CN108919841B - 一种光电跟踪系统的复合轴控制方法及系统 - Google Patents

一种光电跟踪系统的复合轴控制方法及系统 Download PDF

Info

Publication number
CN108919841B
CN108919841B CN201810975138.1A CN201810975138A CN108919841B CN 108919841 B CN108919841 B CN 108919841B CN 201810975138 A CN201810975138 A CN 201810975138A CN 108919841 B CN108919841 B CN 108919841B
Authority
CN
China
Prior art keywords
tracking
target
correction value
information
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810975138.1A
Other languages
English (en)
Other versions
CN108919841A (zh
Inventor
佘君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Sanjiang Aerospace Hongfeng Control Co Ltd
Original Assignee
Hubei Sanjiang Aerospace Hongfeng Control Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Sanjiang Aerospace Hongfeng Control Co Ltd filed Critical Hubei Sanjiang Aerospace Hongfeng Control Co Ltd
Priority to CN201810975138.1A priority Critical patent/CN108919841B/zh
Publication of CN108919841A publication Critical patent/CN108919841A/zh
Application granted granted Critical
Publication of CN108919841B publication Critical patent/CN108919841B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Abstract

本发明公开了一种光电跟踪系统的复合轴控制方法,包括搜索并接收目标初始方位,控制转台进入目标区域;对搜索获得的信息进行处理,获取粗跟踪信息;根据粗跟踪信息对目标进行追踪,处理目标跟踪结果,控制转台工作,获取精跟踪信息和第一校正值;根据精跟踪信息锁定目标对其进行跟踪,处理目标跟踪结果,驱动快反镜运行,并获取第二校正值;根据第一校正值和第二校正值对大视场范围下运动物体的跟踪信息进行校正。本发明还公开了一种光电跟踪系统的复合轴控制结构和系统。针对现有技术无法实现大视场环境下运动物体精确追踪的问题,通过粗轴定位、细轴追踪的复合轴设置,可以实现运动物体的大范围、快速响应和高精度跟踪。

