CN108931564A - 用于高灵敏度检测红霉素的3d镍金合金纳米簇印迹修饰电极 - Google Patents

用于高灵敏度检测红霉素的3d镍金合金纳米簇印迹修饰电极 Download PDF

Info

Publication number
CN108931564A
CN108931564A CN201810446260.XA CN201810446260A CN108931564A CN 108931564 A CN108931564 A CN 108931564A CN 201810446260 A CN201810446260 A CN 201810446260A CN 108931564 A CN108931564 A CN 108931564A
Authority
CN
China
Prior art keywords
electrode
erythromycin
cluster
nanosilica
nickel billon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810446260.XA
Other languages
English (en)
Other versions
CN108931564B (zh
Inventor
孙越
赵梦元
刘雨桐
李娟�
张家萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Normal University
Original Assignee
Liaoning Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Normal University filed Critical Liaoning Normal University
Priority to CN201810446260.XA priority Critical patent/CN108931564B/zh
Publication of CN108931564A publication Critical patent/CN108931564A/zh
Application granted granted Critical
Publication of CN108931564B publication Critical patent/CN108931564B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开一种用于高灵敏度检测红霉素的3D镍金合金纳米簇印迹修饰电极,依次按照如下步骤的方法制成:首先在电极表面沉积3D镍金合金纳米簇,然后利用可见光引发ATRP聚合的方法,在存在红霉素的情况下将聚丙烯酰胺修饰在电极表面,除去红霉素后,制得3D镍金合金纳米簇印迹修饰电极。本发明应用于电化学传感器检测红霉素,具有检测速度快、灵敏度高等优点,对红霉素标准溶液检测的线性范围是1.0×10-9~1.0×10-1 mg/L,检测限为4.799×10-10 mg/L(LOD,S/N=3)。

