CN108918961B - 一种针对频率时变正弦信号的快速频率测量方法 - Google Patents

一种针对频率时变正弦信号的快速频率测量方法 Download PDF

Info

Publication number
CN108918961B
CN108918961B CN201810307532.8A CN201810307532A CN108918961B CN 108918961 B CN108918961 B CN 108918961B CN 201810307532 A CN201810307532 A CN 201810307532A CN 108918961 B CN108918961 B CN 108918961B
Authority
CN
China
Prior art keywords
time
frequency
rising edge
signal
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810307532.8A
Other languages
English (en)
Other versions
CN108918961A (zh
Inventor
谭超
王家成
李宗燎
乐周美
杨哲
龚晓飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Survey (Wuhan) instrument equipment Co.,Ltd.
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201810307532.8A priority Critical patent/CN108918961B/zh
Publication of CN108918961A publication Critical patent/CN108918961A/zh
Application granted granted Critical
Publication of CN108918961B publication Critical patent/CN108918961B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • G01R23/10Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage by converting frequency into a train of pulses, which are then counted, i.e. converting the signal into a square wave

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)

Abstract

一种针对频率时变正弦信号的快速频率测量方法,将正弦信号变为方波;令T′xi为获取的方波信号第i个上升沿时刻,则第1个上升沿时刻为T′x1,第N个上升沿时刻为T′xN,令第1个上升沿沿时刻至第N个上升沿时刻之间的时间长度为:T′x(1,N)=(N‑1)T±△T′x(1,N),利用待测方波信号对标准高频信号fs进行计数,设T′x(1,N)时间段内对fs的计数个数为M′x(1,N)。本方法进行频率测量时,在待测频率每一个上升沿,均可得到待测频率的测量值。即为fx。普通频率测量方法是在下一次频率测量时,从第N+1个上升沿时刻开始,直到第N+N个上升沿时刻结束,所以其频率测量的速度为fx/N‑1。本发明用于对快速变化的正弦信号进行高精度频率测量,原理简单,与传统的频率测量方法相比,能反映外部待测频率的变化,测量速度快,具有很强的实用价值。

Description

一种针对频率时变正弦信号的快速频率测量方法
技术领域
本发明属于信号测量与计量领域,具体是一种针对频率时变正弦信号的快速频率测量方法。
背景技术
正弦信号的频率测量在重大的科学实验、与钟和振荡器相关的消费类产品中均有广泛应用,是测量与计量领域的一个重要组成部分,长期以来,针对频率时变信号的高精度实时测频是进行频率测量领域的难题。
正弦信号的频率测量方法有很多。最常规的方法是利用比较器将正弦信号变为方波信号,然后利用如比相法、量化延时法、多周期同步测频以及量化延时与多周期同步测频综合法等方法进行测量,其测量相对精度可优于1×10-15,这些测量方法均是针对时不变频率信号进行的测频,在测量过程中频率的大小是固定的,因此可用足够长的时间对其进行测量,常用的测量时间从0.1S-1S范围内,针对快速变化的频率信号,在整个时间轴上,这些测量方法仅仅能体现全局平均频率,而不能体现局部频率的变化情况。
对实际工程应用而言,如用于特殊领域(如探潜领域)的自激振荡式光泵磁力仪快速测频,需要在1秒内进行1000次频率测量,也就是将频率测量的时间缩短到1mS,若用常规的手段进行频率测量,则很难达到较高的精度。
对此,为了解决人们在工程应用或科学研究中对快速频率变化信号的频率测量与计量精度的要求,急需一种快速的、实现简单的、测量精度高的快速正弦信号频率测量方法。
发明内容
本发明要解决的技术问题在于:实际工程应用领域中,需要对快速频率变化信号的正弦进行高精度频率测量,针对现有测量方法问题,提供一种快速的、实现简单的、测量精度高的频率测量方法。
本发明采取的技术方案为:
一种针对频率时变正弦信号的快速频率测量方法,包括以下步骤:
步骤1、将正弦信号变为方波:
利用迟滞比较器将频率为fx的正弦信号变为TTL方波信号,由于信号s(t)中存在噪声n(t),导致待测信号通过比较器后的方波信号周期为:
Ti’=T±△Ti i=1,2,…,N
其中:Ti’为含有噪声信号第i个周期的实际时间长度,T为信号s(t)的周期,△Ti为由噪声n(t)引起的第i个周期时间偏差。
步骤2、令T’xi为获取的方波信号第i个上升沿时刻,则第1个上升沿时刻为T’x1,第N个上升沿时刻为T’xN,令第1个上升沿沿时刻至第N个上升沿时刻之间的时间长度为:
T’x(1,N)=(N-1)T±△T’x(1,N)
其中,△T’x(1,N)为噪声引起的第一个上升沿时刻时间偏差△T’x1与第N个上升沿时刻时间偏差△T’xN代数和,其表达式为:
△T’x(1,N)=△T’x1+△T’xN
步骤3、利用待测方波信号对标准高频信号fs进行计数,设T’x(1,N)时间段内对fs的计数个数为M’x(1,N),其表达式如下:
M’x(1,N)=(N-1)M±△Mx(1,N)
其中:M’x(1,N)为信号T’x(1,N)时间段内对fs的计数个数,M为待测信号一个周期时间T内对fs的计数个数,△Mx(1,N)为时间偏差ΔT’x(1,N)的计数个数,利用计数个数M’x(1,N)乘以标准信号fs的周期Ts,得到待测信号相应的测量公式为:
T’x(1,N)=M’x(1,N)×Ts
=((N-1)M±△Mx(1,N))×Ts
由此可得第N个上升沿时刻(简称N时刻)待测频率值f’xN,其表达式为:
Figure GDA0002442820240000021
并可得到这段时间对频率测量相对误差为:
Figure GDA0002442820240000031
考虑到(N-1)M>>△Mx(1,N),相对误差可近似为:
Figure GDA0002442820240000032
步骤4、记第2个上升沿时刻为T’x2,第N+1个上升沿时刻为T’x(N+1),重复步骤2和步骤3,即:令第2个上升沿沿时刻至第N+1个上升沿时刻之间的时间长度为:
T’x(2,N+1)=(N+1-2)T±△T’x(2,N+1)=(N-1)T±△T’x(2,N+1)
其中,△T’x(2,N+1)为噪声引起的第二个上升沿时刻时间偏差△T’x2与第N+1个上升沿时刻时间偏差△T’x(N+1)代数和,其表达式为:
△T’x(2,N+1)=△T’x2+ΔT’x(N+1)
令M’x(2,N+1)为T’x(2,N+1)时间段内对fs的计数个数,其表达式如下:
M’x(2,N+1)=(N-1)M±ΔMx(2,N+1)
其中:M为待测信号一个周期时间T内对fs的计数个数,ΔMx(2,N+1)为时间偏差△T’x(2,N+1)的计数个数,利用计数个数M’x(2,N+1)乘以标准信号fs的周期Ts,得到待测信号相应的测量公式为:
T’x(2,N+1)=M’x(2,N+1)×Ts=((N-1)M±△Mx(2,N+1))×Ts
由此得到第N+1个上升沿时刻(简称N+1时刻)待测频率值f’x(N+1),其表达式为:
Figure GDA0002442820240000041
并得到这段时间对频率测量相对误差为:
Figure GDA0002442820240000042
考虑到(N-1)M>>△Mx(2,N+1),相对误差可近似为:
Figure GDA0002442820240000043
由前面推导可知,在N时刻可得到待测频率值f’xN,N+1时刻可得到待测频率值f’x(N+1),即利用本方法进行频率测量时,在待测频率每一个上升沿,均可得到待测频率的测量值,即频率测量的速度与待测频率是一致的,即为fx。普通频率测量方法是在步骤3之后,在下一次频率测量时,从第N+1个上升沿时刻开始,直到第N+N个上升沿时刻结束,所以其频率测量的速度为fx/N-1。
本发明一种针对频率时变正弦信号的快速频率测量方法,技术效果如下:
1、在同样的测量条件下,利用本方法的频率测量速度比传统方法快N-1倍。
2、本发明用于对快速变化的正弦信号进行高精度频率测量,原理简单,与传统的频率测量方法相比,能反映外部待测频率的变化,测量速度快,具有很强的实用价值。
附图说明
图1是本发明测量过程示意图。
图2是本发明中心频率为100kHz的正弦信号fx的波形示意图。
图3是本发明频率测量速度与传统测量速度对比图。
具体实施方式
一种针对频率时变正弦信号的快速频率测量方法,包括以下步骤:
步骤1、将正弦信号变为方波:
利用迟滞比较器将频率为fx的正弦信号变为TTL方波信号,由于信号s(t)中存在噪声n(t),导致待测信号通过比较器后的方波信号周期为:
Ti’=T±△Ti i=1,2,…,N
其中:Ti’为含有噪声信号第i个周期的实际时间长度,T为信号s(t)的周期,△Ti为由噪声n(t)引起的第i个周期时间偏差。
步骤2、令T’xi为获取的方波信号第i个上升沿时刻,则第1个上升沿时刻为T’x1,第N个上升沿时刻为T’xN,令第1个上升沿沿时刻至第N个上升沿时刻之间的时间长度为:
T’x(1,N)=(N-1)T±△T’x(1,N)
其中,△T’x(1,N)为噪声引起的第一个上升沿时刻时间偏差△T’x1与第N个上升沿时刻时间偏差△T’xN代数和,其表达式为:
△T’x(1,N)=△T’x1+△T’xN
步骤3、利用待测方波信号对标准高频信号fs进行计数,设T’x(1,N)时间段内对fs的计数个数为M’x(1,N),其表达式如下:
M’x(1,N)=(N-1)M±△Mx(1,N)
其中:M’x(1,N)为信号T’x(1,N)时间段内对fs的计数个数,M为待测信号一个周期时间T内对fs的计数个数,△Mx(1,N)为时间偏差△T’x(1,N)的计数个数,利用计数个数M’x(1,N)乘以标准信号fs的周期Ts,得到待测信号相应的测量公式为:
T’x(1,N)=M’x(1,N)×Ts=((N-1)M±△Mx(1,N))×Ts
由此可得第N个上升沿时刻,简称N时刻,待测频率值f’xN,其表达式为:
Figure GDA0002442820240000051
并可得到这段时间对频率测量相对误差为:
Figure GDA0002442820240000061
考虑到(N-1)M>>ΔMx(1,N),相对误差可近似为:
Figure GDA0002442820240000062
步骤4、记第2个上升沿时刻为T’x2,第N+1个上升沿时刻为T’x(N+1),重复步骤2和步骤3,即:令第2个上升沿沿时刻至第N+1个上升沿时刻之间的时间长度为:
T’x(2,N+1)=(N+1-2)T±△T’x(2,N+1)=(N-1)T±△T’x(2,N+1)
其中,△T’x(2,N+1)为噪声引起的第二个上升沿时刻时间偏差△T’x2与第N+1个上升沿时刻时间偏差△T’x(N+1)代数和,其表达式为:
△T’x(2,N+1)=△T’x2+△T’x(N+1)
令M’x(2,N+1)为T’x(2,N+1)时间段内对fs的计数个数,其表达式如下:
M’x(2,N+1)=(N-1)M±△Mx(2,N+1)
其中:M为待测信号一个周期时间T内对fs的计数个数,△Mx(2,N+1)为时间偏差△T’x(2,N+1)的计数个数,利用计数个数M’x(2,N+1)乘以标准信号fs的周期Ts,得到待测信号相应的测量公式为:
T’x(2,N+1)=M’x(2,N+1)×Ts=((N-1)M±△Mx(2,N+1))×Ts
由此得到第N+1个上升沿时刻,简称N+1时刻,待测频率值f’x(N+1),其表达式为:
Figure GDA0002442820240000071
并得到这段时间对频率测量相对误差为:
Figure GDA0002442820240000072
考虑到(N-1)M>>△Mx(2,N+1),相对误差可近似为:
Figure GDA0002442820240000073
步骤5、由前面推导可知,在N时刻可得到待测频率值f’xN,N+1时刻可得到待测频率值f’x(N+1),即利用本方法进行频率测量时,在待测频率每一个上升沿,均可得到待测频率的测量值,即频率测量的速度与待测频率是一致的,即为fx。普通频率测量方法是在步骤3之后,在下一次频率测量时,从第N+1个上升沿时刻开始,直到第N+N个上升沿时刻结束,所以其频率测量的速度为fx/N-1。
下面结合附图与实例,对本发明做更详细的描述。
假设一个中心频率为100kHz的正弦信号fx,其频率在100kHz±1000Hz范围内按照正弦规律变化的,变化速率为50Hz,其波形示意图如图2所示。用比较器将其变为方波后,利用一个100MHz的高频信号fs对其进行量化,若待测频率为100kHz不变,则每个Tx周期对fs的计数个数为1000±1个,高频信号fs的周期为Ts=10nS,故可得到Tx=Ts(1000±1),若频率按照上述规律变化,则每个Tx周期对fs的计数个数也会按照相应的规律变化。利用matlab模拟上述过程产生数据序列{Txi},其过程如下:首先生成一个长度为N=1000的一维数据序列,每个元素赋值为1000,在Ts=10nS时,对应100KHz;然后利用正弦函数产生一个幅度为10,频率为50Hz的一维数据序列,序列长度为1000,将两个数据序列相加,并乘以Ts,则得到{Txi}数据序列。
以100个连续Txi数据进行一次频率测量,若利用普通频率测量方法,在总计数个数为1000时,只能得到10个频率测量数据,对应图中的0.01s,0.02s,0.03s,0.04s,一直到0.1s,且频率测量结果无法反应出频率的变化,其示意图如图3中的曲线三。若采用本发明所用方法,则从100点开始,对应图3中的0.01s开始,可以连续得到900个频率测量数据,数据量是普通方法的90倍,如图3中的曲线二所示,除此之外,从图3还可观察到两种方法的测量结果的相位均滞后原始频率0.01s,对应100个点,其原因在于两种方法均用了100个连续Txi数据进行平均运算,平均算法自身具有滞后特性。对比两种方法结果,在有限的测量时间范围内,本发明采用方法获取的测量结果比普通方法多,且测量结果变化趋势更接近外部磁场变化,能够反映出待测磁场的变化趋势。
以上所述仅为本发明实施实例的仿真,该算法的应用不仅限于上述实施实例,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均包含在本发明的保护范围之内。

Claims (1)

1.一种针对频率时变正弦信号的快速频率测量方法,其特征在于包括以下步骤:
步骤1、将正弦信号变为方波:
利用迟滞比较器将频率为fx的正弦信号变为TTL方波信号,由于信号s(t)中存在噪声n(t),导致待测信号通过比较器后的方波信号周期为:
Ti'=T±△Ti i=1,2,…,N
其中:Ti'为含有噪声信号第i个周期的实际时间长度,T为信号s(t)的周期,△Ti为由噪声n(t)引起的第i个周期时间偏差;
步骤2、令T′xi为获取的方波信号第i个上升沿时刻,则第1个上升沿时刻为T′x1,第N个上升沿时刻为T′xN,令第1个上升沿时刻至第N个上升沿时刻之间的时间长度为:
T′x(1,N)=(N-1)T±△T′x(1,N)
其中,△T′x(1,N)为噪声引起的第一个上升沿时刻时间偏差△T′x1与第N个上升沿时刻时间偏差△T′xN代数和,其表达式为:
△T′x(1,N)=△T′x1+△T′xN
步骤3、利用待测方波信号对标准高频信号fs进行计数,设T′x(1,N)时间段内对fs的计数个数为M′x(1,N),其表达式如下:
M′x(1,N)=(N-1)M±△Mx(1,N)
其中:M′x(1,N)为信号T′x(1,N)时间段内对fs的计数个数,M为待测信号一个周期时间T内对fs的计数个数,△Mx(1,N)为时间偏差△T′x(1,N)的计数个数,利用计数个数M′x(1,N)乘以标准信号fs的周期Ts,得到待测信号相应的测量公式为:
T′x(1,N)=M′x(1,N)×Ts=((N-1)M±△Mx(1,N))×Ts
由此可得第N个上升沿时刻(简称N时刻)待测频率值f′xN,其表达式为:
Figure FDA0002442820230000021
并可得到这段时间对频率测量相对误差为:
Figure FDA0002442820230000022
考虑到(N-1)M>>△Mx(1,N),相对误差可近似为:
Figure FDA0002442820230000023
步骤4、记第2个上升沿时刻为T′x2,第N+1个上升沿时刻为T′x(N+1),重复步骤2和步骤3,即:令第2个上升沿时刻至第N+1个上升沿时刻之间的时间长度为:
T′x(2,N+1)=(N+1-2)T±ΔT′x(2,N+1)=(N-1)T±△T′x(2,N+1)
其中,△T′x(2,N+1)为噪声引起的第二个上升沿时刻时间偏差△T′x2与第N+1个上升沿时刻时间偏差△T′x(N+1)代数和,其表达式为:
△T′x(2,N+1)=△T′x2+△T′x(N+1)
令M′x(2,N+1)为T′x(2,N+1)时间段内对fs的计数个数,其表达式如下:
M′x(2,N+1)=(N-1)M±△Mx(2,N+1)
其中:M为待测信号一个周期时间T内对fs的计数个数,△Mx(2,N+1)为时间偏差△T′x(2,N+1)的计数个数,利用计数个数M′x(2,N+1)乘以标准信号fs的周期Ts,得到待测信号相应的测量公式为:
T′x(2,N+1)=M′x(2,N+1)×Ts=((N-1)M±△Mx(2,N+1))×Ts
由此得到第N+1个上升沿时刻,简称N+1时刻,待测频率值f′x(N+1),其表达式为:
Figure FDA0002442820230000031
并得到这段时间对频率测量相对误差为:
Figure FDA0002442820230000032
考虑到(N-1)M>>△Mx(2,N+1),相对误差可近似为:
Figure FDA0002442820230000033
由前面推导可知,在N时刻可得到待测频率值f′xN,N+1时刻可得到待测频率值f′x(N+1),即利用该方法进行频率测量时,在待测频率每一个上升沿,均可得到待测频率的测量值,即频率测量的速度与待测频率是一致的,即为fx;普通频率测量方法是在步骤3之后,在下一次频率测量时,从第N+1个上升沿时刻开始,直到第N+N个上升沿时刻结束,所以其频率测量的速度为fx/N-1。
CN201810307532.8A 2018-04-08 2018-04-08 一种针对频率时变正弦信号的快速频率测量方法 Active CN108918961B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810307532.8A CN108918961B (zh) 2018-04-08 2018-04-08 一种针对频率时变正弦信号的快速频率测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810307532.8A CN108918961B (zh) 2018-04-08 2018-04-08 一种针对频率时变正弦信号的快速频率测量方法

Publications (2)

Publication Number Publication Date
CN108918961A CN108918961A (zh) 2018-11-30
CN108918961B true CN108918961B (zh) 2020-08-04

Family

ID=64403148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810307532.8A Active CN108918961B (zh) 2018-04-08 2018-04-08 一种针对频率时变正弦信号的快速频率测量方法

Country Status (1)

Country Link
CN (1) CN108918961B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110806501A (zh) * 2019-11-12 2020-02-18 南京宏泰半导体科技有限公司 一种波形测量方法
CN111624400B (zh) * 2020-04-29 2021-10-19 中国人民解放军军事科学院国防科技创新研究院 正弦信号频率测量方法
CN116908537B (zh) * 2023-09-13 2023-12-19 西安西电高压开关有限责任公司 一种电流电压频率计算电路和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2254389Y (zh) * 1995-11-13 1997-05-21 黄显伟 快速无功补偿电焊机
CN102495283A (zh) * 2011-12-09 2012-06-13 中国人民解放军第二炮兵计量站 自适应等精度测频方法
CN106324343A (zh) * 2016-08-31 2017-01-11 河北工业大学 基于频移集合经验模态分解的谐波检测方法及检测系统
CN106605377A (zh) * 2015-02-27 2017-04-26 松下电器(美国)知识产权公司 信号生成方法、信号生成装置以及程序

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982642B1 (en) * 2010-01-08 2011-07-19 National Yunlin University Of Science And Technology Method for testing nonlinearity error of high speed digital-to-analog converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2254389Y (zh) * 1995-11-13 1997-05-21 黄显伟 快速无功补偿电焊机
CN102495283A (zh) * 2011-12-09 2012-06-13 中国人民解放军第二炮兵计量站 自适应等精度测频方法
CN106605377A (zh) * 2015-02-27 2017-04-26 松下电器(美国)知识产权公司 信号生成方法、信号生成装置以及程序
CN106324343A (zh) * 2016-08-31 2017-01-11 河北工业大学 基于频移集合经验模态分解的谐波检测方法及检测系统

Also Published As

Publication number Publication date
CN108918961A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN108918961B (zh) 一种针对频率时变正弦信号的快速频率测量方法
AU2006202661B2 (en) High resolution time interval measurement apparatus and method
CN102508024A (zh) 基于频率与相位关系辅助处理的频率和相位差精密测量方法
Grillo et al. An efficient extension of the zero-crossing technique to measure frequency of noisy signals
CN105182069A (zh) 一种异频架构下的高分辨群量子化相位处理方法
Kokuyama et al. Simple digital phase-measuring algorithm for low-noise heterodyne interferometry
CN106645952A (zh) 一种信号相位差的检测方法及系统
Chen et al. Robust precise time difference estimation based on digital zero-crossing detection algorithm
Yamamoto et al. Metallic ratio equivalent-time sampling and application to TDC linearity calibration
US8384440B2 (en) High resolution capture
JP6583738B2 (ja) 位相計測装置およびこの位相計測装置を適用した機器
JP2003157142A (ja) 位相ディジタイザ
TWI438445B (zh) Measurement method of signal delay time
Wang et al. High resolution heterodyne interferometer based on time-to-digital converter
Warda Measurement data transmission in the presence of electromagnetic fields
RU2533756C1 (ru) Устройство двухпараметрового контроля толщины электропроводных покрытий
CN104391175A (zh) 具有宽频率范围揭示和保持相位信息的测频系统及其测频方法
US20190286065A1 (en) Range finding device
Bekirov et al. Real time processing of the phase shift and the frequency by voltage signal conversion into the sequence of rectangular pulses
RU2591742C1 (ru) Способ измерения частоты гармонического сигнала и устройство для его осуществления
CN104914305B (zh) 一种基于最小二乘法的高精度频率估计方法
Borisov et al. Precise measurements of highly stable laser radiation frequency and phase
CN104833848B (zh) 测量脉冲频率的方法及系统
CN112782451B (zh) 一种基于时域的相位分析方法、装置及系统
Bai et al. The measurement of transient stability with high resolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210604

Address after: 430070 room 701, 7 / F, building a, future city, 147 Luoshi South Road, Hongshan District, Wuhan City, Hubei Province

Patentee after: Shanghai Survey (Wuhan) instrument equipment Co.,Ltd.

Address before: 443002 No. 8, University Road, Yichang, Hubei

Patentee before: CHINA THREE GORGES University

TR01 Transfer of patent right