并且由于模拟码本恒模限制,所以模拟码本的误差函数不易收敛到零,而数字码本形成器的误差函数收敛速度要大于模拟码本形成器的误差函数收敛速度。基于以上三点原因,在精度满足不满足需求的前提下,当设计需求要权衡计算复杂度和性能时,迭代控制器控制不进行模拟码本的更新,而跳转到第3步进行数字码本形成器处理;当设计需求为性能优先时,迭代控制器控制跳转到第2步进行模拟码本形成器处理;
(二)全连接码本设计
从上述分析可以看出,全连接如果采用上述的方法来实现计算量将会很大。由于V=VRFVD,V为H信道矩阵分解得到的右酉矩阵。且VRF的每个元素要满足恒模限定,即|VRF(i,j)|=1。在全连接结构下,VRF为Nt×Nt的方阵。考虑傅里叶变换基函数W为一系列等距离恒模正交基函数,作为相移矩阵具有结构简单和易实现的优点。将W用VRF代替,则:
Figure BDA0001723779940000061
其中m=1,...,Nt,n=1,...,Nt。V和VD可以作为该傅里叶变换基下的一组傅里叶变换对。设
Figure BDA0001723779940000062
V的第i列为vi,VD的第i列为vdi,则
Figure BDA0001723779940000063
本发明的有益效果在于:本发明提出的全连接码本产生器设计的思路是利用傅里叶变换基的正交性和恒模性质,将傅里叶变换基作为全连接模拟码本,而对右酉矩阵的列向量进行傅里叶反变换后所形成的矩阵作为全连接数字码本。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为大规模MIMO混合预编码结构;(a)为全连接混合预编码;(b)为部分连接混合预编码;
图2为本发明流程图;
图3为部分连接模拟/数字码本误差;
图4为部分/全连接频谱效率。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
(一)部分连接码本设计
图2为本发明流程图,部分连接码本设计具体实施按照以下步骤依次进行:
1、码本初始化:,VRF参考公式(1)初始化,这里
Figure BDA0001723779940000064
这里Ia×b表示维度为a×b全1矩阵。
2、信道估计器:得到信道估计H,并进行SVD分解,得到右酉矩阵元素V。
3、模拟码本形成器:
a)输入为右酉矩阵V和初始数字码本VD,获取模拟预编码码本元素b(i*,k*):参考公式(5)m(i*,j)得到常数项e(i*,j),参考公式(7)得到常数项g。
b)参考公式(8)得到b(i*,k*)的系数t。
c)参考公式(10),将b(i*,k*)与系数t之积用变量x代替。
d)对g和|t|的大小进行判断,分两种情况根据公式13求得x,进而得到b(i*,k*),完成一次b(i*,k*)的更新。
e)其他元素采用先行元素再列向量的顺序依次进行更新,直到VRF的全部元素得到更新。
4、数字码本形成器:
a)输入为右酉矩阵V和初始模拟码本VRF,获取数字预编码码本元素c(k*,j*),将c(k*,j*)设置为0。参考公式(15)得到其他元素c(k,j*)与模拟预编码矩阵的元素乘积之和m(i,j*)。
b)参考公式(16)将右酉矩阵元素a(i,j*)减去m(i,j*)得到常数项e(i,j*),参考公式20得到平方形式的常数项g。
c)参考公式(17),得到多个|b(i,k*)|2之和p。
d)参考公式21得到c(k*,j*)的系数t。
e)设x=c(k*,j*),误差函数f转换为关于x的二项式,参考公式(22)。其中p为二次项系数,t为一项系数,g为常数项。
f)求解公式(22)表示的误差函数f,参考公式(26)对误差函数f求导,导数函数f'的解为|x|*,参考公式(27)所示。
g)参考公式(29),求得最小误差函数的的解x,即c(k*,j*)。
h)其他元素采用先行元素再列向量的顺序依次进行更新,直到VD的全部元素得到更新。
5、迭代控制器
将第3步产生的模拟码本VRF、第4步产生的数字码本VD,和第2步产生的右酉矩阵V,作为迭代控制器的输入计算误差函数。在误差精度不满足需求的前提下,当性能优先时返回第2步重新计算模拟码本,当权衡计算复杂度和性能时返回第3步重新计算数字码本。
(二)全连接码本设计
1、信道估计器:得到信道估计H,并进行SVD分解,得到右酉矩阵元素V。
2、根据公式(30)(31)分别得到模拟码本VRF和数字码本VD
仿真说明:
1、误差收敛性仿真
仿真环境为首次运行部分连接模拟码本形成器和部分连接数字码本形成器,数据流个数Ns=1,则
Figure BDA0001723779940000081
每个模拟码元和数字码元更新后的误差函数如图3所示。根据公式(7)(8),
Figure BDA0001723779940000082
|e(i*,j)|2+1>2e(i*,j),满足情况1,模拟码本的误差函数的最小值大于零。模拟码本的最优解只与t有关,即只与右酉矩阵和数字矩阵的初值有关,与射频链路数NRF无关,所以NRF=128与NRF=256的模拟码本的误差曲线重合。而数字码本的码元个数为NRF×Ns,数字码本的解与t,p都有关,而p与NRF有关,所以误差函数为关于NRF的曲线,且首次迭代数字码本形成器就能够使误差趋近于零。
2、部分连接性能和全连接性能仿真
本发明采用频谱效率来评估部分和全连接码本设计的性能,每条信道等功率分配,
频谱效率表达式为:
Figure BDA0001723779940000083
根据该香农公式,信噪比为:
Figure BDA0001723779940000084
仿真环境设置为数据流数为Ns=4,发送天线个数为Nt=256,仿真结果参考图4所示。在部分连接结构中,随着
Figure BDA0001723779940000085
的增大,频谱效率逐步增大,当
Figure BDA0001723779940000086
频谱效率接近理想值。全连接结构的码本设计的频谱效率能够接近理想值。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (1)

1.一种大规模MIMO混合预编码码本设计方法,其特征在于:该方法包括以下步骤:
S1:基站端将Ns个数据流通过Nt个发送天线发送出去,发送端可用的射频链路的个数为
Figure FDA0002820963690000011
每个射频链路和Nt个发送天线连接时为全连接结构;当每个射频链路和
Figure FDA0002820963690000012
个发送天线连接时为部分连接结构,混合预编码的码本矩阵为Vt=VRFVD,其中VRF为模拟码本,VD为数字码本;
S2:信道估计器准确估计大规模MIMO的频域信道冲激响应矩阵H,对H进行SVD分解H=UΣVH,得到左酉矩阵U,右酉矩阵V,特征值矩阵Σ;
S3:全连接码本产生器包括全连接模拟码本形成器、全连接数字码本形成器两部分构成;
部分连接码本产生器包括部分连接模拟码本形成器、部分连接数字码本形成器和迭代控制器三部分构成,这三部分的执行顺序为依次进行;迭代控制器根据误差性能和计算复杂度的需求判断跳转到部分连接模拟码本形成器还是部分连接数字码本形成器;部分连接模拟码本形成器得到模拟码本矩阵VRF;部分连接数字码本形成器得到数字码本矩阵VD
全连接模拟码本形成器VRF为傅里叶变换基矩阵;
全连接数字码本形成器VD为对右酉矩阵V进行傅里叶反变换而得到的矩阵;
码本逼近的误差函数最小表示为
Figure FDA0002820963690000013
即右酉矩阵与模拟矩阵数字矩阵乘积之差的内积最小;实现方式为当计算VRF时候,VD为固定;当计算VD时候,将VRF固定;每次只更新矩阵列向量中的一个元素,即先行元素更新后列向量更新;假设xi为列向量中的一个元素,其中i=1,...N,N为列向量的元素个数;需要找到最优
Figure FDA0002820963690000014
使得由
Figure FDA0002820963690000015
构成的码本矩阵的误差函数最小,每个元素xi的更新都能使误差函数更小,从而误差函数能快速收敛;
部分连接模拟码本形成器:部分连接模拟码本矩阵VRF的第i行第k列元素表示为b(i,k),右酉矩阵的第i行第j列元素表示为a(i,j),部分连接数字预编码矩阵第k行第j列元素表示为c(k,j),部分连接模拟码本VRF的第i*行第k*列待求元素b(i*,k*)需要满足
Figure FDA0002820963690000016
且|b(i,k)|=1;将误差函数分解为关于b(i*,k*)的一次函数,并求得满足误差函数最小的最优解b(i*,k*),其解参考公式
Figure FDA0002820963690000017
所示;
t是在目标变量对应位置上,常数项行向量和数字预编码器行向量的内积;
g是在目标变量对应位置上,常数项行向量模和数字预编码器行向量模的内积表示;
部分连接数字码本形成器,部分连接模拟码本矩阵VRF的第i行第k列元素表示为b(i,k),右酉矩阵的第i行第j列元素表示为a(i,j),部分连接数字预编码矩阵第k行第j列元素表示为c(k,j),部分连接数字码本VD的第k*行第j*列待求元素c(k*,j*)需要满足
Figure FDA0002820963690000021
将误差函数分解为关于c(k*,j*)的二次函数,求解该函数需要进行求导,并分析极值点的性质,从而求得满足误差函数最小的最优解c(k*,j*),其解参考公式
Figure FDA0002820963690000022
所示;θ表示t的相位;p表示在目标变量对应位置上,模拟预编码向量模的内积;
S4:迭代控制器,将部分连接模拟码本VRF、部分连接数字码本VD,和右酉矩阵V,作为迭代控制器的输入计算误差函数
Figure FDA0002820963690000023
当误差精度不满足需求,则输出当前的部分连接模拟码本和部分连接数字码本作为下次部分连接码本形成器的初值码本;当精度满足需求则停止迭代,输出部分连接模拟码本码本和部分连接数字码本作为最终结果;
由于部分连接数字码本形成器的计算量要低于部分连接模拟码本形成器,且首次部分连接模拟码本形成器和部分连接数字码本形成器完成后能够将误差控制到较低程度,并且部分连接数字码本形成器的误差函数收敛速度要大于部分连接模拟码本形成器;在精度不满足需求的前提下,当设计需求为性能优先时,在迭代控制器中控制跳转到部分连接模拟码本形成器;当设计需求要权衡计算复杂度和性能时,在迭代控制器中控制跳转到部分连接数字码本形成器。
CN201810743511.0A 2018-07-09 2018-07-09 一种大规模mimo混合预编码码本设计方法 Active CN108933619B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810743511.0A CN108933619B (zh) 2018-07-09 2018-07-09 一种大规模mimo混合预编码码本设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810743511.0A CN108933619B (zh) 2018-07-09 2018-07-09 一种大规模mimo混合预编码码本设计方法

Publications (2)

Publication Number Publication Date
CN108933619A CN108933619A (zh) 2018-12-04
CN108933619B true CN108933619B (zh) 2021-02-09

Family

ID=64447934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810743511.0A Active CN108933619B (zh) 2018-07-09 2018-07-09 一种大规模mimo混合预编码码本设计方法

Country Status (1)

Country Link
CN (1) CN108933619B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109547076B (zh) * 2019-01-07 2021-05-18 南京邮电大学 一种毫米波大规模mimo系统中的混合预编码方法
CN109861731B (zh) * 2019-01-23 2022-02-15 北京理工大学 一种混合预编码器及其设计方法
CN110474662B (zh) * 2019-07-31 2021-11-09 同济大学 一种mimo无线通信解调接收方法及系统
CN111049560B (zh) * 2019-12-06 2021-06-04 电子科技大学 面向5g c-ran系统的光码本混合波束成形方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104506281A (zh) * 2015-01-14 2015-04-08 西安电子科技大学 一种3d-mimo系统的射频与基带混合预编码方法
CN107046434A (zh) * 2016-11-27 2017-08-15 西南电子技术研究所(中国电子科技集团公司第十研究所) 大规模mimo系统模数混合预编码方法
CN107707284A (zh) * 2017-07-25 2018-02-16 东南大学 一种基于信道统计量码本量化反馈的混合预编码方法
WO2018063401A1 (en) * 2016-09-30 2018-04-05 Intel IP Corporation Beamforming for hybrid antenna arrays
CN108023620A (zh) * 2017-11-28 2018-05-11 杭州电子科技大学 应用于毫米波频段的大规模mimo系统混合预编码方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104506281A (zh) * 2015-01-14 2015-04-08 西安电子科技大学 一种3d-mimo系统的射频与基带混合预编码方法
WO2018063401A1 (en) * 2016-09-30 2018-04-05 Intel IP Corporation Beamforming for hybrid antenna arrays
CN107046434A (zh) * 2016-11-27 2017-08-15 西南电子技术研究所(中国电子科技集团公司第十研究所) 大规模mimo系统模数混合预编码方法
CN107707284A (zh) * 2017-07-25 2018-02-16 东南大学 一种基于信道统计量码本量化反馈的混合预编码方法
CN108023620A (zh) * 2017-11-28 2018-05-11 杭州电子科技大学 应用于毫米波频段的大规模mimo系统混合预编码方法

Also Published As

Publication number Publication date
CN108933619A (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
CN108933619B (zh) 一种大规模mimo混合预编码码本设计方法
CN108964726B (zh) 一种低复杂度的大规模mimo上行链路传输信道估计方法
CN109257309B (zh) 一种高性能的大规模mimo下行链路传输信道估计方法
CN107046434B (zh) 大规模mimo系统模数混合预编码方法
CN114172547B (zh) 基于智能反射面的无线携能通信混合预编码设计方法
CN105049097B (zh) 非理想信道下大规模mimo线性检测硬件构架及检测方法
CN114338301B (zh) 一种基于压缩感知的ris辅助毫米波系统的信道估计方法
CN108471325B (zh) 一种稀疏射频/基带混合预编码方法
CN112039565A (zh) 基于分布式部分连接的大规模mimo混合预编码方法
CN104539340B (zh) 一种基于稀疏表示和协方差拟合的稳健波达角估计方法
Xie et al. Dictionary learning for channel estimation in hybrid frequency-selective mmWave MIMO systems
CN112671438B (zh) 大规模mimo中基于虚拟子阵列的模拟预编码系统及方法
CN113595944A (zh) 一种用于毫米波mimo混合预编码系统的信道估计方法
CN115733530A (zh) 一种可重构智能表面辅助毫米波通信的联合预编码方法
CN106130938B (zh) Tdd大规模mimo系统多用户联合信道估计方法
CN112235022B (zh) 一种低复杂度的大规模mimo低轨卫星预编码方法
CN114204971A (zh) 一种迭代的聚合波束成形设计和用户设备选择方法
CN113037342B (zh) 单比特毫米波多天线系统信道估计和预编码方法及装置
CN109787672B (zh) 基于参数学习的大规模mimo格点偏移信道估计方法
CN109379116B (zh) 基于切比雪夫加速法与sor算法的大规模mimo线性检测算法
Ribeiro et al. Low‐Complexity separable beamformers for massive antenna array systems
Zanjani et al. Gradient-based solution for hybrid precoding in MIMO systems
CN111666688B (zh) 一种修正的角度失配结合稀疏贝叶斯学习的信道估计算法
CN103117839A (zh) 多用户多输入多输出系统非精确信道信息下的预编码方法
Koochakzadeh et al. Beam-pattern design for hybrid beamforming using wirtinger flow

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant