CN108922942A - 一种新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法 - Google Patents

一种新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法 Download PDF

Info

Publication number
CN108922942A
CN108922942A CN201810601086.1A CN201810601086A CN108922942A CN 108922942 A CN108922942 A CN 108922942A CN 201810601086 A CN201810601086 A CN 201810601086A CN 108922942 A CN108922942 A CN 108922942A
Authority
CN
China
Prior art keywords
preparation
cspbcl
zro
photodetector
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810601086.1A
Other languages
English (en)
Inventor
徐淑宏
黄光光
王春雷
崔平
崔一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810601086.1A priority Critical patent/CN108922942A/zh
Publication of CN108922942A publication Critical patent/CN108922942A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法。首先采用丝网印刷工艺制备FTO/TiO2/ZrO2/Carbon多孔骨架,然后原位填充Mn:CsPbCl3钙钛矿纳米材料增加紫外线吸收。通过在CsPbCl3钙钛矿中掺杂Mn,可以在钙钛矿带间引入中间掺杂能级,同时由于其属于禁阻跃迁,有较长的激子寿命,可以极大地提高电子向TiO2的注入,从而提高器件光电流响应灵敏度。

Description

一种新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法
技术领域
本发明涉及一种新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法,属于纳米材料技术领域。
背景技术
近年来,CsPbX3(X=Cl/Br/I)钙钛矿纳米晶由于其独特的光电性质与易于低温溶液生长的特点而倍受关注。相比于传统的半导体纳米晶,CsPbX3钙钛矿纳米晶不仅具有发射波长可调、发射峰半峰宽很窄、荧光强度强、表面可选择地修饰自由官能团等优点,并且可以室温溶液生长,材料本身具有较大的缺陷容忍度。该材料已在照明、激光、探测以及太阳能电池等方面表现出良好的应用前景。基于CsPbX3钙钛矿高的紫外光吸收系数,长的载流子扩散距离,其相关的光电探测器得到了很好的发展。但值得注意的是,其相关的自驱动光探测器却很少见。其原因是要构成自驱动的光探测器,必须形成异质结构,并且材料的能级必须有一定的交错,且形成梯度,更重要的是能级差必须合理。若能级差太小,则不能完成电荷的有效抽取;若能级差太大,则形成绝缘,不会有电荷的定向流动。CsPbX3钙钛矿在自驱动紫外光电探测的失败,就在于较大的能量差。本发明通过掺杂Mn离子在CsPbX3钙钛矿中形成中间能级,并其具有禁阻跃迁的特点,可以作为电荷传输的一个中间过程,极大的提高电荷的抽取,形成较大的光电流。
发明内容
为了实现高电流灵敏度的自驱动紫外光探测器,本发明的目的是提供一种新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法。
为实现上述目的,本发明采用以下技术方案:
一种新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法,包括如下步骤:
(1)FTO/TiO2/ZrO2/Carbon的制备:在室温大气环境下,依次在TFO导电玻璃印刷TiO2,然后在马弗炉500℃条件下烧结30-50 min。接着印刷ZrO2和碳浆料,每印一层在70-100 ℃烘干。最后把印好的基片放在350-450 ℃条件下烧结1-2 h, 蒸发掉有机物,形成多孔骨架。
(2)Mn:CsPbCl3钙钛矿的填充:将5-10 ulMn:CsPbCl3纳米晶的前驱体滴到碳电极上,待其溶液挥发10-20 min, 循环滴加5-10 ul氯苯与二甲基甲酰胺(DMF)的混合液2-5次,确保钙钛矿前驱体扩散到片子的底部,为了增加前躯体的渗透,在氯苯与二甲基甲酰胺(DMF)混合液中加1-5 wt.%三甲胺盐酸盐,作为短链配体,帮助扩散。最后把基片在90-100℃条件下加热20-30 min。
进一步的,步骤(1)中,TiO2 (或ZrO2)浆料的制备方法为: TiO2纳米颗粒 (或ZrO2) 和羟乙基纤维素(EC)加入松油醇和乙醇, 然后球磨20-24 h.其中,TiO2 (或ZrO2),羟乙基纤维素(EC),松油醇,乙醇的投料比为6-8g:4-8g:30-40ml: 15-30ml。
进一步的,碳浆料的制备方法为:炭黑,石墨, 羟乙基纤维素(EC)和ZrO2 纳米颗粒加入到松油醇,然后球磨20-24 h。其中,炭黑,石墨,羟乙基纤维素(EC),ZrO2,松油醇的投料比为2-3g: 6-8g: 1-2g: 1-2g: 30-40ml。
进一步的,步骤(1)中, Mn:CsPbCl3纳米晶前驱体溶液的制备方法如下。A前驱体是CsAc溶于二甲基甲酰胺(DMF)。B前驱体是MnCl2和PbCl2溶于二甲基亚砜(DMSO)。C前驱体是油酸和正辛胺混合溶于正己烷。搅拌情况下,A和B前驱体依次缓慢倒入C前驱体中,形成Mn:CsPbCl3纳米晶前驱体溶液。其中,CsAc, 二甲基甲酰胺(DMF), MnCl2,PbCl2, 二甲基亚砜(DMSO),正辛胺, 油酸,正己烷的投料比为1mmol: 1mL: 0-3mmol: 1mmol: 4ml: 6ml:0.8mL: 30-40 mL。
本发明制备的Mn:CsPbCl3自驱动紫外光电探测器,可以通过Mn的掺杂能级,作为中间过渡能级,推动钙钛矿材料吸收光子后产生的电子向TiO2转移,从而提高自驱动光电探测的光电流。
有益效果:
本发明制备的Mn:CsPbCl3自驱动紫外光电探测器,由于采用印刷工艺,所需设备简单、容易操作。另外由于材料的低温生长特性,所以在一般的化学实验室均能完成,易于推广;所制备的Mn:CsPbCl3/TiO2结构,通过Mn掺杂中间能级,有效的促进了电荷向TiO2的定向移动,极大地提高探测器的光电流。
附图说明
图1为不同Mn:CsPbCl3自驱动紫外光电探测器电压电流曲线(AM1.5);
图2为Mn:CsPbCl3自驱动光电探测器在340nm光照下的电流时间曲线;
图3为Mn:CsPbCl3自驱动紫外光电探测器的单色光转换效率曲线。
具体实施方式
下面结合实施例和附图对本发明做更进一步地解释,下列实施例仅用于说明本发明,但并不用来限定本发明的实施范围。
本实施例中所使用的Cs(Ac),MnCl2,PbCl2 ,羟乙基纤维素(EC),TiO2, ZrO2, 炭黑,石墨等原材料均为分析纯试剂;溶剂有正己烷,二甲基甲酰胺(DMF),二甲基亚砜(DMSO),正辛胺,油酸;所用的玻璃仪器使用前用去离子水润洗三遍后真空干燥。
实施例1:
Mn:CsPbCl3自驱动紫外光电探测器(MnCl2:PbCl2=1:1):
1、TiO2 (ZrO2)浆料的制备:8g TiO2纳米颗粒 (或ZrO2) 和 4g 羟乙基纤维素(EC)加入30ml松油醇和15ml乙醇, 然后球磨20-24 h。
2、碳浆料的制备:2g炭黑,6g石墨, 1g羟乙基纤维素(EC)和1g ZrO2 纳米颗粒加入到30ml松油醇, 然后球磨20 h。
3、Mn:CsPbCl3纳米晶前驱体的制备:A前驱体是1mmmol Cs(Ac) 溶于1mL二甲基甲酰胺(DMF)。B前驱体是1mmol MnCl2和1 mmol PbCl2溶于4 mL二甲基亚砜(DMSO)。C前驱体是6 mL油酸和0.8mL正辛胺溶于30 mL正己烷。A和B前驱体依次缓慢倒入C前驱体,形成Mn:CsPbCl3纳米晶前驱体溶液。
4、FTO/TiO2/ZrO2/Carbon多孔骨架的制备:在室温大气环境下,依次在TFO导电玻璃印刷TiO2, 然后在马弗炉500℃条件下烧结30min。接着印刷ZrO2和碳浆料,每印一层在100 ℃烘干。最后把印好的基片放在350-450℃条件下烧结1h, 蒸发掉有机物,形成多孔骨架。
5、制备Mn掺杂CsPbCl3自驱动紫外光电探测器:将5uL Mn:CsPbCl3纳米晶前驱体溶液滴到碳电极上,待其溶液挥发20min, 接着滴加5ul氯苯/二甲基甲酰胺(DMF)的混合液数次,确保钙钛矿前驱体可以扩散到片子的底部,为了增加前躯体的渗透,可以在氯苯/二甲基甲酰胺(DMF)混合液中加少量(3 wt.%)三甲胺盐酸盐,作为配体,帮助扩散。最后把扩散好的基片在100 ℃条件下合金30 min。
本发明的Mn掺杂CsPbCl3自驱动紫外光电探测器,可以通过Mn杂质的中间能级,有效的提高电荷向TiO2的定向移动(如图1)。并且该自驱动紫外光探测器输出稳定(如图2),其探测波长在300-400nm, 其最大输出波长为340nm(如图3)。
实施例2:
Mn:CsPbCl3自驱动紫外光电探测器(MnCl2:PbCl2=2:1):
1、TiO2 (ZrO2)浆料的制备:8g TiO2纳米颗粒 (或ZrO2) 和 4g 羟乙基纤维素(EC)加入30ml松油醇和15ml乙醇, 然后球磨20-24 h。
2、碳浆料的制备:2g炭黑,6g石墨, 1g羟乙基纤维素(EC)和1g ZrO2 纳米颗粒加入到30ml松油醇, 然后球磨20 h。
3、Mn:CsPbCl3纳米晶前驱体的制备:A前驱体是1mmmol Cs(Ac) 溶于1mL二甲基甲酰胺(DMF)。B前驱体是2mmol MnCl2和1 mmol PbCl2溶于4 mL二甲基亚砜(DMSO)。C前驱体是6 mL油酸和0.8mL正辛胺溶于30 mL正己烷。A和B前驱体依次缓慢倒入C前驱体,形成Mn:CsPbCl3纳米晶前驱体溶液。
4、FTO/TiO2/ZrO2/Carbon多孔骨架的制备:在室温大气环境下,依次在TFO导电玻璃印刷TiO2, 然后在马弗炉500℃条件下烧结30min。接着印刷ZrO2和碳浆料,每印一层在100 ℃烘干。最后把印好的基片放在350-450℃条件下烧结1h, 蒸发掉有机物,形成多孔骨架。
5、制备Mn掺杂CsPbCl3自驱动紫外光电探测器:将5uL Mn:CsPbCl3纳米晶前驱体滴到碳电极上,待其溶液挥发20min, 接着滴加5ul氯苯/二甲基甲酰胺(DMF)的混合液数次,确保钙钛矿前驱体可以扩散到片子的底部,为了增加前躯体的渗透,可以在氯苯/二甲基甲酰胺(DMF)混合液中加少量(3 wt.%)三甲胺盐酸盐,作为配体,帮助扩散。最后把扩散好的基片在100 ℃条件下合金30 min。
本发明的Mn掺杂CsPbCl3自驱动紫外光电探测器,可以通过Mn杂质的中间能级,有效的提高电荷向TiO2的定向移动(如图1)。并且可以通过Mn的掺杂量来控制电荷转移的程度。当改变锰的投料比从1:1到2:1,探测器光电流从0.11 mA/cm2提高到了0.13mA/cm2
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法,其特征在于,包括以下步骤:
(1)FTO/TiO2/ZrO2/Carbon的制备:在室温大气环境下,依次在TFO导电玻璃印刷TiO2,然后在马弗炉500℃条件下烧结30-50 min,接着印刷ZrO2和碳浆料,每印一层在70-100 ℃烘干,最后把印好的基片放在350-450 ℃条件下烧结1-2 h, 蒸发掉有机物,形成多孔骨架;
(2)Mn:CsPbCl3钙钛矿的填充:将5-10 ulMn:CsPbCl3纳米晶的前驱体滴到碳电极上,待其溶液挥发10-20 min, 循环滴加5-10 ul氯苯与二甲基甲酰胺的混合液2-5次,确保钙钛矿前驱体扩散到片子的底部,为了增加前躯体的渗透,在氯苯与二甲基甲酰胺混合液中加1-5 wt.%三甲胺盐酸盐,作为短链配体,帮助扩散,最后把基片在90-100 ℃条件下加热20-30 min。
2.权利要求1所述的新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法,其特征在于,步骤(1)中,TiO2浆料的制备方法为: TiO2纳米颗粒和羟乙基纤维素加入松油醇和乙醇, 然后球磨20-24h,其中,TiO2,羟乙基纤维素,松油醇,乙醇的投料比为6-8g:4-8g:30-40ml:15-30ml。
3.权利要求1所述的新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法,其特征在于,步骤(1)中,ZrO2浆料的制备方法为: ZrO2纳米颗粒和羟乙基纤维素加入松油醇和乙醇, 然后球磨20-24h,其中,ZrO2,羟乙基纤维素,松油醇,乙醇的投料比为6-8g:4-8g:30-40ml:15-30ml。
4.权利要求1所述的新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法,其特征在于,步骤(1)中的碳浆料的制备方法为:炭黑,石墨, 羟乙基纤维素和ZrO2 纳米颗粒加入到松油醇,然后球磨20-24h,其中,炭黑,石墨,羟乙基纤维素,ZrO2,松油醇的投料比为2-3g: 6-8g: 1-2g: 1-2g: 30-40ml。
5.权利要求1所述的新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法,其特征在于,步骤(1)中,Mn:CsPbCl3纳米晶前驱体溶液的制备方法为:A前驱体是CsAc溶于二甲基甲酰胺;B前驱体是MnCl2和PbCl2溶于二甲基亚砜;C前驱体是油酸和正辛胺混合溶于正己烷;搅拌情况下,A和B前驱体依次缓慢倒入C前驱体中,形成Mn:CsPbCl3纳米晶前驱体溶液;其中,CsAc, 二甲基甲酰胺, MnCl2,PbCl2, 二甲基亚砜,正辛胺, 油酸,正己烷的投料比为1mmol: 1mL: 0-3mmol: 1mmol: 4ml: 6ml: 0.8mL: 30-40 mL。
6.权利要求5所述的新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法,其特征在于:Mn的掺杂方式是采用在室温环境下过饱和结晶生长。
CN201810601086.1A 2018-06-12 2018-06-12 一种新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法 Pending CN108922942A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810601086.1A CN108922942A (zh) 2018-06-12 2018-06-12 一种新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810601086.1A CN108922942A (zh) 2018-06-12 2018-06-12 一种新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法

Publications (1)

Publication Number Publication Date
CN108922942A true CN108922942A (zh) 2018-11-30

Family

ID=64419203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810601086.1A Pending CN108922942A (zh) 2018-06-12 2018-06-12 一种新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法

Country Status (1)

Country Link
CN (1) CN108922942A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416333A (zh) * 2019-07-11 2019-11-05 华中科技大学 一种紫外光电探测器及其制备方法
CN112071984A (zh) * 2020-02-11 2020-12-11 吉林大学 一种基于稀土离子掺杂钙钛矿纳米晶体的深紫外光电探测器及其制备方法
CN113707818A (zh) * 2021-08-27 2021-11-26 南京工程学院 一种快速制备全印刷钙钛矿太阳能电池的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106753358A (zh) * 2017-01-24 2017-05-31 东南大学 一种双发射Mn掺杂CsPb(Cl/Br)3钙钛矿纳米晶及其制备方法
EP3168278B1 (en) * 2015-10-28 2018-08-01 Samsung Electronics Co., Ltd. Quantum dots, production methods thereof, and electronic devices including the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168278B1 (en) * 2015-10-28 2018-08-01 Samsung Electronics Co., Ltd. Quantum dots, production methods thereof, and electronic devices including the same
CN106753358A (zh) * 2017-01-24 2017-05-31 东南大学 一种双发射Mn掺杂CsPb(Cl/Br)3钙钛矿纳米晶及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIAN WANG等: "Energy-Down-Shift CsPbCl3:Mn Quantum Dots for Boosting the Efficiency and Stability of Perovskite Solar Cells", 《ACS ENERGY LETTERS》 *
王亢: "无空穴传输层介观钙钛矿太阳能电池的印刷制备及优化", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416333A (zh) * 2019-07-11 2019-11-05 华中科技大学 一种紫外光电探测器及其制备方法
CN112071984A (zh) * 2020-02-11 2020-12-11 吉林大学 一种基于稀土离子掺杂钙钛矿纳米晶体的深紫外光电探测器及其制备方法
CN113707818A (zh) * 2021-08-27 2021-11-26 南京工程学院 一种快速制备全印刷钙钛矿太阳能电池的方法

Similar Documents

Publication Publication Date Title
CN107204379B (zh) 一种高质量无机钙钛矿薄膜及其制备方法和在太阳能电池中的应用
Li et al. Carbon and graphene quantum dots for optoelectronic and energy devices: a review
CN108922942A (zh) 一种新型Mn:CsPbCl3自驱动紫外光电探测器的制备方法
Tian et al. Interfacial linkage and carbon encapsulation enable full solution‐printed perovskite photovoltaics with prolonged lifespan
CN105702864B (zh) 一种高质量钙钛矿薄膜、太阳能电池及其制备方法
Hou et al. Efficient quasi-mesoscopic perovskite solar cells using Li-doped hierarchical TiO2 as scaffold of scattered distribution
CN106622323B (zh) 一种具有可见光响应的多功能光电催化膜的制备方法
CN102368537B (zh) 一种具有高稳定性的有机太阳能电池
CN107369770B (zh) 一种低温碳基钙钛矿太阳能电池用碳电极层的制备方法
Barichello et al. The effect of water in Carbon-Perovskite Solar Cells with optimized alumina spacer
Chen et al. Stabilizing and scaling up carbon-based perovskite solar cells
Zhang et al. Upconversion Er-doped TiO2 nanorod arrays for perovskite solar cells and the performance improvement
CN109065727A (zh) 一种钙钛矿太阳能电池的制备方法
CN107266337A (zh) 钙钛矿发光材料甲脒溴化铅纳米晶的低温快速制备方法
CN107706308A (zh) 一种钙钛矿太阳能电池及制备方法
KR101113658B1 (ko) 표면안정제로 개질된 이산화티탄 나노 입자, 이를 포함하는 이산화티탄 나노 잉크, 이를 사용하여 제조되는 태양전지, 및 그의 제조방법
CN104112793A (zh) 一种低温全溶液法制备钙钛矿太阳能电池的方法
CN101777430B (zh) 一种染料敏化太阳能电池光阳极用二氧化钛膜的制备方法
CN109192860A (zh) 一种三元混合溶剂的钙钛矿太阳电池制备方法
CN110368962A (zh) 一种BiOI/WO3异质结高效光电催化电极的制备方法、产品及应用
CN108039412A (zh) 一种硫化复合电子传输层结构的钙钛矿太阳能电池
CN108649125A (zh) 一种提高钙钛矿材料湿度稳定性的方法
CN111525036B (zh) 一种自驱动钙钛矿光电探测器及其制备方法
Yan et al. CsPbBr 3 quantum dots photodetectors boosting carrier transport via molecular engineering strategy
CN110194780B (zh) 一种具有光电导效应的有机无机杂化材料晶体及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181130