Description

用于高灵敏度检测红霉素的3D镍金合金纳米簇印迹修饰电极
技术领域
本发明公开一种电化学印迹传感器用工作电极,尤其是一种利用可见光诱导ATRP的方法制备的用于高灵敏度检测红霉素的3D镍金合金纳米簇印迹修饰电极。
背景技术
红霉素(EM-Erythromycin)(MW 733.93)是链霉菌所产生的大环内酯类抗生素的第1代产品,针对部分细菌感染所引起的皮肤疾病、呼吸道疾病、牙周组织损伤等疾病具有很好的治疗效果。在水产品和畜牧业养殖过程中常投入大量红霉素来预防各种疾病,但由于红霉素代谢周期比较长,若使用过量等会污染生态环境。同时红霉素还会残留在动物体内,长期食用含有红霉素的食物,会通过食物链富集到人体,对人体造成很大的副作用,如对细菌产生耐药性、过敏反应、肝毒性及肝功能异常等。目前红霉素的常用检测方法有薄层色谱法、液相色谱-质谱法以及微生物法等,但这些方法操作繁琐,价格昂贵,对操作人员有技术要求。
分子印迹是一种独特复制记忆方法,可以被生动的描述为制造识别“分子钥匙”的“人工锁”的技术。分子印迹技术的核心是分子印迹聚合物,是将功能单体和目标分子通过非共价或者共价的方式共聚生成聚合物,再通过溶剂将目标分子洗脱,在聚合物中留下独特的“记忆”空穴,该空穴可以与混合物中的目标分子进行可逆的特异性结合,已在兽药残留分析中得到了广泛的应用。
目前,制备分子印迹聚合物的方法有多种,原子转移自由基聚合(ATRP)是实现“活性”/可控聚合的常用方法,是制备分子印迹聚合物的有效手段之一。但是在传统的ATRP方法中,其催化剂通常为低价态过渡金属配合物,该金属配合物价格昂贵、对空气敏感且会对环境产生较大负面影响。无金属可见光调控ATRP方法是近年来发展起来的ATRP聚合新手段,是在可见光照的条件下借助有机小分子光敏剂(如荧光素)催化聚合功能单体,其聚合过程中不需要过渡金属催化剂,具有精准、可控、反应环境绿色、温和及易获得等优点。
电化学传感器是由工作电极、参比电极及对电极构成的三电极体系,是一种利用电化学信号变化对被测样品进行检测的装置,具有灵敏度高、制备简便、成本低、易于微型化、适合现场检测等特点,是迄今为止最为成熟的生物传感技术之一。迄今为止,并没有利用可见光诱导ATRP的方法制备的用于高灵敏度检测红霉素的3D镍金合金纳米簇印迹修饰电极的相关报道。
发明内容
本发明是为了解决现有技术所存在的上述技术问题,提供一种利用可见光诱导ATRP的方法制备的用于高灵敏度检测红霉素的3D镍金合金纳米簇印迹修饰电极。
本发明的技术解决方案是:一种用于高灵敏度检测红霉素的3D镍金合金纳米簇印迹修饰电极,其特征在于所述工作电极依次按照如下步骤的方法制成:
a. 将干净的裸金电极放入溶剂为水的溶液A中,通氮气,在-0.7V下进行恒电位电沉积1200s,然后将电沉积后的电极置于溶剂为水的溶液B中,用计时电流法,在-0.9V下进行恒电位电沉积300s,得3D镍金合金纳米簇修饰电极;
所述溶液A每升组分为:NiSO40.25~4mol,NiCl20.05~0.8mol,糖精1.25~20mmol,十二烷基硫酸钠0.0375~0.6mmol,H3BO30.15~2.4mol;
所述溶液B每升组分为:NH4Cl0.45~7.2mol,H3BO30.15~2.4mol、HAuCl41.25~20mmol;
b. 利用巯基封端的含溴化合物修饰3D镍金合金纳米簇电极,得含溴化合物修饰电极;将丙烯酰胺及红霉素溶于乙醇中超声震荡5min,通入氮气10分钟,除去反应体系中的氧气,密封静置过夜,所述丙烯酰胺、红霉素及乙醇用量为0.3125~5g:0.05~0.8g:18.75ml的乙醇中超声震荡5min,通入氮气10分钟,除去反应体系中的所有氧气,密封静置过夜,再加入0.2129~3.4064g交联剂,0.0007~0.0116g荧光素及0.0625~1ml三乙胺,超声处理20min,制得分子印迹混合溶液;室温下,将含溴化合物修饰电极插入到分子印迹混合溶液中光照3小时,之后取出用超纯水清洗,浸泡在体积比为9:1的甲醇-乙酸的洗脱液中2h,再用超纯水冲洗,氮气吹干,得到3D镍金合金纳米簇印迹修饰电极。
本发明3D镍金合金纳米簇印迹修饰电极,应用于电化学传感器,能够快速、高灵敏度检测红霉素,对红霉素标准溶液检测的线性范围是1.0×10-9 ~1.0×10-1 mg/L,检测限为4.799×10-10 mg/L(LOD, S/N=3)。同时具有制备方法操作简单,所需仪器设备简便等优点。
附图说明:
图1 是本发明实施例1的制备过程中,不同修饰电极在含有5mM[Fe CN)6]3-/4-+0.1 MKCl(PH 7.0 PBS)溶液中的循环伏安图。
图2 是本发明实施例1的3D镍纳米簇修饰电极的表面形貌(A)和3D镍金合金纳米簇修饰电极的表面形貌(B)。
图3 是本发明实施例1的3D镍金合金纳米簇印迹修饰电极的选择性。
图4 是本发明实施例1的3D镍金合金纳米簇印迹修饰电极对红霉素检测的差分脉冲伏安曲线(A)和工作曲线(B)。
具体实施方式:
实施例1:
本发明的用于高灵敏度检测红霉素的3D镍金合金纳米簇印迹修饰电极,按照如下步骤的方法制成:
a. 将干净的裸金电极放入溶剂为水的溶液A中,通氮气,用计时电流法,在-0.7V下进行恒电位电沉积1200s,然后将电沉积后的电极置于溶剂为水的溶液B中,用计时电流法,在-0.9V下进行恒电位电沉积300s,得3D(三维)镍金合金纳米簇修饰电极;
所述溶液A每升组分为:NiSO41mol,NiCl20.2 mol,糖精5mmol,十二烷基硫酸钠0.15mmol,H3BO30.6 mol;
所述溶液B每升组分为:NH4Cl1.8mol,H3BO30.6 mol、HAuCl45mmol;
b. 利用巯基封端的含溴化合物修饰3D镍金合金纳米簇电极,得含溴化合物修饰电极;将丙烯酰胺及红霉素溶于乙醇中超声震荡5min,通入氮气10分钟,除去反应体系中的氧气,密封静置过夜,所述丙烯酰胺、红霉素及乙醇用量为1.25g:0.2g:18.75ml的乙醇中超声震荡5min,通入氮气10分钟,除去反应体系中的所有氧气,密封静置过夜,使之充分混合,再加入0.8516g N,N-亚甲基双丙烯酰胺,0.0029g 荧光素及0.25ml三乙胺,超声处理20min,使之全部溶解,制得分子印迹混合溶液;室温下,将含溴化合物修饰电极插入到分子印迹混合溶液中光照3小时,之后取出用超纯水清洗,浸泡在体积比为9:1的甲醇-乙酸的洗脱液中2h,再用超纯水冲洗,氮气吹干,得到3D镍金合金纳米簇印迹修饰电极。
本发明实施例1的电极制备过程中,不同修饰电极在含有5mM[Fe CN)6]3-/4-+0.1 MKCl(PH 7.0 PBS)溶液中的循环伏安图如图1所示。
图1中,曲线1是裸金电极的CV曲线,该曲线在0.2V附近出现一对可逆的[Fe(CN)6]3-/4-探针离子氧化还原峰。曲线2是3D镍金纳米簇修饰电极的CV曲线,峰电流高于曲线1,说明修饰了3D纳米簇后,电极导电性急剧增加。曲线3是上修饰了溴化物的3D纳米金簇修饰电极的CV曲线,峰电流低于曲线2,说明电极表面自组装引发剂后阻碍了探针离子到达电极表面,曲线4是未除去红霉素时修饰电极的CV曲线,峰电流明显高于曲线3,其原因是红霉素在该电位下有电化学响应,探针离子的电子转移受到含有红霉素膜的影响,峰电流升高。曲线5为洗脱模板分子(红霉素)后印迹电极的CV曲线,峰电流明显低于曲线4,由于除去红霉素后,电化学响应进一步减弱,氧化还原峰电流又有相对的减少,同时红霉素被洗脱后形成了印迹孔穴,聚丙烯酰胺膜作为惰性电子和传质阻挡层,阻碍了探针离子向电极表面扩散导电性减弱。
图2 是利用扫描电镜看到的本发明实施例1的3D镍纳米簇修饰电极的表面形貌(A)和3D镍金合金纳米簇修饰电极的表面形貌(B)。从图2可以看出3D镍金合金纳米簇呈棒状。
为了证明本发明实施例1的3D镍金合金纳米簇印迹修饰电极的选择性,实验中以氯霉素(CAP-Chloramphenicol)(MW 323.13)、罗红霉素(ROX-Roxithromycin)(MW837.05)、克拉霉素(CLA-Clarithromycin)(MW 747.96)、四环素(TET-Tetracycline)(MW444.43)作为干扰物。采用差分脉冲伏安法利用印迹电极(3D镍金合金纳米簇印迹修饰电极)和非印迹电极(制备方法与印迹电极相同,只是制备时不加红霉素)测定相同浓度(10- 4mg·L-1)的不同种抗生素的响应信号的差异,结果如图3所示。从图3可以看出本发明实施例1的工作电极检测红霉素响应信号ΔI为8.408μA,分别是CAP、ROX、CLA和TET的5.556,5.884,6.9779,5.689倍。结果表明,本发明实施例1的3D镍金合金纳米簇印迹修饰电极对目标红霉素选择性更好。
图4 是本发明实施例1的3D镍金合金纳米簇印迹修饰电极对红霉素检测的差分脉冲伏安曲线(A)和工作曲线(B)。其中图4A是3D镍金合金纳米簇印迹修饰电极检测一系列不同浓度红霉素的差分脉冲伏安曲线。图4A中,曲线1~10对应的红霉素浓度分别为空白,10-9,10-8,10-7,10-6,10-5, 10-4,10-3,10-2, 10-1 mg/L。可以看出,随着红霉素浓度的增加差分脉冲伏安曲线峰电流升高。这是由于结合红霉素后的3D镍金合金纳米簇印迹修饰电极,其印迹空穴被红霉素占据,而红霉素在该电位下有电化学响应,从而升高电极的差分脉冲伏安曲线峰电流值。红霉素浓度越高,印迹空穴被占据的越多,峰电流值上升越多。图4B是峰电流值衰减(信号响应,ΔI)与红霉素浓度对数的关系。从图可以看出该3D镍金合金纳米簇印迹修饰电极检测红霉素的浓度线性范围为1.0×10-9 ~1.0×10-1 mg/L。线性回归方程为ΔI (μA)=0.35041logC(mg/L)+8.19191,相关系数为0.9906。从标准曲线看出,检测限为(LOD, S/N=3)4.799×10-10 mg/L。
实施例2:
本发明的一种用于高灵敏度检测红霉素的3D镍金合金纳米簇印迹修饰电极,
依次按照如下步骤的方法制成:
a. 将干净的裸金电极放入溶剂为水的溶液A中,通氮气,用计时电流法,在-0.7V下进行恒电位电沉积1200s,然后将电沉积后的电极置于溶剂为水的溶液B中,用计时电流法,在-0.9V下进行恒电位电沉积300s,得3D(三维)镍金合金纳米簇修饰电极;
所述溶液A每升组分为:NiSO40.5mol,NiCl20.1 mol,糖精2.5mmol,十二烷基硫酸钠0.075 mmol,H3BO30.3 mol;
所述溶液B每升组分为:NH4Cl0.9mol,H3BO30.3 mol、HAuCl42.5mmol;
b. 利用巯基封端的含溴化合物修饰3D镍金合金纳米簇电极,得含溴化合物修饰电极;将丙烯酰胺及红霉素溶于乙醇中超声震荡5min,通入氮气10分钟,除去反应体系中的氧气,密封静置过夜,所述丙烯酰胺、红霉素及乙醇用量为0.625g:0.1g:18.75ml的乙醇中超声震荡5min,通入氮气10分钟,除去反应体系中的所有氧气,密封静置过夜,使之充分混合,再加入0.4258g N,N-亚甲基双丙烯酰胺,0.0014g 荧光素及0.125ml三乙胺,超声处理20min,使之全部溶解,制得分子印迹混合溶液;室温下,将含溴化合物修饰电极插入到分子印迹混合溶液中光照3小时,之后取出用超纯水清洗,浸泡在体积比为9:1的甲醇-乙酸的洗脱液中2h,再用超纯水冲洗,氮气吹干,得到3D镍金合金纳米簇印迹修饰电极。
实施例3:
本发明的一种用于高灵敏度检测红霉素的3D镍金合金纳米簇印迹修饰电极,
依次按照如下步骤的方法制成:
a. 将干净的裸金电极放入溶剂为水的溶液A中,通氮气,用计时电流法,在-0.7V下进行恒电位电沉积1200s,然后将电沉积后的电极置于溶剂为水的溶液B中,用计时电流法,在-0.9V下进行恒电位电沉积300s,得3D(三维)镍金合金纳米簇修饰电极;
所述溶液A每升组分为:NiSO40.25mol,NiCl20.05 mol,糖精1.25mmol,十二烷基硫酸钠0.0375 mmol,H3BO30.15 mol;
所述溶液B每升组分为:NH4Cl0.45mol,H3BO30.15 mol、HAuCl41.25mmol;
b. 利用巯基封端的含溴化合物修饰3D镍金合金纳米簇电极,得含溴化合物修饰电极;将丙烯酰胺及红霉素溶于乙醇中超声震荡5min,通入氮气10分钟,除去反应体系中的氧气,密封静置过夜,所述丙烯酰胺、红霉素及乙醇用量为0.3125g:0.05g:18.75ml的乙醇中超声震荡5min,通入氮气10分钟,除去反应体系中的所有氧气,密封静置过夜,使之充分混合,再加入0.2129g N,N-亚甲基双丙烯酰胺,0.0007g 荧光素及0.0625ml三乙胺,超声处理20min,使之全部溶解,制得分子印迹混合溶液;室温下,将含溴化合物修饰电极插入到分子印迹混合溶液中光照3小时,之后取出用超纯水清洗,浸泡在体积比为9:1的甲醇-乙酸的洗脱液中2h,再用超纯水冲洗,氮气吹干,得到3D镍金合金纳米簇印迹修饰电极。
实施例4:
本发明的一种用于高灵敏度检测红霉素的3D镍金合金纳米簇印迹修饰电极,
依次按照如下步骤的方法制成:
a. 将干净的裸金电极放入溶剂为水的溶液A中,通氮气,用计时电流法,在-0.7V下进行恒电位电沉积1200s,然后将电沉积后的电极置于溶剂为水的溶液B中,用计时电流法,在-0.9V下进行恒电位电沉积300s,得3D(三维)镍金合金纳米簇修饰电极;
所述溶液A每升组分为:NiSO42mol,NiCl20.4 mol,糖精10mmol,十二烷基硫酸钠0.3mmol,H3BO31.2 mol;
所述溶液B每升组分为:NH4Cl0.45mol,H3BO30.15 mol、HAuCl41.25mmol;
b. 利用巯基封端的含溴化合物修饰3D镍金合金纳米簇电极,得含溴化合物修饰电极;将丙烯酰胺及红霉素溶于乙醇中超声震荡5min,通入氮气10分钟,除去反应体系中的氧气,密封静置过夜,所述丙烯酰胺、红霉素及乙醇用量为2.5g:0.4g:18.75ml的乙醇中超声震荡5min,通入氮气10分钟,除去反应体系中的所有氧气,密封静置过夜,使之充分混合,再加入1.7032g N,N-亚甲基双丙烯酰胺,0.0058g 荧光素及0.5ml三乙胺,超声处理20min,使之全部溶解,制得分子印迹混合溶液;室温下,将含溴化合物修饰电极插入到分子印迹混合溶液中光照3小时,之后取出用超纯水清洗,浸泡在体积比为9:1的甲醇-乙酸的洗脱液中2h,再用超纯水冲洗,氮气吹干,得到3D镍金合金纳米簇印迹修饰电极。
实施例5:
本发明的一种用于高灵敏度检测红霉素的3D镍金合金纳米簇印迹修饰电极,
依次按照如下步骤的方法制成:
a. 将干净的裸金电极放入溶剂为水的溶液A中,通氮气,用计时电流法,在-0.7V下进行恒电位电沉积1200s,然后将电沉积后的电极置于溶剂为水的溶液B中,用计时电流法,在-0.9V下进行恒电位电沉积300s,得3D(三维)镍金合金纳米簇修饰电极;
所述溶液A每升组分为:NiSO44mol,NiCl20.8 mol,糖精20mmol,十二烷基硫酸钠0.6mmol,H3BO32.4 mol;
所述溶液B每升组分为:NH4Cl7.2mol,H3BO32.4 mol、HAuCl42.0mmol;
b. 利用巯基封端的含溴化合物修饰3D镍金合金纳米簇电极,得含溴化合物修饰电极;将丙烯酰胺及红霉素溶于乙醇中超声震荡5min,通入氮气10分钟,除去反应体系中的氧气,密封静置过夜,所述丙烯酰胺、红霉素及乙醇用量为5g:0.8g:18.75ml的乙醇中超声震荡5min,通入氮气10分钟,除去反应体系中的所有氧气,密封静置过夜,使之充分混合,再加入3.406g N,N-亚甲基双丙烯酰胺,0.0116g 荧光素及1ml三乙胺,超声处理20min,使之全部溶解,制得分子印迹混合溶液;室温下,将含溴化合物修饰电极插入到分子印迹混合溶液中光照3小时,之后取出用超纯水清洗,浸泡在体积比为9:1的甲醇-乙酸的洗脱液中2h,再用超纯水冲洗,氮气吹干,得到3D镍金合金纳米簇印迹修饰电极。
实施例2~5的实验结果同实施例1。

Claims (1)

1.一种用于高灵敏度检测红霉素的3D镍金合金纳米簇印迹修饰电极,其特征在于依次按照如下步骤的方法制成:
a. 将干净的裸金电极放入溶剂为水的溶液A中,通氮气,在-0.7V下进行恒电位电沉积1200s,然后将电沉积后的电极置于溶剂为水的溶液B中,用计时电流法,在-0.9V下进行恒电位电沉积300s,得3D镍金合金纳米簇修饰电极;
所述溶液A每升组分为:NiSO40.25~4mol,NiCl20.05~0.8mol,糖精1.25~20mmol,十二烷基硫酸钠0.0375~0.6mmol,H3BO30.15~2.4mol;
所述溶液B每升组分为:NH4Cl0.45~7.2mol,H3BO30.15~2.4mol、HAuCl41.25~20mmol;
b. 利用巯基封端的含溴化合物修饰3D镍金合金纳米簇电极,得含溴化合物修饰电极;将丙烯酰胺及红霉素溶于乙醇中超声震荡5min,通入氮气10分钟,除去反应体系中的氧气,密封静置过夜,所述丙烯酰胺、红霉素及乙醇用量为0.3125~5g:0.05~0.8g:18.75ml的乙醇中超声震荡5min,通入氮气10分钟,除去反应体系中的所有氧气,密封静置过夜,再加入0.2129~3.4064g交联剂,0.0007~0.0116g荧光素及0.0625~1ml三乙胺,超声处理20min,制得分子印迹混合溶液;室温下,将含溴化合物修饰电极插入到分子印迹混合溶液中光照3小时,之后取出用超纯水清洗,浸泡在体积比为9:1的甲醇-乙酸的洗脱液中2h,再用超纯水冲洗,氮气吹干,得到3D镍金合金纳米簇印迹修饰电极。
CN201810446260.XA 2018-05-11 2018-05-11 用于高灵敏度检测红霉素的3d镍金合金纳米簇印迹修饰电极 Expired - Fee Related CN108931564B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810446260.XA CN108931564B (zh) 2018-05-11 2018-05-11 用于高灵敏度检测红霉素的3d镍金合金纳米簇印迹修饰电极

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810446260.XA CN108931564B (zh) 2018-05-11 2018-05-11 用于高灵敏度检测红霉素的3d镍金合金纳米簇印迹修饰电极

Publications (2)

Publication Number Publication Date
CN108931564A true CN108931564A (zh) 2018-12-04
CN108931564B CN108931564B (zh) 2020-10-30

Family

ID=64448888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810446260.XA Expired - Fee Related CN108931564B (zh) 2018-05-11 2018-05-11 用于高灵敏度检测红霉素的3d镍金合金纳米簇印迹修饰电极

Country Status (1)

Country Link
CN (1) CN108931564B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252750A (zh) * 2021-05-14 2021-08-13 辽宁师范大学 可同时检测红霉素和血红蛋白的碳布/氧化锌/纳米金修饰电极

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843637A (zh) * 2017-10-12 2018-03-27 辽宁师范大学 用于检测铅离子的嵌段共聚物修饰电极及制备方法
CN107976471A (zh) * 2017-11-16 2018-05-01 辽宁师范大学 用于高灵敏度检测乙醇的修饰电极及制备方法
CN108007992A (zh) * 2017-12-04 2018-05-08 辽宁师范大学 检测血红蛋白的聚离子液体@3d纳米金簇修饰电极的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843637A (zh) * 2017-10-12 2018-03-27 辽宁师范大学 用于检测铅离子的嵌段共聚物修饰电极及制备方法
CN107976471A (zh) * 2017-11-16 2018-05-01 辽宁师范大学 用于高灵敏度检测乙醇的修饰电极及制备方法
CN108007992A (zh) * 2017-12-04 2018-05-08 辽宁师范大学 检测血红蛋白的聚离子液体@3d纳米金簇修饰电极的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GOVINDHAN MADURAIVEERAN等: "Bimetallic gold-nickel nanoparticles as a sensitive amperometric sensing platform for acetaminophen in human serum", 《JOURNAL OF ELECTROANALYTICAL CHEMISTRY》 *
WENJING LIAN等: "Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan–platinum nanoparticles/grapheme-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin", 《BIOSENSORS AND BIOELECTRONICS》 *
ZEYNEP ADALI-KAYA等: "Molecularly Imprinted Polymer Nanomaterials and Nanocomposites:Atom-Transfer Radical Polymerization with Acidic Monomers", 《ANGEW. CHEM. INT. ED.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252750A (zh) * 2021-05-14 2021-08-13 辽宁师范大学 可同时检测红霉素和血红蛋白的碳布/氧化锌/纳米金修饰电极
CN113252750B (zh) * 2021-05-14 2022-05-10 辽宁师范大学 可同时检测红霉素和血红蛋白的碳布/氧化锌/纳米金修饰电极

Also Published As

Publication number Publication date
CN108931564B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN105784822B (zh) 一种基于壳聚糖-石墨烯/金纳米颗粒复合膜的电化学dna传感器的制备及应用的方法
CN108007992B (zh) 检测血红蛋白的聚离子液体@3d纳米金簇修饰电极的制备方法
CN104777206B (zh) 一种检测土霉素的适体电极及其制备方法
CN103926294A (zh) Cs/il-gr修饰的牛血清白蛋白分子印迹电极的制备及其应用
CN101046461A (zh) 一种电化学传感器及其制备方法和用途
CN102435662A (zh) 一种检测水体中目标汞离子的方法
CN111272851B (zh) 一种检测·oh的玻璃纳米孔传感器及其制备和应用
CN105738448A (zh) 一种用于检测微量喹乙醇的分子印迹电化学传感器
CN109085225B (zh) 一步沉积法修饰磁电极的蛋白质印迹传感器的制备方法
CN109706225A (zh) 基于滚环扩增介导的钯纳米颗粒对microRNA的电化学检测方法
CN112345604A (zh) 一种纳米铋-聚吡咯复合电极及其制备方法和在重金属离子检测中的应用
CN108931564A (zh) 用于高灵敏度检测红霉素的3d镍金合金纳米簇印迹修饰电极
CN110514729A (zh) 一种用于水中氨氮直接电化学检测的敏感电极及其制备方法
CN105866211B (zh) 一种氨苄西林分子印迹传感器的制备方法及应用
CN110361431A (zh) 一种复合电极及其制备方法和用于氨氮检测的方法
CN115616055A (zh) 一种基于分子印迹传感器的呋喃西林检测方法
CN109406596A (zh) 一种检测microRNA-21的电化学传感器、其制备方法及应用
CN109828010A (zh) 检测氯离子的电化学传感器的制备方法及其检测方法
CN114544723A (zh) 一种Au@BP5复合材料及其制备方法与应用
CN102621216A (zh) 用双放大效应分子印迹电化学传感器检测微量土霉素的方法
CN111410768A (zh) 一种三组分智能聚合物修饰的多孔膜材料及其制备方法和应用
Uchida et al. Intracellular voltammetry in a single protoplast with an ultramicroelectrode
CN113203779A (zh) 一种磁性Fe3O4分子印迹电化学传感器的制备及对琥珀酸的检测方法
CN115184421B (zh) 一种微针血糖传感器及其制备方法和差分脉冲伏安测试法
CN106290538B (zh) 检测溶液中d型色氨酸浓度的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201030

Termination date: 20210511

CF01 Termination of patent right due to non-payment of annual fee