Description

一种光电跟踪系统的复合轴控制方法及系统
技术领域
本发明属于光电跟踪系统控制领域,具体涉及一种光电跟踪系统的复合轴控制方法。
背景技术
现代的光电跟踪系统不仅用于常规靶场的动态目标测量,还大量用于空间目标的探测与跟踪、激光光束的高精度定向等领域。光电跟踪系统实现运动物体追踪的方式包括:向目标发射光束,由目标的表面漫反射或装在目标上的角反射器反射光信号,经接收系统转换成比例于目标偏离光轴的角位置误差的电信号,送给伺服系统,驱动跟踪架,使跟踪架上光学系统对准目标。光电跟踪系统是连续跟踪并测量运动目标轨迹参数的系统,光电跟踪系统的目标是具有一定速度和加速度运动的车辆、舰船、飞机、导弹和人造卫星等,其可提供运动目标的空间定位、姿态、结构行为和性能,是运动目标的多功能和高精度的跟踪和测量手段。
光电跟踪系统必须具备两个主要特点:一是高精度的角跟踪能力,使其对于细微的角度变化也能及时捕捉到;二是具有快速响应能力,使之对高速目标及其机动变化均能实现快速跟踪性能。在这样的高指标要求下,大气湍流、地基振动等的影响是不可忽略的,是测量过程中必须消除的误差因素。另外,随着发展的需求变化,光电跟踪系统除了要满足反应快、精度高的测量要求外,还需要对大视场范围内运动物体进行追踪,这就要求光电跟踪系统在具有反应快、精度高的能例外,还能够兼容大视场下运动物体追踪的需求。
传统大惯量单轴跟踪架由于结构谐振频率及带宽的限制,搭载单轴跟踪架的光电追踪系统对这些高频噪声业已无能为力,罔论满足大视场下的追踪需求。现有技术中,按经典控制理论采用单轴(单变量)的伺服控制系统也出现了困难,它不仅受到宽视场高分辨率、快速响应探测器的限制,同时也受到单轴跟踪架的机械结构谐振频率的限制,不可能有足够的带宽。而现有的双轴光电追踪系统,CN104615153公开了一种基于 TMX320F28335浮点DSP的二轴光电跟踪系统,该方案解决的是决现有采用DSP进行控制二轴光电跟踪系统存在跟踪精度低,不便于安装、拆卸及维修的问题,无法解决大视场环境下测量精度的需求。在CN107065560中则公开了一种两轴奇异路径光电跟踪控制方法,主要是为了解决传统稳定跟踪平台不适合要求体积小、空间紧凑的系统在应用中存在过顶盲区的问题,也无法有效的解决大视场环境下,运动物体的高精度光电追踪的需求。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种光电跟踪系统的复合轴控制方法及系统。本发明技术方案的方法,针对传统光电系统控制轴无法实现大视场下运动物体高精度追踪的情况,通过采用复合轴对其进行控制,粗轴进行运动物体捕捉,细轴进行运动物体精确跟踪,从而实现大视场环境下运动物体的高精度追踪。
为实现上述目的,按照本发明的一个方面,提供了一种光电跟踪系统的复合轴控制方法,其特征在于,包括
S1搜索并接收目标初始方位,控制转台进入目标区域;
S2对搜索获得的信息进行处理,检测目标并识别确认目标,获取粗跟踪信息;
S3根据粗跟踪信息对目标进行追踪,处理目标跟踪结果,获取转台控制信号,控制转台工作,获取精跟踪信息和第一校正值;
S4根据精跟踪信息锁定目标对其进行跟踪,处理目标跟踪结果,获取快反器控制信号,驱动快反镜运行,并获取第二校正值;
S5根据第一校正值和第二校正值对大视场范围下运动物体的跟踪信息进行校正。
作为本发明技术方案的一个优选,步骤S3包括,
S31根据粗跟踪信息对目标进行跟踪,获取初始粗跟踪信息;
S32对初始粗跟踪信息进行转换和/或处理,获取转台控制信号和/或第一校正值;
S33利用转台控制信号控制转台运动,输出第一校正值。
作为本发明技术方案的一个优选,步骤S4包括,
S41根据精跟踪信息都对目标进行跟踪,获取初始精跟踪信息;
S42对初始精跟踪信息进行转换和/或处理,获取快反镜控制信号和/或第二校正值;
S43利用快反镜控制信号控制快反镜的转动,输出第二校正值。
作为本发明技术方案的一个优选,步骤S32中优选采用滤波的方式对初始粗跟踪信息进行校正。
作为本发明技术方案的一个优选,初始粗跟踪信息优选粗跟踪成像传感器视轴与运动目标之间的角偏差;所述初始精跟踪信息优选精跟踪成像传感器视轴与运动目标之间的角偏差。
按照本发明的一个方面,提供了一种光电跟踪系统的复合轴控制结构,其特征在于,包括粗轴和细轴,所述粗轴包括依次连接的粗跟踪成像传感器、第一信号转换器和转台,所述细轴包括依次连接的精跟踪成像传感器、第二信号转换器和快反镜;所述粗跟踪成像传感器和精跟踪成像传感器与外部信号输入端相连接;所述快反镜和转台与复合轴控制结构的输出端相连接;且所述转台的输出端与外部信号输入端相连接;
信号依次经过外部信号输出端、粗跟踪成像传感器、第一信号转换器和转台后输出第一校正值,转台将所述第一校正值反馈至精跟踪成像传感器的输入端,依次经过精跟踪成像传感器、第二信号转换器和快反镜后输出第二校正值,根据所述第一校正值和第二校正值获取大视场范围下运动物体的精确跟踪信息。
作为本发明技术方案的一个优选,粗跟踪成像传感器与第一信号转换器之间优选还设有粗跟踪控制器;所述精跟踪成像传感器与第二信号转换器之间优选还设有精跟踪控制器。
按照本发明的一个方面,提供了一种光电跟踪系统的复合轴控制系统,其特征在于,包括
搜索模块,用于搜索并接收目标初始方位,控制转台进入目标区域;
信息处理模块,用于对搜索获得的信息进行处理,检测目标并识别确认目标,获取粗跟踪信息;
粗跟踪模块,用于根据粗跟踪信息对目标进行追踪,处理目标跟踪结果,获取转台控制信号,控制转台工作,获取精跟踪信息和第一校正值;
精跟踪模块,用于根据精跟踪信息锁定目标对其进行跟踪,处理目标跟踪结果,获取快反器控制信号,驱动快反镜运行,并获取第二校正值;
跟踪值校正模块,用于根据第一校正值和第二校正值对大视场范围下运动物体的跟踪信息进行校正。
作为本发明技术方案的一个优选,粗跟踪控制模块包括,
粗跟踪成像模块,用于根据粗跟踪信息对目标进行跟踪,获取初始粗跟踪信息;
第一信号转换模块,用于对初始粗跟踪信息进行转换和/或处理,获取转台控制信号和/或第一校正值;
粗跟踪控制模块,用于利用转台控制信号控制转台运动,输出第一校正值。
作为本发明技术方案的一个优选,精跟踪控制模块包括,
精跟踪成像模块,用于根据精跟踪信息都对目标进行跟踪,获取初始精跟踪信息;
第二信号转换模块,用于对初始精跟踪信息进行转换和/或处理,获取快反镜控制信号和/或第二校正值;
精跟踪控制模块,用于利用快反镜控制信号控制快反镜的转动,输出第二校正值。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:
1)本发明技术方案的方法,采用复合轴的方式对光电跟踪系统进行控制,其中粗轴捕获运动物体的踪迹并进行跟踪,细轴根据粗轴跟踪的误差,对运动物体进行精确跟踪校正,这种两级成像传感器和信息处理器获取场景中目标运动信息,控制主轴和子轴协调工作,实现大范围、快速响应和高精度跟踪。
2)本发明技术方案的方法,对粗跟踪成像传感器视轴之间的角偏差、对目标的位置和运动角速度等先进行预测滤波处理,预测下一时刻转台应转动的正确位置,以此来控制伺服系统中转台的转动,从而实现粗轴对运动物体的准确捕获。
3)本发明技术方案的方法,将精跟踪得到成像传感器视轴之间的角偏差转换为快速反射镜伺服的控制信息,控制信息输入到快速反射镜的伺服系统中控制反射镜的转动,以此来实现细轴对运动物体的精确跟踪。
附图说明
图1是本发明技术方案实施例中复合轴控制系统的结构图;
图2是本发明技术方案实施例中等加加速度模型Kalman预测的位置误差曲线图;
图3是本发明技术方案实施例中等加加速度模型Kalman预测的速度误差曲线图;
图4是本发明技术方案实施例中随机加速度模型Kalman预测的位置误差曲线图;
图5是本发明技术方案实施例中随机加速度模型Kalman预测的速度误差曲线图;
图6是本发明技术方案实施例中仿真模拟的飞行轨迹示意图;
图7是本发明技术方案实施例中Kalman预测的角位置曲线图;
图8是本发明技术方案实施例中Kalman预测的角速度曲线图;
图9是本发明技术方案实施例中Kalman预测的角位置误差曲线图;
图10是本发明技术方案实施例中Kalman预测的角速度误差曲线图;
图11是本发明技术方案实施例中加入比例环节的根轨迹图;
图12是本发明技术方案实施例中加入比例微分环节的根轨迹图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。下面结合具体实施方式对本发明进一步详细说明。
本发明技术方案的实施例中,光电跟踪系统的复合轴控制系统结构上包括两部分,即粗轴和细轴。如图1所示,是本实施例中复合轴系统的结构图。其中,精跟踪成像传感器、精跟踪控制器、D/A(信号转换器)以及快反镜共同构成复合轴的细轴部分,用于对运动物体进行准确跟踪;粗跟踪成像传感器、粗跟踪控制器、D/A以及转台控制共同构成复合轴的粗轴部分,用于完成运动目标的捕获与粗跟踪。
下面分别对粗轴(的粗跟踪控制器)和细轴(的精跟踪控制器)的实现和使用进行详细的说明。
a)粗跟踪控制器的实现
由于目标与粗轴的粗跟踪成像传感器视轴之间存在一定的角偏差,粗跟踪成像传感器相对目标成像的时间有一定的滞后,即粗跟踪成像传感器的目标成像时间与真实时间之间是存在一定间隔的。同时,粗轴中还包含系统中存在各种噪声的影响,如转台电机力矩波动引起的随机噪声,CCD分辨率误差、大气抖动、信号处理误差等等。因此不能直接将粗轴的角偏差输出值用于控制转台的运动,而是需要对目标的位置和运动角速度进行预测滤波处理,用预测滤波处理后的输出结果来控制转台。也就是对粗跟踪成像传感器的输出值进行校正,利用校正后的输出值控制转台运动。实际上就是计算出目标实际运动参数,预测下一时刻转台应转动的正确位置。
因此在粗跟踪控制器的实现过程为:粗跟踪控制其处理得到目标与粗跟踪成像传感器视轴之间的角偏差;结合转台提供的转台状态信息,计算得到当前目标的角位置;对粗跟踪成像传感器采集到的序列图像进行目标跟踪处理,得到某段时间序列上的多个目标角位置的测量值;对多个目标角位置的测量值采用预测滤波方法估计出当前时刻目标的角位置、角速度、角加速度等预测估计结果;将预测估计的结果转换为控制信息,然后将控制信息输入到转台的伺服系统中控制转台转动。
粗跟踪控制器实现过程中关键是利用预测滤波算法实现对目标的运动参数的估计。由于图像信息处理器输出的脱靶量是二维角度的测量,在没有距离信息时,本实施例中优选采用极坐标系下的预测滤波方法。
在极坐标系下,选取目标角位置θ、角速度
Figure BDA0001777228930000061
及角加速度
Figure BDA0001777228930000062
及角加加速度
Figure BDA0001777228930000063
作为状态变量,即:
Figure BDA0001777228930000064
假设机动目标在t+t0时刻的位置为x(t+t0),进行泰勒展开为:
Figure BDA0001777228930000065
式中x(n)(t0)是不为零的最高阶导数。
当t0=0时,令
Figure BDA0001777228930000066
当n=3时,可得
X(k)=ΦX(k-1)+ГW(k-1) (4)
式中
Figure BDA0001777228930000067
其中,T为采样周期,Φ为状态转移矩阵,Г为系统噪声转移矩阵,W(k)是方差为 Q的白噪声序列。本实施例中,优选认为此时认为目标在做等加加速度运动。
由于只有目标的角位置数据可观测,在极坐标下卡尔曼滤波器的观测方程为:
Z(k)=HX(k)+V(k) (5)
式中Hk=[1 0 0 0],V(k)是方差为R的白噪声。
在此基础上,优选采用Kalman滤波算法对目标位置进行预测,利用Kalman算法进行滤波的步骤如下:
Figure BDA0001777228930000068
Figure BDA0001777228930000069
P(k,k-1)=ΦP(k-1,k-1)ΦT+ГQГT; (8)
P(k,k)=[I-K(k)H]P(k,k-1); (9)
K(k)=P(k,k-1)HT·[HP(k,k-1)HT+R]-1; (10)
本实施例的仿真实验中设测量噪声均方差优选设为1.6″,系统噪声均方差优选设为 0.6′/s4。仿真初值优选:
Figure BDA0001777228930000071
P(0,0)=10I4。在此基础上,本实施例针对输入θi=90°sin(0.333t)的等效正弦目标分别采用等加加速度模型和随机加速度模型进行了仿真,仿真结果参见图2~图5。
从图2~图5中可知,等加加速度模型的kalman滤波的最大速度误差为0.34°/s,随机加速度模型的kalman滤波的最大速度误差为0.8°/s,使用等加加速度模型的kalman 滤波可以减小系统误差。
进一步地,假设目标相对跟瞄系统做水平匀速飞行,飞行轨迹如图6所示。
其中θ为方位角,x0为目标与跟踪系统的最短距离,V为目标的速度,t为跟瞄时间,目标方位角表达式为
Figure BDA0001777228930000072
角加速度为
Figure BDA0001777228930000073
仿真实验中取x0=2500m, V=680m/s,假设目标匀速从左边81.63°飞到右边81.63°,Kalman预测的角位置和角速度和误差如图7~图10所示。
b)精跟踪控制器的实现
在复合轴控制系统中,快反镜是精跟踪控制平台,由于精跟踪成像传感器帧频高,处理速度较快,目标跟踪处理的滞后时间相对较短,而且快速反射镜的响应也比较快,考虑采用PID控制实现精跟踪控制器。其中,精跟踪对于本领域技术人员来说是现有技术手段,PID控制技术为本领域的公知常识,是控制领域常用技术手段,在此不予赘述。
因此精跟踪控制器的实现过程为:精跟踪处理得到成像传感器视轴之间的角偏差;角偏差经过坐标变换、转换和控制器,转换为快速反射镜(即为快反镜)伺服的控制信息;控制信息输入到快速反射镜的伺服系统中控制反射镜的转动。
本实施例中,快反镜的传递函数优选设计为:
G(s)=4.5/(0.37s+1)(0.00087s+1) (11)
采用根轨迹方法对控制器参数进行设计,具体可见图11~图12。
附加零点使系统响应加快,上升时间减小,超调量增大。相当于2阶系统的阻尼系数变小。使系统中出现一对非常靠近的零、极点,使该极点的对应留数很小,其在系统动态响应中的作用近似相互抵消。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种光电跟踪系统的复合轴控制方法,其特征在于,包括
S1搜索并接收目标初始方位,控制转台进入目标区域;
S2对搜索获得的信息进行处理,检测目标并识别确认目标,获取粗跟踪信息;
S3根据粗跟踪信息对目标进行追踪,处理目标跟踪结果,获取转台控制信号,控制转台工作,获取精跟踪信息和第一校正值;
S4根据精跟踪信息锁定目标对其进行跟踪,处理目标跟踪结果,获取快反镜控制信号,驱动快反镜运行,并获取第二校正值;
S5根据第一校正值和第二校正值对大视场范围下运动物体的跟踪信息进行校正;
所述步骤S4包括,
S41根据精跟踪信息都对目标进行跟踪,获取初始精跟踪信息;
S42对初始精跟踪信息进行转换和/或处理,获取快反镜控制信号和/或第二校正值;
S43利用快反镜控制信号控制快反镜的转动,输出第二校正值。
2.根据权利要求1所述的一种光电跟踪系统的复合轴控制方法,其中,所述步骤S3包括,
S31根据粗跟踪信息对目标进行跟踪,获取初始粗跟踪信息;
S32对初始粗跟踪信息进行转换和/或处理,获取转台控制信号和/或第一校正值;
S33利用转台控制信号控制转台运动,输出第一校正值。
3.根据权利要求2所述的一种光电跟踪系统的复合轴控制方法,其中,所述步骤S32中采用滤波的方式对初始粗跟踪信息进行校正。
4.根据权利要求2所述的一种光电跟踪系统的复合轴控制方法,其中,所述初始粗跟踪信息选用粗跟踪成像传感器视轴与运动目标之间的角偏差。
5.一种光电跟踪系统的复合轴控制结构,其特征在于,包括粗轴和细轴,所述粗轴包括依次连接的粗跟踪成像传感器、第一信号转换器和转台,所述细轴包括依次连接的精跟踪成像传感器、第二信号转换器和快反镜;所述粗跟踪成像传感器和精跟踪成像传感器与外部信号输入端相连接;所述快反镜和转台与复合轴控制结构的输出端相连接;且所述转台的输出端与外部信号输入端相连接;
信号依次经过外部信号输出端、粗跟踪成像传感器、第一信号转换器和转台后输出第一校正值,转台将所述第一校正值反馈至精跟踪成像传感器的输入端,依次经过精跟踪成像传感器、第二信号转换器和快反镜后输出第二校正值,根据所述第一校正值和第二校正值获取大视场范围下运动物体的精确跟踪信息。
6.根据权利要求5所述的一种光电跟踪系统的复合轴控制结构,其中,所述粗跟踪成像传感器与第一信号转换器之间还设有粗跟踪控制器;所述精跟踪成像传感器与第二信号转换器之间还设有精跟踪控制器。
7.一种光电跟踪系统的复合轴控制系统,其特征在于,包括
搜索模块,用于搜索并接收目标初始方位,控制转台进入目标区域;
信息处理模块,用于对搜索获得的信息进行处理,检测目标并识别确认目标,获取粗跟踪信息;
粗跟踪模块,用于根据粗跟踪信息对目标进行追踪,处理目标跟踪结果,获取转台控制信号,控制转台工作,获取精跟踪信息和第一校正值;
精跟踪模块,用于根据精跟踪信息锁定目标对其进行跟踪,处理目标跟踪结果,获取快反镜控制信号,驱动快反镜运行,并获取第二校正值;
跟踪值校正模块,用于根据第一校正值和第二校正值对大视场范围下运动物体的跟踪信息进行校正;
其中,所述精跟踪模块包括,
精跟踪成像模块,用于根据精跟踪信息都对目标进行跟踪,获取初始精跟踪信息;
第二信号转换模块,用于对初始精跟踪信息进行转换和/或处理,获取快反镜控制信号和/或第二校正值;
精跟踪控制模块,用于利用快反镜控制信号控制快反镜的转动,输出第二校正值。
8.根据权利要求7所述的一种光电跟踪系统的复合轴控制系统,其中,所述粗跟踪模块包括,
粗跟踪成像模块,用于根据粗跟踪信息对目标进行跟踪,获取初始粗跟踪信息;
第一信号转换模块,用于对初始粗跟踪信息进行转换和/或处理,获取转台控制信号和/或第一校正值;
粗跟踪控制模块,用于利用转台控制信号控制转台运动,输出第一校正值。
CN201810975138.1A 2018-08-24 2018-08-24 一种光电跟踪系统的复合轴控制方法及系统 Active CN108919841B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810975138.1A CN108919841B (zh) 2018-08-24 2018-08-24 一种光电跟踪系统的复合轴控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810975138.1A CN108919841B (zh) 2018-08-24 2018-08-24 一种光电跟踪系统的复合轴控制方法及系统

Publications (2)

Publication Number Publication Date
CN108919841A CN108919841A (zh) 2018-11-30
CN108919841B true CN108919841B (zh) 2022-03-08

Family

ID=64406557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810975138.1A Active CN108919841B (zh) 2018-08-24 2018-08-24 一种光电跟踪系统的复合轴控制方法及系统

Country Status (1)

Country Link
CN (1) CN108919841B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109656150B (zh) * 2018-12-14 2021-12-21 天津津航技术物理研究所 基于matlab的复合轴控制系统偏差高精度控制方法
CN110455498B (zh) * 2019-07-04 2021-03-16 湖北航天技术研究院总体设计所 一种复合轴跟瞄系统性能测试装置及测试方法
CN110440795A (zh) * 2019-07-30 2019-11-12 北京航空航天大学 一种基于卡尔曼滤波的角加速度估计方法
CN112630773A (zh) * 2020-12-16 2021-04-09 航天科工微电子系统研究院有限公司 基于共架雷达复合探测的光电跟踪与控制装备
CN112648887B (zh) * 2020-12-16 2022-08-16 航天科工微电子系统研究院有限公司 基于共架雷达复合探测的光电跟踪与控制方法
CN112748748B (zh) * 2020-12-28 2023-01-24 中国兵器装备集团自动化研究所 基于控制杆数据的光电跟瞄半自动复合控制系统及方法
CN113589313B (zh) * 2021-07-12 2022-09-27 长春理工大学 一种用于机载高能激光武器的高精度跟踪系统装置
CN113934234B (zh) * 2021-10-25 2024-02-02 航天科工微电子系统研究院有限公司 一种光束跟踪控制装备的光学方法
CN114281110B (zh) * 2021-11-27 2023-12-22 中国航空工业集团公司洛阳电光设备研究所 一种基于路径预测的伺服记忆跟踪实现方法
CN114281111B (zh) * 2021-12-22 2023-08-11 天津津航技术物理研究所 一种提升转台调转响应能力控制方法及系统

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630250A (en) * 1981-10-09 1986-12-16 Pioneer Video Corporation Method and apparatus for searching an address signal on video and/or audio disc
JP2000311370A (ja) * 1999-04-28 2000-11-07 Sony Corp ディスクドライブ装置、スキュー調整方法
CN101794155A (zh) * 2009-12-31 2010-08-04 陕西科技大学 一种高精度跟踪系统中的太阳光信号采集装置
CN101866183A (zh) * 2010-05-14 2010-10-20 长春理工大学 空间激光通信系统粗跟踪视轴标校装置
CN102494599A (zh) * 2011-11-01 2012-06-13 中国科学院国家天文台南京天文光学技术研究所 大口径毫米波/亚毫米波望远镜控制系统位置检测方法
CN104122900A (zh) * 2014-07-30 2014-10-29 中国科学院光电技术研究所 一种基于旋转双棱镜的复合轴跟踪系统
CN104165618A (zh) * 2014-05-23 2014-11-26 湖北三江航天红峰控制有限公司 一种测量飞行器高度的装置及方法
CN104614002A (zh) * 2015-01-04 2015-05-13 中国科学院光电技术研究所 一种跟踪控制平台光电编码器细分信号误差补偿方法
WO2015069366A1 (en) * 2013-11-05 2015-05-14 Raytheon Company Nadir/zenith inertial pointing assistance for two-axis gimbals
CN105022409A (zh) * 2014-04-21 2015-11-04 中国科学院大连化学物理研究所 一种快速自准直反射镜自适应振动抑制跟踪控制方法
WO2016022579A2 (en) * 2014-08-05 2016-02-11 Massachusetts Institute Of Technology Design of a free-space optical communication module for small satellites
CN107885223A (zh) * 2017-10-31 2018-04-06 武汉大学 基于激光的无人机回收引导系统
CN107992097A (zh) * 2017-11-24 2018-05-04 中国科学院长春光学精密机械与物理研究所 一种实现在轨太阳精密跟踪的系统
CN108279576A (zh) * 2017-12-26 2018-07-13 湖北航天技术研究院总体设计所 一种复合轴目标跟踪仿真测试系统
CN108306607A (zh) * 2017-10-26 2018-07-20 成都常明信息技术有限公司 一种自跟踪聚光太阳能供电系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923353B (zh) * 2010-07-28 2013-04-17 集美大学 双光电传感器联合控制太阳跟踪方法及其装置
CN102707735B (zh) * 2012-06-07 2014-12-17 西安电子科技大学 高精度向日自动跟踪方法
CN103744419B (zh) * 2013-12-27 2016-06-01 湖北三江航天红峰控制有限公司 组合型靶弹仿飞测试系统
US9433427B2 (en) * 2014-04-08 2016-09-06 Incuvate, Llc Systems and methods for management of thrombosis
CN106227035B (zh) * 2016-09-05 2019-04-02 中国科学院光电技术研究所 一种运动平台小型光电系统跟瞄控制方法
CN107993245B (zh) * 2017-11-15 2021-09-14 湖北三江航天红峰控制有限公司 一种空天背景多目标检测和跟踪方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630250A (en) * 1981-10-09 1986-12-16 Pioneer Video Corporation Method and apparatus for searching an address signal on video and/or audio disc
JP2000311370A (ja) * 1999-04-28 2000-11-07 Sony Corp ディスクドライブ装置、スキュー調整方法
CN101794155A (zh) * 2009-12-31 2010-08-04 陕西科技大学 一种高精度跟踪系统中的太阳光信号采集装置
CN101866183A (zh) * 2010-05-14 2010-10-20 长春理工大学 空间激光通信系统粗跟踪视轴标校装置
CN102494599A (zh) * 2011-11-01 2012-06-13 中国科学院国家天文台南京天文光学技术研究所 大口径毫米波/亚毫米波望远镜控制系统位置检测方法
WO2015069366A1 (en) * 2013-11-05 2015-05-14 Raytheon Company Nadir/zenith inertial pointing assistance for two-axis gimbals
CN105022409A (zh) * 2014-04-21 2015-11-04 中国科学院大连化学物理研究所 一种快速自准直反射镜自适应振动抑制跟踪控制方法
CN104165618A (zh) * 2014-05-23 2014-11-26 湖北三江航天红峰控制有限公司 一种测量飞行器高度的装置及方法
CN104122900A (zh) * 2014-07-30 2014-10-29 中国科学院光电技术研究所 一种基于旋转双棱镜的复合轴跟踪系统
WO2016022579A2 (en) * 2014-08-05 2016-02-11 Massachusetts Institute Of Technology Design of a free-space optical communication module for small satellites
CN104614002A (zh) * 2015-01-04 2015-05-13 中国科学院光电技术研究所 一种跟踪控制平台光电编码器细分信号误差补偿方法
CN108306607A (zh) * 2017-10-26 2018-07-20 成都常明信息技术有限公司 一种自跟踪聚光太阳能供电系统
CN107885223A (zh) * 2017-10-31 2018-04-06 武汉大学 基于激光的无人机回收引导系统
CN107992097A (zh) * 2017-11-24 2018-05-04 中国科学院长春光学精密机械与物理研究所 一种实现在轨太阳精密跟踪的系统
CN108279576A (zh) * 2017-12-26 2018-07-13 湖北航天技术研究院总体设计所 一种复合轴目标跟踪仿真测试系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Coarse-to-fine Active Contour Tracking Method Based on Target Distribution;Zhu Linlin等;《2017 2nd International Conference on Advanced Robotics and Mechatronics》;20171231;第435-439页 *
星载光电复合轴跟踪控制技术研究;王卫兵,等;《红外与激光工程》;20141231;第4133-4139页 *

Also Published As

Publication number Publication date
CN108919841A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN108919841B (zh) 一种光电跟踪系统的复合轴控制方法及系统
CN107977987B (zh) 一种无人机载多目标探测跟踪、指示系统及方法
CN108036801B (zh) 视轴惯性稳定参考基准装置
EP1810502B1 (en) System and method for stabilizing an image
CN106597393B (zh) 一种星载微波光学复合跟瞄雷达在轨标定系统和方法
CN101382805B (zh) 速率陀螺稳定平台式天线随动跟踪系统
CN111665873B (zh) 基于参考光的瞄准线高精度稳定方法
CN112284352B (zh) 一种用于光学遥感卫星的稳像系统和方法
CN110658854A (zh) 一种基于组合惯导信息应用的光电转塔视频跟踪前馈补偿方法
CN111488001A (zh) 一种快反镜复合稳定平台控制系统及其设计方法
CN107677266B (zh) 基于自旋-仰角跟踪理论的星光导航系统及其解算方法
Hilkert Kinematic algorithms for line-of-sight pointing and scanning using INS/GPS position and velocity information
Borrello A multi stage pointing acquisition and tracking (PAT) control system approach for air to air laser communications
JPH10132935A (ja) 飛翔体位置計測装置
CN108375997B (zh) 一种用于车载光电观瞄系统的两轴伺服控制系统正交性补偿方法
Bai et al. The study of guidance performance of a phased array seeker with platform
CN110658839B (zh) 一种基于虚拟光轴的捷联导引头制导信息提取方法
RU2381523C2 (ru) Способ измерения бортовой пассивной системой наблюдения перемещений движущегося объекта и дальности до него
CN103175445A (zh) 基于mems陀螺的位标器系统及其跟踪方法
Di et al. Research on precision tracking on fast steering mirror and control strategy
CN112268558A (zh) 一种基于无人机自主式光电平台的有源目标定位测速方法
RU2325671C1 (ru) Следящая локационно-оптическая система сопровождения подвижных объектов
CN117848354A (zh) 空间目标多模态信息融合光电探测定位定轨装置和方法
Yang et al. Control technology of stable gaze scanning based on airborne platform
RU2795367C1 (ru) Способ программно-корректируемого сопровождения цели

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant