CN108923255A - 一种氮化物半导体垂直腔面发射激光器 - Google Patents

一种氮化物半导体垂直腔面发射激光器 Download PDF

Info

Publication number
CN108923255A
CN108923255A CN201810909141.3A CN201810909141A CN108923255A CN 108923255 A CN108923255 A CN 108923255A CN 201810909141 A CN201810909141 A CN 201810909141A CN 108923255 A CN108923255 A CN 108923255A
Authority
CN
China
Prior art keywords
surface emitting
cavity surface
nitride
emitting laser
vertical cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810909141.3A
Other languages
English (en)
Inventor
张保平
任伯聪
陈衍晖
应磊莹
郑志威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201810909141.3A priority Critical patent/CN108923255A/zh
Publication of CN108923255A publication Critical patent/CN108923255A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种氮化物半导体垂直腔面发射激光器,涉及半导体激光器。采用垂直内腔接触结构,从下到上依次设有支撑基板、下分布布拉格反射镜、下电极、透明电流扩展层、电流限制层、外延层、上电极和上分布布拉格反射镜;所述电流限制层使用氧化铝材料,氧化铝材料的分子式为Al2O3。外延层为氮化镓、氮化铟、氮化铝等组成的混合物外延层。上电极和下电极采用Ni/Au、Cr/Au或Ti/Au。氧化铝Al2O3的制备方法为物理镀膜或化学镀膜。制作方法多样简单,改善了原有电流限制层在垂直结构上对热传导的阻碍效果,降低了热效应对激光器的不良影响,增强散热性,提高器件的稳定性并延长其寿命。

Description

一种氮化物半导体垂直腔面发射激光器
技术领域
本发明涉及半导体激光器,尤其是涉及一种氮化物半导体垂直腔面发射激光器。
背景技术
垂直腔面发射激光器与传统的边发射激光器相比不仅仅有着动态单模工作、阈值低、与光纤高效耦合、圆形对称光斑和制作成本低等优势,还因为可以实现高密度二维集成和高功率输出的特点使其有着广阔的应用前景,在近年来一直是国际研究的热点。
氮化物材料包含氮化镓(GaN)、氮化铟(InN)、氮化铝(AlN)等,其作为一种宽禁带的直接带隙半导体,复合效率高,有着十分优异的物理和化学特性,并且具有连续可调的禁带宽度,对应的发光波长覆盖了红外、可见光和深紫外波段,因此氮化物材料被广泛应用于制作高效率半导体发光器件。基于氮化物材料的垂直腔面发射激光器因为其结构简单、光束方向单一、腔长易于控制、体积小、效率高等特点,在高密度光存储、激光投影、激光显示、高速扫描和塑料光纤通信等方面具有极大的应用前景和市场需求。
但目前氮化物基垂直腔面发射激光器面临着输出功率有限的问题,以氮化镓基激光器为例,有报道和发表的垂直腔面发射激光器的最大功率仅为3mW。影响功率问题的因素众多,其中一个重要的因素是热效应的存在。热效应的存在使激光器难以在较大连续驱动电流和输出功率下工作,严重限制了激光器的输出功率,并且会使激光器稳定性降低,缩短器件的寿命。传统垂直腔面发射激光器普遍使用SiO2或SiNx等低热导率材料作为电流限制层,研究表明该电流限制层大幅度降低了激光器内部的热传导,加剧了热效应(Y.Mei,etal.,A comparative study of thermalcharacteristics of GaN-based VCSELswiththree different typical structures,2018 Semicond.Sci.Technol.33 015016)。
发明内容
本发明的目的在于主要解决的技术问题是克服上述垂直腔面发射激光器的不足,提供一种氮化物半导体垂直腔面发射激光器。
本发明采用垂直内腔接触结构,从下到上依次设有支撑基板、下分布布拉格反射镜、下电极、透明电流扩展层、电流限制层、外延层、上电极和上分布布拉格反射镜;
所述电流限制层使用氧化铝材料,氧化铝材料的分子式为Al2O3,可以有多种不同晶体结构。这种材料的散热系数为33W/K·m(梁基照,邱玉林.三氧化二铝/硅橡胶复合材料热导率的预测.橡胶工业,2009,56:476-478),远大于SiO2的散热系数1.5W/K·m(Y.Mei,etal.,A comparative study of thermalcharacteristics of GaN-based VCSELswiththree different typical structures,2018Semicond.Sci.Technol.33 015016)。
所述外延层为氮化镓(GaN)、氮化铟(InN)、氮化铝(AlN)等组成的混合物外延层。
所述上电极和下电极可采用Ni/Au、Cr/Au或Ti/Au。
所述氧化铝Al2O3的制备方法为物理镀膜或化学镀膜,如磁控溅射(sputtering)、电子束蒸发(electron beam evaporation)、原子层沉积(ALD)、化学气相沉积(CVD)等。
本发明使用物理镀膜或化学镀膜方法,如磁控溅射(sputtering)、电子束蒸发(electron beam evaporation)、原子层沉积(ALD)和化学气相沉积(CVD)等,生长高热导率的Al2O3绝缘材料,替代传统结构中低热导率的SiO2或SiNx作为激光器电流限制层,在保证绝缘性的前提下将绝缘层热导率提高一个数量级,减弱了原有绝缘层在激光器结构垂直方向上对器件热量传导的阻碍作用,弱化热效应对激光器的影响。
本发明的有益效果:本发明使用氮化物材料,通过使用相较传统材料有着更高热导率的新绝缘材料作为电流限制层,获得了一种垂直腔面发射半导体激光器。一方面,本发明具有结构简单、集成度高、光束方向集中等特点;另一方面,使用磁控溅射(sputtering)、电子束蒸发(electron beam evaporation)、原子层沉积(ALD)和化学气相沉积(CVD)等不同方法进行制作具有不同晶体结构的氧化铝材料,其相比传统SiO2或SiNx材料有着更高的热导率,并且制作方法多样简单,改善了原有电流限制层在垂直结构上对热传导的阻碍效果,降低了热效应对激光器的不良影响,增强散热性,提高器件的稳定性并延长其寿命。
附图说明
图1为本发明实施例的剖面结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步详细说明。
如图1所示,本发明实施例采用垂直内腔接触结构,从下到上依次包括支撑基板1、下分布布拉格反射镜2、下电极3、透明电流扩展层4、电流限制层5、外延层6、上电极7、上分布布拉格反射镜8。
所述电流限制层使用氧化铝材料。氧化铝材料分子式为Al2O3,可以有多种不同晶体结构。
所述外延层为氮化镓(GaN),氮化铟(InN),氮化铝(AlN)以及由它们组成的混合物外延层。
所述下电极3和上电极7采用Ni/Au、Cr/Au或Ti/Au。
所述氧化铝的制作方法为物理镀膜或化学镀膜,如磁控溅射(sputtering)、电子束蒸发(electron beam evaporation)、原子层沉积(ALD)和化学气相沉积(CVD)等。
以下给出具体实施例。
以氧化铝为电流限制层的垂直腔面发射激光器从下到上依次包括:Cu支撑基板、下电极(Cr/Au)、下分布布拉格反射镜、氧化铝电流限制层(使用磁控溅射方法制作的α-Al2O3)、ITO透明电流扩展层、GaN基外延层、上电极(Cr/Au)、上分布布拉格反射镜,所述的GaN基外延层包括P型GaN层和N型GaN层和有源区,有源区为InGaN/GaN量子点或量子阱结构。
本发明使用氮化镓材料,并使用不同生长方式如磁控溅射(sputtering)、电子束蒸发(electron beam evaporation)、原子层沉积(ALD)、化学气相沉积(CVD)等生长不同晶体结构的热导率更高的氧化铝材料替代传统的低热导率SiO2或SiNx材料,减弱了电流限制层在垂直方向上对热传导的阻挡作用,弱化了热效应,减少其对激光器性能的不良影响。
本发明利用高热导率的Al2O3材料作为电流限制层,获得了较好散热性、受热效应影响较低的垂直腔面发射激光器。具有结构简单、光束方向单一、腔长易于控制、寿命长、稳定性好等特点,在大功率光显示和高速光通信等领域中有着广泛的应用前景。

Claims (5)

1.一种氮化物半导体垂直腔面发射激光器,其特征在于采用垂直内腔接触结构,从下到上依次设有支撑基板、下分布布拉格反射镜、下电极、透明电流扩展层、电流限制层、外延层、上电极和上分布布拉格反射镜。
2.如权利要求1所述一种氮化物半导体垂直腔面发射激光器,其特征在于所述电流限制层使用氧化铝材料,氧化铝材料的分子式为Al2O3,有多种不同晶体结构;其散热系数为33W/K·m。
3.如权利要求1所述一种氮化物半导体垂直腔面发射激光器,其特征在于所述外延层为氮化镓、氮化铟、氮化铝组成的混合物外延层。
4.如权利要求1所述一种氮化物半导体垂直腔面发射激光器,其特征在于所述上电极和下电极采用Ni/Au、Cr/Au或Ti/Au。
5.如权利要求2所述一种氮化物半导体垂直腔面发射激光器,其特征在于所述氧化铝Al2O3的制备方法为物理镀膜或化学镀膜;所述物理镀膜为磁控溅射、电子束蒸发;所述化学镀膜为原子层沉积、化学气相沉积。
CN201810909141.3A 2018-08-10 2018-08-10 一种氮化物半导体垂直腔面发射激光器 Pending CN108923255A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810909141.3A CN108923255A (zh) 2018-08-10 2018-08-10 一种氮化物半导体垂直腔面发射激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810909141.3A CN108923255A (zh) 2018-08-10 2018-08-10 一种氮化物半导体垂直腔面发射激光器

Publications (1)

Publication Number Publication Date
CN108923255A true CN108923255A (zh) 2018-11-30

Family

ID=64404305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810909141.3A Pending CN108923255A (zh) 2018-08-10 2018-08-10 一种氮化物半导体垂直腔面发射激光器

Country Status (1)

Country Link
CN (1) CN108923255A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212407A (zh) * 2019-07-08 2019-09-06 苏州长瑞光电有限公司 垂直腔面发射激光器及其功率调节方法
CN110265864A (zh) * 2019-07-08 2019-09-20 厦门大学 一种GaN基垂直腔面发射激光器的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848838A (zh) * 2017-04-06 2017-06-13 中国科学院半导体研究所 基于多孔DBR的GaN基VCSEL芯片及制备方法
CN107123928A (zh) * 2017-05-10 2017-09-01 厦门大学 一种基于氮化镓材料的双波长同时发射激光器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848838A (zh) * 2017-04-06 2017-06-13 中国科学院半导体研究所 基于多孔DBR的GaN基VCSEL芯片及制备方法
CN107123928A (zh) * 2017-05-10 2017-09-01 厦门大学 一种基于氮化镓材料的双波长同时发射激光器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212407A (zh) * 2019-07-08 2019-09-06 苏州长瑞光电有限公司 垂直腔面发射激光器及其功率调节方法
CN110265864A (zh) * 2019-07-08 2019-09-20 厦门大学 一种GaN基垂直腔面发射激光器的制备方法
CN110212407B (zh) * 2019-07-08 2024-02-09 苏州长瑞光电有限公司 垂直腔面发射激光器及其功率调节方法

Similar Documents

Publication Publication Date Title
US11258231B2 (en) GaN-based VCSEL chip based on porous DBR and manufacturing method of the same
US10964829B2 (en) InGaN-based resonant cavity enhanced detector chip based on porous DBR
US5117267A (en) Semiconductor heterojunction structure
US6800500B2 (en) III-nitride light emitting devices fabricated by substrate removal
US11626491B2 (en) Indium nitride nanopillar epitaxial wafer grown on aluminum foil substrate and preparation method of indium nitride nanopillar epitaxial wafer
US20070045607A1 (en) Algainn nitride substrate structure using tin as buffer layer and the manufacturing method thereof
JP2008205514A (ja) Iii−v族窒化物半導体素子
CN109149361A (zh) 一种基于电介质布拉格反射镜的垂直腔面发射硅衬底GaN激光器及其制备方法
CN102244170B (zh) 准光子晶体图形蓝宝石衬底及其制造方法、发光二极管及其制备方法
US9142714B2 (en) High power ultraviolet light emitting diode with superlattice
CN105679910A (zh) 一种高出光效率的深紫外发光二极管芯片及其制备方法
CN108630792A (zh) 基于Ga2O3衬底的垂直结构紫外LED及其制备方法
CN109888612A (zh) 电泵浦深紫外AlGaN半导体激光器及其制备方法
CN108923255A (zh) 一种氮化物半导体垂直腔面发射激光器
CN115548880A (zh) 多隧道结倒装表面浮雕结构的垂直腔面发射激光器阵列
CN107123928B (zh) 一种基于氮化镓材料的双波长同时发射激光器
KR20210018452A (ko) 일종 광 추출 효율을 제고할 수 있는 자외선 발광다이오드 칩 및 그 제조법
CN111785819B (zh) 一种GaN基窄带发射共振腔发光二极管及其制作方法
CN103824920B (zh) 输出功率和光谱形状独立可调的发光二极管的制作方法
JP2009004645A (ja) 窒化物系半導体レーザ装置およびその製造方法
WO2017127958A1 (zh) 光泵浦发光器件及单片集成光泵浦发光器件的制备方法
KR20010077530A (ko) 질화물 발광 소자
Kim Improvement of GaN-based light-emitting diode by indium-tin-oxide transparent electrode and vertical electrode
JP2011258843A (ja) 窒化物半導体発光素子及びその製造方法
CN115000275A (zh) 一种深紫外led倒装芯片及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181130